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Wireless capsule endoscopy (WCE) is a technology for flming the gastrointestinal (GI) tract to fnd abnormalities such as tumors,
polyps, and bleeding. Tis paper proposes a newmethod based on hand-crafted features to detect polyps in WCE frames. A polyp
has a convex surface containing pixel values with a specifed Gaussian distribution. If a polyp exists in the WCE image, edges will
be seen at the border of the occupied area. Since WCE images often sufer from low illumination, a histogram equalization (HE)
technique can be used to enhance the image. In this paper, we initially fnd probable polyp edges via thresholding.Ten, we use the
edges to fnd the region of interest (ROI). Ten, the mean, standard deviation (STD), and division of mean by STD from the ROI
are computed as features to discriminate between polyp and nonpolyp using a support vector machine (SVM). Te evaluation
results on the Kvasir-Capsule dataset show 99% accuracy for the proposed method in polyp detection. Furthermore, the proposed
method runs at a real-time speed of ∼0.031 seconds detection for each image.

1. Introduction

Gastric, colorectal, and esophageal diseases cause many
cancers and deaths a year [1]. A polyp is a common cause of
gastrointestinal (GI) cancers. Polyps are usually benign
clumps of cells [2]. It is commonly observable as an oval
shape inside the mucosal wall [3]. Polyps can be pre-
cancerous lesions; hence, it should be better to identify and
remove polyps to prevent cancer [2, 3]. Wireless capsule
endoscopy (WCE) is a technology for flming the GI tract to
fnd abnormalities such as tumors, polyps, and bleeding [4].
It is noninvasive and uses a swallowable capsule equipped
with a video camera to capture the flm [5]. WCE images
may include various lesions such as polyps, bleeding,
angiodysplasia, and erythematous [6]. Te output fle from
the examination is an eight-hour video containing about
8000 frames [7]. Checking all frames is a time-consuming
task for the physician [2]. Also, physicians may miss some
abnormalities during the examination [8]. Hence, automatic
and accurate computer-aided detection is required to im-
prove the accuracy and speed of detection [9].

Many challenges are afecting polyp detection systems
from WCE images. Te main issue is the similarity in many
cases between normal mucosa and polyp lesions in terms of
color, texture, and shape (Figure 1). In addition, WCE
images often sufer from noise, low resolution, and blurri-
ness [10]. Tis research proposes a new technique to detect
polyp lesions in WCE images.

In WCE images, polyps are convex shapes with a spec-
ifed Gaussian distribution in pixel values, diferent from
other convex shapes in the image. Meanwhile, the periphery
of a polyp is visible by the edges. Hence, a suitable edge
detection technique can be used to extract region of interest
(ROI) for polyp detection. WCE images often sufer from
low illumination. Hence, histogram equalization (HE) can
be used to enhance the image for ROI extraction. Ten,
discriminant features are extracted from ROIs to detect
polyps and segment the image. Our goal is to use the features
extracted based on the Gaussian distribution of convex areas
to distinguish polyp and normal mucosa images.

Te rest of the paper is organized as follows: In Section 2,
related works are reviewed. In Section 3, the proposedmethod is
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introduced. Section 4 discusses the experimental results, and
Section 5 provides the conclusion and future works.

2. Related Works

In the literature, several studies exist for abnormality de-
tection in WCE. Before 2015, GI abnormality detection
systems commonly used hand-crafted features and classic
machine learning algorithms [11]. Li and Meng [12] pro-
posed a method using local binary patterns (LBP) and
wavelet transformations to extract features from WCE
frames for polyp detection. Ten, a support vector machine
(SVM) was used to classify polyp and nonpolyp images.
After 2015, GI abnormality detection systems focused more
on the deep convolutional neural network (CNN) systems
[13]. Yu et al. [14] proposed a hierarchical network, namely,
the HCNN-NELM network, for polyp detection. It uses
a CNN for extracting features and a cascaded extreme
learning machine (ELM) as a classifer. Guo and Yuan [15]
proposed a Triple ANet network. It uses abnormal-aware
attention module and adaptive dense block.Tey introduced
angular contrastive loss to achieve better results in intraclass
variabilities and low interclass variances situations.

