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Sleep-related breathing disorders (SBDs) will lead to poor sleep quality and increase the risk of cardiovascular and cerebrovascular
diseases which may cause death in serious cases. Tis paper aims to detect breathing states related to SBDs by breathing sound
signals. Amoment waveform analysis is applied to locate and segment the breathing cycles. As the core of our study, a set of useful
features of breathing signal is proposed based on Mel frequency cepstrum analysis. Finally, the normal and abnormal sleep
breathing states can be distinguished by the extracted Mel-scale indexes. Young healthy testers and patients who sufered from
obstructive sleep apnea are tested utilizing the proposedmethod.Te average accuracy for detecting abnormal breathing states can
reach 93.1%. It will be helpful to prevent SBDs and improve the sleep quality of home healthcare.

1. Introduction

Healthcare-related issues have become the hot spots of
society around the world. Among them, sleep quality plays
an important role in health management. Poor sleep quality
caused by sleep-related breathing disorders will impact
peoples’ daily life seriously. SBDs mainly include obstructive
sleep apnea (OSA), central sleep apnea (CSA), and the mixed
type. OSA which means the obstruction of the upper airway
primarily due to the fabby tongue and uvula, is the most
common SBD, CSA would cause sleep breathing apnea by
the problem of the brain, and another type is the case mixed
with the OSA and CSA [1]. Te breathing abnormalities of
SBDs are apnea, hypopnea, and snore. An apnea event lasts
more than 10 seconds, and it can lead to a lower oxygen
supply to the brain [2]. Te ventilation of hypopnea will
reduce to less than 50% ofnormal ventilation, and it will
cause the value of oxygen levels to decline by more than 4%
compared with the median. Snore is generated by a partial
obstruction of the upper airway and is recognized as a vital
sign of SBDs prevention [3]. Te most harmful thing about
these abnormal breathing states is the reduction of the
oxygen supplement to the heart and brain. SBDs will lead to

the complications of cardiovascular diseases and increase the
risk of diabetes, cerebral stroke, and Alzheimer’s disease
[4, 5].

SBDs are not exclusive to the older as we thought, they
will occur for diferent age groups and the morbidity is
increasing in recent twenty years [6].Tere is much evidence
of the general population lacking awareness of SBDs, more
than 20% of adults are sufering from SBDs with diferent
levels, yet less than 25% of SBDs suferers realized that they
have been disturbed by the bad sleep health condition [1].
And the high cost of the existing clinical means keeps people
from getting tests and treatment.

In the clinic, polysomnography (PSG) is the golden
standard and the only way to provide the Apnea-Hypopnea
Index (AHI) exactly for diagnosing SBDs. However, dozens
of sensors used for PSG are not only costly but also com-
plicated for common patients [7]. Hence, a smart and
portable monitoring measure with the least sensors is im-
perative for home healthcare of SBDs.

Te smart wearable with sensors is a new trend in the
smart monitoring system of long-life diseases [8, 9], espe-
cially for the increasing demand for home healthcare. Re-
searchers have applied diferent kinds of sensors, such as
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light sensors [10] and inertial sensors, to monitor the sleep
condition by respiratory rate and breathing pattern analysis
[11]. Researchers used the ultrasonic radar to normal and
abnormal breathing activity [12] and used a thermal imaging
camera to diagnose breathing disorders [13]. Researchers
also used the sound sensors set near the nose and mouth to
record the breathing sound signal for detecting apnea and
hypopnea events by a set of pattern recognition rules [14].
Some researchers recorded tracheal signals from the throat
to acquire the respiratory rate or set the sound sensor to the
skin in a suprasternal notch to evaluate the breathing pattern
in the high-frequency range [15, 16]. In previous studies, the
sound sensors with smaller contact areas and easier oper-
ation are applied to record the breathing sound signal for
sleep breathing monitoring [17]. As described above, these
abnormal breathing states of SBDs will lead to decreasing
ventilation while inspiration and expiration. Te changes of
ventilation can be refected by diferent breathing states,
such as snoring, apnea, hypopnea, and irregular breathing
rate. Based on the production mechanism and physical
signifcance of the abnormal breathing states, it is potential
to detect the abnormality and health situation of sleep by
breathing sound signals via a smart system with sound
sensors.

In the research area of sleep monitoring based on
breathing sound signals, many researchers focused on the
respiratory rate detection based on the genetic algorithm
[18], Hilbert transform [19], and neuro-fuzzy method [20] to
analyze SBDs. In our previous study [21], a moment
waveform analysis was proposed to segment the breathing
cycles for respiratory rate detection. And snoring detection
has been discussed to evaluate the level of SBDs [22]. And
some researchers used the respiratory phase analysis to
detect apnea [23]. Xie et al. proposed a deep learning method
with a 2D spectrogram to detect snoring in various sleeping
positions, based on constant Q transformation [24]. Shen
et al. used CNN and LSTM to identify the snoring of OSAHS
patients based on MFCC, LPCC, and LPMFCC and
extracted the AHI index to evaluate the severity of
OSAHS [25].