Recently, diferent researchers proposed state-of-the-art
methodologies for WCE abnormality detection. Prasath
et al. [16] proposed a new image enhancement model for
WCE video frames based on a human visual system. Te
proposedmethodmodels the neuronal mechanism using the
feature-linking model (FLM). Te FLM is a neural network
model based on the precise timing of the spiking neurons.
Tis method is proposed to enhance uneven illumination
and darker regions for better visualization.

Bchir et al. [17] proposed a new automatic detection
approach for multiple bleeding spots using WCE video. Te
proposed method has two components. Te frst component
extracts handcrafted features for the feature extraction step,
and the second one uses an unsupervised learning technique
to overcome performance degradation.

Ellahyani et al. [18] proposed a WCE abnormality de-
tection system based on an extreme learning machine. In the
preprocessing, they use the hue component of HSV color
space to apply oriented gradients (HOG) and a modifed
rotation-invariant local binary pattern for feature extraction

and then combined the features as a vector and feed them to
the Kernel ELM classifer.

Mohammed et al. [19] used a recurrent neural network
(RNN), namely, pathology-sensitive deep learning model
(PS-DeVCEM) network, for colon disease detection.Te PS-
DeVCEM network uses a ResNet50, a residual long short-
term memory network (short LSTM) [20], and a CNN
architecture. Te CNN extracts the spatial features, the
ResNet50, and the short LSTM extract temporal features
from the image. Tis network has the advantage of self-
supervision learning, which can be used for generating
representative labels on unlabeled data. In addition, it can
minimize within-video similarities for negative and positive
feature frames.

Jha et al. [21] proposed another method for detecting
polyps. Tis method uses EfcientDet [22] for the backbone
and bidirectional feature pyramid network architecture for
the feature base network. Also, it uses faster R-CNN [23] and
fast R-CNN [24] as region proposal and detection networks,
respectively. In the end, they used YOLOv3 [25] for utilizing
multiclass logistic loss.

Qadir et al. [26] proposed a novel method based on full
CNNs and 2-dimensional Gaussian shapes for polyp pre-
diction. Te proposed method uses a CNN-based autoen-
coder to predict Gaussian shapes in polyp regions of images.
At frst, they convert binary polyp masks to Gaussian masks.
Ten, they use new masks to train CNNs. Eventually, the
MDenetplus network detects polyps.

Reuss et al. [13] proposed a new method with the idea of
sequential models to detect polyps in WCE. Tey use
a pretrained self-supervised network to extract low-level
features. Ten add a CNN and a bidirectional LSTM on
the top layer to extract high-level features. In the end, they
use a fully connected layer for binary classifcation.

In another study, Amiri et al. [6] proposed a newmethod
that detects polyps and some other abnormalities in WCE.
Te proposed method uses the joint normal distribution to
identify distinct areas and separate the foreground from the
background to fnd ROI. Ten, features such as shape,
texture, and color are extracted from the ROI. In the next
step, they applied the correlation-based feature selection
technique to select the best feature sets. Finally, an SVM was
trained to classify diferent abnormality lesions.

(a) (b) (c) (d)

Figure 1: Some samples from the Kvasir-Capsule dataset. (a), (b) Polyp images. (c), (d) Normal mucosa images. Te region of the polyp is
indicated by the red box.
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3. Proposed Method

Tis paper proposes a new polyp detection method for WCE
images. Te diagram of the proposed method is depicted in
Figure 2. Te frst step of the proposed method is image
enhancement using HE [27], which is applied to the three
RGB channels of the image. Figure 3 depicts the RGB and the
HE-enhanced images. HE enhancement is an efective
process for the feature selection step and positively impacts
the proposed method. Ten, ROIs are extracted from the
image. We use feature extraction and classifcation tech-
niques for the detection.

3.1.ROIExtraction. We initially fnd the probable polyp area
(ROI) via thresholding; then, the central point coordinate of
the area is computed. In WCE, the periphery of the polyp is
visible by the edges. Hence, we can fnd polyp edges by
thresholding. We provide binary masks for each RGB color
channel, i.e., C, using the following equation to fnd polyp
borders:

mask[i, j] �

1, a −
b

H
􏼠 􏼡< C[i, j]< a +

b

H
􏼠 􏼡,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where C indicates an RGB channel, a and b indicate the
thresholding range, which is diferent for each RGB channel,
and H indicates the thickness of the polyp edges.Te smaller
the H parameter, the thicker the edges.Te values of a, b, and
H for each RGB channel, computed experimentally, are
indicated in Table 1. Figure 4 depicts the probable polyp edge
thickness for diferent values of H. We use the following
equation to obtain ROI:

Fmask[i, j] � Rmask[i, j]∩Gmask[i, j]∩Bmask[i, j],

(2)

where Rmask[i, j], Gmask[i, j], and Bmask[i, j] are the
binary masks associated with R, G, and B channels, re-
spectively, obtained using equation (1); and Fmask[i, j]
represents ROI for polyp detection. Ten, the central point
coordinates of the possible polyp, i.e., ROI, can be obtained
using equation (3) as follows:

Ci,Cj􏼐 􏼑 �
1
N

􏽘(i, j)where ∀< i, j>∈ Fmask& Fmask[i, j] � 1􏼈 􏼉, (3)

where (Ci, Cj) is the coordinate of the possible polyp center
and N is the total number of pixels equal to 1 in Fmask[i,j].
Te ROI extraction process is depicted in Figure 5.

3.2. Feature Extraction. As mentioned, a polyp has a convex
shape with pixel values in a Gaussian distribution [25],
diferent from other convex shapes in WCE images. We use
the Shapiro–Wilk test [28] to show that the convexity of
regions in each RGB component has a Gaussian distribution.
To use the Shapiro–Wilk test, we made binary masks for the
polyp and normal mucosa convex regions in each image.
Afterward, we got the pixel values in the binary mask for
each RGB channel separately. Ten, we shaped these values
as vectors and applied Shapiro–Wilk test to these values
separately. Figure 6 shows the distribution of pixel values in
each RGB color channel for four convex shapes from WCE,
two polyps, and two normal mucosas. As shown in Figure 6,
the Gaussian distributions of ROI in polyp and normal
mucosa images are diferent. It shows that the distribution in
polyp images is more Gaussian than in normal mucosa
images. Also, Table 2 shows the mean, standard deviation
(STD), and division of mean by the STD values of each RGB
channel in two polyps and two normal mucosa images.
Terefore, we use the Gaussian distribution to extract the
features from each channel in the RGB image. Te division
of the mean by the STD helps the SVM model classify

accurately because it has a specifc range for polyp regions
diferent from normal mucosa regions. In each component,
the three diferent features are extracted from ROI (i.e.,
mean, STD, and division of the mean by the STD). We use
several diferent window sizes around the central point of the
ROI. We experimentally found that the best values for
window sizes are 3, 71, 91, and 111. Hence, with three
components of RGB image, four window sizes, and three
features for each window, i.e., 3× 4× 3� 36 features are
extracted from each ROI.

3.3. Classifcation and Segmentation. In this step, the
extracted features are classifed using an SVM. We use a radial
basis function (RBF) as the kernel and 0.001 for the gamma
coefcient in the SVM model [29]. After classifcation, we
segment the detected ROI. Figure 7 depicts the polyp seg-
mentation process using the proposed method. Once the SVM
model detects an ROI as a polyp, its edge binary mask is ob-
tained using equation (2) (Figure 7(b)).Ten,we use the dilation
operator to fll the discontinuity from the edge [30] (Figure 7(c)).
Te process helps to have a continuous border of the polyp.
Finally, we segment pixels located between the central point
coordinate of the ROI and the nearest border (Figure 7). We
remove other regions that do not intersect with the central point
coordinates (Figure 7(e)). Our research shows that using original
RGB images to apply equation (2) has better results than HE-

Journal of Healthcare Engineering 3



enhanced images in the segmentation step. Te values of a, b,
andH parameters for each component in the segmentation step
are indicated inTable 3.Wefnd these valueswith trial and error.