It can be found that the segmentation of breathing sound
and the detection of breathing states are crucial for sleep
monitoring and SBDs diagnosis. However, there are two
problems. One problem is how to reduce the computational
complexity of the analysis algorithms for the long-time data,
that is, the real-time capability. Another one is how to
guarantee the accuracy of the detection results. Most of the
existed research always focused on a short period of the
breathing signal, and the accuracy of the analysis results is
not sufcient for healthcare. Our research aims to detect
abnormal breathing states related to the SBDs such as apnea,
hypopnea, and irregular breathing in a simple and fast way
by a portable system.

Tis study keeps the ventilation of oxygen and carbon
dioxide while sleep in mind and proposes a method to detect
sleep breathing states based on Mel frequency cepstrum
analysis by a portable acquisition system of breathing sound
signal. In Section 2, the acquisition of breathing sound signal

utilizing the sound sensor is introduced. Te test condition
and testers are also referred briefy. Ten, the segmentation
of breathing cycles is sketched in Section 3 as the pre-
processing for the further analysis. Section 4 describes the
proposed detection method based on Mel frequency ceps-
trum analysis in detail, including the feature extraction and
the identifed rules of diferent sleep breathing states. Ex-
periments and results can be found in Section 5. Finally, the
discussion and conclusion are summarized in Sections 6 and
7, respectively.

2. Wearable Acquisition System with
Sound Sensor

A wireless sound sensor and a commercial headset
(Plantronics, M165) were applied to record sleep
breathing data during the whole night. Te M165 is very
light and easily-operated. It is indeed a cheap and easy use
for smart sleep healthcare in daily life. Te acquired
breathing data will be transmitted to a smartphone by
Bluetooth and stored in mp3 format which is convenient
for computerized analysis. Te parameters of audio fles
can be set by an APP developed by our team. In this study,
the sampling frequency is 44.1 kHz. Te environment of
data acquisition is shown in Figure 1. Te headset is fxed
to the nose by a strip of cosmetic tape. As we mainly focus
on the changes in breathing airfow, the breathing sound
signal from the nose and mouth can be recorded as long as
the headset does not fall of and the tester is almost
unafected while sleeping whether at home or not.

At the beginning of preprocessing, the original sample
frequency will be down-sampled to 11.025 kHz to reduce the
computation amount. Te real sleep breathing sound signal
recorded by our system is shown in Figure 2. Figure 2(a) is
one-night sleep breathing sound data. Te recording lasts
about 5 hours, and the intensity of breathing changes greatly.
Figure 2(b) is a part of stable normal breathing sound data
from the ffth hour and Figure 2(c) is a part of complex
breathing sound data from the third hour. Tere are some
obvious breathing pauses shown in Figure 2(c), and they are
related to the obstruction of the airway. Hence, there is
a high potential to identify diferent abnormal breathing
states, such as apnea, hypopnea, unstable respiratory rate,
and snore, from the breathing sound signal acquired via
a portable and wireless sensor. Eight volunteers are selected
as testers, including four in twenties, two in thirties, and two
in Fifties.Te study was approved by the ethics committee of
Chengdu Region General Hospital (No. 2015 research 01).
All testers’ consent was obtained before participating in the
study. Te twenties and thirties were tested by Epworth
sleepiness score (ESS), the scores were all less than 9, which
was normal. Te elder testers are diagnosed with moderate
OSA and severe OSA by PSG with AHI � 16 and 32, re-
spectively. All the testers have monitored for the whole night
lasting more than fve hours. Te breathing cycles of one-
night data are counted, and the breathing states are manually
labeled under the guidance of a professional physician for
further analysis.
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3. Segmentation of Sleep Breathing Signal
Based on Characteristic Moment
Waveform Analysis

To identify the breathing state accurately, the breathing cycle
should be segmented for further analysis. A brief in-
troduction of the segmentation method is presented in this
section. Te details can be found in our previous work [21].

Te enhanced processing for amplitude contrast dimi-
nution has been performed frst to reduce the efect of the
weak breathing issues during the whole night’s sleep.

Te precondition assumes the noise part of the sleep
breathing sound signal as a signal with zero-mean and unit
variance. Suppose the sleep breathing sound signal is r(t),
the random noise signal is n(t), and the real output signal is
y(t) � r(t) + n(t), time characteristic waveform (TCW) of
sleep breathing sound signal, denoted by c(t, δ), defned as
the variance of the output y(t) can be given by the following
equations:

c(t, δ) � 􏽚
t+δ

t−δ
(y(t) − y(t))

2dτ � 􏽚
t+δ

t−δ
y(τ)

2dτ − 2δy(t)
2
, (1)

y(t) �
1
2δ

􏽚
t+δ

t−δ
y(τ)dτ. (2)

Ten, the characteristic moment waveform (CMW) is
calculated by the thought of image shape identifcation in
image processing with another time scale l, which is rep-
resented by I(t, δ, l). It is calculated according to the fol-
lowing equation:

I(t, δ, l) � 􏽚
t+l

t−l
(τ − t)

2
c(τ, δ)dτ. (3)

For a discrete signal with length N, the computations of
TCW and CMW only need 8 N and 15 N additions and
multiplications, respectively. Te algorithm can process the
whole night data fast, and it will be helpful for real-time
motoring.