4. Experimental Results

4.1.Dataset. We used the Kvasir-Capsule dataset to evaluate
the proposed method, which is a publicly released WCE
dataset with various labeled and unlabeled data. It was in-
troduced in 2020 and got updated in 2021 [3]. Te Kvasir-

Capsule dataset has three parts: labeled image, labeled video,
and unlabeled video. In this paper, we used polyp and
normal mucosa-labeled images to measure the performance
of the proposed method. Te Kvasir-Capsule dataset has
34,338 normal mucosa images and 55 polyp images.

4.2. Data Augmentation. All images in the dataset have
a resolution of 336× 336 pixels. Since the dataset is un-
balanced with only a few polyp images, we used data aug-
mentation to provide more images containing a polyp. Our

preprocessing
(Apllay 

Histogram 
Equalization)

thresholding find probable
polyp edges

find probable 
polyp center

feature 
extraction clasification segmentation

Figure 2: Diagram of the proposed method. Te ROI extraction step indicated by the red box.

(a) (b)

Figure 3: (a) Te RGB image of a WCE frame containing polyp; (b) the HE-enhanced image.

Table 1: Values of a, b, and H in equation (1) for polyp edge thresholding in ROI extraction step.

Channels
Parameters

a b H
Red channel 136 70 2
Green channel 128 100 2
Blue channel 120 115 2

(a) (b) (c) (d) (e)

Figure 4: An example of the polyp with edge thickness is represented using variousH values in equation (1). (a) Original RGB image. (b)Te
HE-enhanced RGB image. (c) Edge mask using H� 1. (d) Edge mask using H� 2. (e) Edge mask using H� 3. Te region of the polyp is
indicated by the red box.
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(a) (b) (c) (d)

Figure 5: An overview of the ROI extraction process: (a) HE-enhanced RGB image; (b) Rmask, Gmask, and Bmask with H� 2; (c) the
possible polyp edge binary mask (i.e., ROI); (d) central point of the ROI.

Row 1 - Polyp

Row 2 - Polyp

Row 3 - Normal

Row 4 - Normal

(a) (b) (c) (d) (e) 

Figure 6: An overview of the Gaussian distribution in two polyps and two normal mucosa images in each component of the RGB image.
(a) Te original dataset images. (b) Te masks that were made to examine convex shape regions in images. (c) Te red channel pixel values
distribution in the mask. (d) Te green channel pixel values distribution in the mask. (e) Te blue channel pixel values distribution in the
mask. Te region of the polyp is indicated by the red box.

Table 2: Te mean, STD, and division of the mean by the STD of each component for images in Figure 6.

Images
Parameters

R G B
Mean STD (Mean/STD) Mean STD (Mean/STD) Mean STD (Mean/STD)

Row 1 (from Figure 5) 131 62 2.11 79 43 1.83 43 29 1.48
Row 2 (from Figure 5) 132 61 2.16 79 41 1.92 41 27 1.51
Row 3 (from Figure 5) 152 53 2.86 97 39 2.48 53 28 1.89
Row 4 (from Figure 5) 160 41 3.90 89 26 3.42 48 18 2.66
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data augmentation includes random shifts, fips, and rota-
tions between 0 and 270 degrees. Due to the specifcation of
medical datasets and not producing unreal data, we do not
use zooming and other image manipulations in our data
augmentation step. Te augmentation made 4950 new
images from 55 polyp images. Ten, we train the model
using the new dataset: 34334 normal mucosa images and
4950 polyp images. Te Imutils library in Python was used
for data augmentation.

4.3. Results. We split all augmented data into 95% and 5%
for training and test sets, respectively (Table 4). Ten, we
trained an SVM model with the training set and computed
the performance metrics with the test set. Figure 8 depicts
the learning and validation curves. It shows that the learning
and validation curves are converged, which means our
features are good enough for the training model.

In this paper, accuracy (AC), false-positive rate (FPR),
false-negative rate (FNR), precision, recall, and F-measure
are used to evaluate the results [31].

AC �
TP + TN

TP + TN + FP + FN
,

FNR �
FN

FN + TP
,

FPR �
FP

FP + TN
,

Precision �
TN

TN + FP
,

Recall � Sensivisity �
TP

TP + FN
,

F − measure � dice �
(2 × Precision × Recall)

(Precision + Recall)
�

2TP
(2TP + FP + FN)

.

(4)

In these equations, TP, FP, TN, and FN, respectively,
represent true-positive, false-positive, true-negative, and
false-negative.

Table 5 represents the performance results of the proposed
method and the method recently developed by Amiri et al. [6].
As shown in Table 5, our proposed method has better results
for polyp detection on the Kvasir-Capsule dataset. Also, it has

better results in all metrics except accuracy. Te confusion
matrix for the detection is provided in Table 6.

Figure 9 shows the output of the proposed method
several sample images containing a polyp along with a mask
indicating the polyp area from the dataset. As can be seen,
the proposed method can identify polyp edges and areas
accurately.

(a) (b) (c) (d) (e)

Figure 7: An overview of segmentation in the proposed polyp detection algorithm. (a) Original image; (b) probable polyp edges withH� 2;
(c) applying dilation operator to mask with square structuring element, 5 for kernel size, and 2 times iteration (d) segmentation of polyp area
inside edge borders; (e) fnal segmentation mask.

Table 3: Value of a, b, and H in equation (1) for the segmentation step.

Channel
Parameters

A B H
Red channel 154 50 2
Green channel 93 37 2
Blue channel 51 26 2
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In another experiment, we investigated the time
consumption of the proposed polyp detection method.
We applied all 34393 (�55 + 34338) images to our pro-
posed method implemented using Python 3.7.9., and the

average detection time per image was 0.031 seconds
on a computer with an Intel (R) Core (TM) i7-5820K
CPU @ 3.30 GHz, 56 GB RAM, Windows 10 operating
system.

Table 4: Number of train set and test set for each class.

Number
Class

Polyp Normal mucosa
Number of original dataset 55 34338
Number of augmented dataset 4950 34338
Number of training set 4703 32622
Number of test set 247 1716

Learning Curve

Training Set Size
1000

er
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r (
1-

A
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e)

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Training score (1-accuracy)

Cross-validation score (1-accuracy)

Figure 8: Learning and validation curves for the proposed method.Te error rate (1-accuracy) computed for 1000, 5000, 10000, 15000, and
20000 number of training samples separately.

Table 5: Comparison metrics of the proposed method, Amiri et al. [6].

Method
Metric

Accuracy FN rate FP rate Precision Recall F-measure
Our proposed method 0.996 0.0 4 0.0005 0.995 0.975 0.985
Amiri et al. [6] 0.999 0.091 0.001 0.943 0.909 0.926
Te bolded values represent the best values.

Table 6: Confusion matrix for the proposed polyp detection method.

Class
Classifed as

Polyp Normal mucosa
Polyp 50 7
Normal mucosa 5 34331
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5. Conclusion

Tis paper proposed a polyp detection method in WCE
images. Investigations in this paper show that a polyp in
a WCE image has a convex shape with subtle edges. Hence,
the ROI is extracted from a WCE image via thresholding.
Ten, the ROI is further evaluated considering the distri-
bution of its pixel values, as the distribution in a polyp area is
Gaussian. We used an SVM classifer to discriminate be-
tween polyp and nonpolyp, considering the mean, STD, and
division of mean by STD of the specifed Gaussian surface.
Hence, we considered that this method consists of several
steps: preprocessing, ROI extraction, feature extraction,
classifcation, and segmentation. In the preprocessing step,
the image is enhanced using the HE technique. Ten, ROI is
extracted from an image, considering the distribution of
pixel values in a window. We get features from the ROI in
each component of the enhanced image with diferent
windows. Ultimately, we train an SVM classifer to detect
between normal mucosa and polyp images. Once the SVM
model detected an ROI as a polyp, we segmented the polyp
region in each image. In this paper, we evaluate the per-
formance of the proposed method on the Kvasir-Capsule
dataset. Also, the proposed method was compared with
a state-of-the-art method.Te fnal results are satisfactory in
classifying WCE images between normal mucosa and polyp
classes in an unbalanced dataset.

Data Availability

Te Kvasir-Capsule data used to support the fndings of this
study have been deposited in the https://osf.io/dv2ag/
repository (DOI 10.17605/OSF.IO/DV2AG).

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis study was supported by the Shahrood University of
Technology. Te authors acknowledge that university stu-
dents did this research, and only the students’ tuition fees are
the university’s responsibility, and no research expenses
have been spent by the university.

References

[1] J. Yogapriya, V. Chandran, M. G. Sumithra, P. Anitha,
P. Jenopaul, and C. Suresh Gnana Dhas, “Gastrointestinal
tract disease classifcation from wireless endoscopy images
using pretrained deep learning model,” Computational and
Mathematical Methods in Medicine, vol. 2021, Article ID
5940433, 12 pages, 2021.

[2] X. Zhao, L. Zhang, and H. Lu, “Automatic polyp segmentation
via multi-scale subtraction network,” in Medical Image
Computing and Computer Assisted Intervention–MICCAI
2021: 24th International Conference, vol. 24, pp. 120–130,
Springer International Publishing, Strasbourg, France, 2021.

[3] P. H. Smedsrud, V. Tambawita, S. A. Hicks et al., “Kvasir-
Capsule, a video capsule endoscopy dataset,” Scientifc Data,
vol. 8, no. 1, p. 142, 2021.

[4] F. Fonseca, B. Nunes, M. Salgado, and A. Cunha, “Abnor-
mality classifcation in small datasets of capsule endoscopy
images,” Procedia Computer Science, vol. 196, pp. 469–476,
2022.

[5] Y. Chen and J. Lee, “A review of machine-vision-based
analysis of wireless capsule endoscopy video,” Diagnostic
and Terapeutic Endoscopy, vol. 2012, Article ID 418037,
9 pages, 2012.

[6] Z. Amiri, H. Hassanpour, and A. Beghdadi, “A computer-
aided method for digestive system abnormality detection in
WCE images,” Journal of Healthcare Engineering, vol. 2021,
Article ID 7863113, 11 pages, 2021.

[7] C. Wang, Z. Luo, X. Liu, J. Bai, and G. Liao, “Organic
boundary location based on color-texture of visual perception
in wireless capsule endoscopy video,” Journal of Healthcare
Engineering, vol. 2018, Article ID 3090341, 11 pages, 2018.

(a)

(b)

(c)

Figure 9:Te results of segmentation using the proposed method on a number of data. (a)Te original images, (b) the dataset binary mask,
and (c) the output results using the proposed method.

8 Journal of Healthcare Engineering

https://osf.io/dv2ag/repository
https://osf.io/dv2ag/repository


[8] F. Deeba, S. K. Mohammed, F. M. Bui, and K. A. Wahid, “A
saliency-based unsupervised method for angiectasia detection
in endoscopic video frames,” Journal of Medical and Biological
Engineering, vol. 38, no. 2, pp. 325–335, 2018.

[9] D. Jha, S. Ali, S. Hicks et al., “A comprehensive analysis of
classifcation methods in gastrointestinal endoscopy imag-
ing,”Medical Image Analysis, vol. 70, Article ID 102007, 2021.

[10] A. Mohammed, I. Farup, M. Pedersen, Ø. Hovde, and
S. Yildirim Yayilgan, “Stochastic capsule endoscopy image
enhancement,” Journal of Imaging, vol. 4, no. 6, p. 75, 2018.

[11] B. Taha, N.Werghi, and J. Dias, “Automatic polyp detection in
endoscopy videos: a survey,” in Proceedings of the 2017 13th
IASTED International Conference on Biomedical Engineering
(BioMed), pp. 233–240, IEEE, Yogyakarta, Indonesia, Feb-
ruary 2017.

[12] B. Li and M. Q.-H. Meng, “Automatic polyp detection for
wireless capsule endoscopy images,” Expert Systems with
Applications, vol. 39, no. 12, pp. 10952–10958, 2012.

[13] J. Reuss, G. Pascual, H. Wenzek, and S. Seguı́, “Sequential
models for endoluminal image classifcation,” Diagnostics,
vol. 12, no. 2, p. 501, 2022.

[14] J.-S. Yu, J. Chen, Z. Q. Xiang, and Y.-X. Zou, “A hybrid
convolutional neural networks with extreme learning ma-
chine for WCE image classifcation,” in Proceedings of the
2015 IEEE International Conference on Robotics and Bio-
mimetics (ROBIO), pp. 1822–1827, IEEE, Jinghong, China,
December 2015.

[15] X. Guo and Y. Yuan, “Triple ANet: adaptive abnormal-aware
attention network for WCE image classifcation,” in Medical
Image Computing and Computer Assisted Inter-
vention–MICCAI 2019: 22nd International Conference, vol. 22,
pp. 293–301, Springer International Publishing, Shenzhen,
China, 2019.

[16] V. B. S. Prasath, D. N. H. Tanh, L. T. Tanh, N. Q. San, and
S. Dvoenko, “Human visual system consistent model for
wireless capsule endoscopy image enhancement and appli-
cations,” Pattern Recognition and Image Analysis, vol. 30,
no. 3, pp. 280–287, 2020.

[17] O. Bchir, M. M. Ben Ismail, and N. AlZahrani, “Multiple
bleeding detection in wireless capsule endoscopy,” Signal,
Image and Video Processing, vol. 13, no. 1, pp. 121–126, 2019.

[18] A. Ellahyani, I. E. Jaafari, S. Charf, and M. E. Ansari, “De-
tection of abnormalities in wireless capsule endoscopy based
on extreme learning machine,” Signal, Image and Video
Processing, vol. 15, no. 5, pp. 877–884, 2021.

[19] A. Mohammed, I. Farup, M. Pedersen, S. Yildirim, and
Ø. Hovde, “PS-DeVCEM: pathology-sensitive deep learning
model for video capsule endoscopy based on weakly labeled
data,” Computer Vision and Image Understanding, vol. 201,
Article ID 103062, 2020.

[20] J. Kim, M. El-Khamy, and J. Lee, “Residual LSTM: design of
a deep recurrent architecture for distant speech recognition,”
2017, https://arxiv.org/abs/1701.03360.

[21] D. Jha, S. Ali, N. K. Tomar et al., “Real-time polyp detection,
localization and segmentation in colonoscopy using deep
learning,” IEEE Access, vol. 9, pp. 40496–40510, 2021.

[22] M. Tan, R. Pang, and V. L. Quoc, “Efcientdet: scalable and
efcient object detection,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 10781–10790, New Orleans, LA, USA, June 2020.

[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,”
Advances in Neural Information Processing Systems, vol. 28,
2015.

[24] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE in-
ternational conference on computer vision, pp. 1440–1448,
Montreal, QC, Canada, December 2015.

[25] J. Redmon and F. Ali, “Yolov3: an incremental improvement,”
2018, https://arxiv.org/abs/1804.02767.

[26] H. A. Qadir, Y. Shin, J. Solhusvik, J. Bergsland, L. Aabakken,
and I. Balasingham, “Toward real-time polyp detection using
fully CNNs for 2D Gaussian shapes prediction,” Medical
Image Analysis, vol. 68, Article ID 101897, 2021.

[27] J. Xiong, D. Yu, Q. Wang et al., “Application of histogram
equalization for image enhancement in corrosion areas,”
Shock and Vibration, vol. 2021, Article ID 8883571, 13 pages,
2021.

[28] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality (complete samples),” Biometrika, vol. 52, no. 3-4,
pp. 591–611, 1965.

[29] W. Ayadi, I. Charf, W. Elhamzi, and M. Atri, “Brain tumor
classifcation based on hybrid approach,” Te Visual Com-
puter, vol. 38, no. 1, pp. 107–117, 2022.

[30] E. R. Dougherty, “An introduction to morphological image
processing,” in SPIE, Optical Engineering Press, Washington,
DC, USA, 1992.

[31] D. N. H. Tanh, V. B. S. Prasath, L. M. Hieu, and N. N. Hien,
“Melanoma skin cancer detection method based on adaptive
principal curvature, colour normalisation and feature ex-
traction with the ABCD rule,” Journal of Digital Imaging,
vol. 33, no. 3, pp. 574–585, 2020.

Journal of Healthcare Engineering 9

https://arxiv.org/abs/1701.03360
https://arxiv.org/abs/1804.02767