Wireless headset

Bluetooth USB/WIFI

Computer (sofware)

Acquisition
Data store and transmission

Data analysis

Figure 1: Te wearable acquisition system via a wireless sensor.
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Figure 2: Te original waveforms acquired by the portable system. (a) Te sleep breathing sound signal of one-night test; (b) the part of
normal breathing signal from recording 2(a); and (c) the part of abnormal breathing signal from recording 2(a).
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According to our experimental statistic, the scale l is
usually set to (1.5, 3), about half of the sleep breathing cycle.
Te time scale δ is set as 0.1, about 1/10 of the phase du-
ration. After choosing the suitable time scales, TCW and
CMW can be extracted by equations (1) to (3). Cmin of CMW
is the local minimum point sequence which would be cal-
culated frst. Ten, the local maximum points sequence
T max of TCW can be found by a computation windowwith
Cmin as the central points. Te local maximum point se-
quence of CMW can be obtained as the cycle segmentation
points and adjusted according to T max. Finally, the in-
correctly segmented breathing pauses will be combined
utilizing a threshold value by the average amplitude of the
test data.

Te breathing cycle segmentation result of partial nor-
mal breathing signal is shown in Figure 3.

4. Detection of Breathing States via Mel
Frequency Cepstrum Analysis

During the whole night’s sleep, the sleep breathing state
changes greatly. Besides the apnea, there are the hypopnea
events, snore events, and others as shown in Figure 4. In
Figure 4, two types of irregular breathing events are found
and shown by blue and orange boxes. Tey are all related to
the obstruction of the upper airway. Te breathing parts
marked by blue boxes display the changed respiratory rate.
By hearing, they mix with noise caused by the movements of
the nose and mouth. It is easy to fnd that the breathing parts
of orange boxes have higher amplitude with the extended or
merged inspiration/expiration. And they sound similar to
labored breathing and can be classifed as a kind of snore.

Difering from the apnea with a clear defnition in the
time domain, other complex breathing states cannot be
detected in the time domain. According to the previous
research, the distribution of frequency energy would be very
diferent between the normal and abnormal breathing states.
From the time-frequency representation, the breathing case
with apnea has much more energies below 500Hz and above
3500Hz compared with the normal case. It provides
a probable way to distinguish the diferent breathing states in
the frequency domain.

4.1. Te Conventional MFCCs Analysis. Psychophysical
studies have shown that human perception of the frequency
content of sounds does not follow a linear scale. Te Mel
frequency cepstrum coefcients (MFCCs) were proposed as
it is very similar to perceptual linear predictive analysis of
sound [26]. MFCCs were derived from the short time
spectrum of a signal and were widely used both for speech
and speaker recognition [27, 28]. MFCCs have already been
applied to extract features of respiratory sound in combi-
nation with learning machines to recognize the wheeze for
respiratory disorders [29, 30].

First of all, framing and windowing are applied for the
conventional MFCC algorithm.Ten, fast Fourier transform
(FFT) is used to transform the signal of each frame from the
time domain to the frequency domain. Ten, the energy

spectrum is calculated. Next, the energy signal is fltered by
the Mel-scale flter bank and processed in the logarithm
orderly. At last, discrete cosine transform would transform
the signal into the time domain and extract a series of
coefcients.

As the core of MFCCs, the relationship between Mel
frequency and real frequency is defned as follows:

Mel(f) �
1000∗ lg (1 +(f/700))

lg (1 +(1000/700))
, (4)

where f is the real frequency and Mel(f) is the Mel-scale
frequency. As the human perception of the frequency
content is almost linear below 1 kHz and nonlinear over
1 kHz, 1000 is a key parameter to determine the relationship
of f and Mel(f) simulating the character of the human ear.
700 is the parameter that afects the relationship’s changing
trend between f and Mel(f).

For the frequencies under 1000Hz, the Mel scale can be
approximated to a linear scale. Mel frequency can represent
the details of the low-frequency range more accurately than
the high-frequency range. Hence, it can capture formants
that lie in the low-frequency range.

Te Mel flter bank is designed based on Mel-scale
frequency. Te Mel-scale frequency distributes uniformly-
spaced in Mel scale, simulating the critical frequency bands
of the human ear. Te center of each triangle window is the
starting of the next one.

Te logarithm is used to compress the components
above 1000Hz. And it can translate the multiplicative
components into the additive ones and reduce the com-
putation complexity [26]. A logarithm can provide the
frequency energy distribution of a one-time point in the
form of addition. Finally, the Mel frequency cepstrum co-
efcients will be extracted by discrete cosine transform.

Our purpose is to fnd the relationship between the
frequency energy distribution and the monitoring time. Te
results of the processing after the logarithm should be paid
attention to in this study.

4.2. Analysis of Breathing Sound Signal Based on Mel Fre-
quency Cepstrum Analysis. Here, we proposed a method of
parameters extraction to detect diferent breathing states,
and the fowchart is displayed in Figure 5.

As shown in Figure 5, window screening is the frst step
and the length of the rectangle window is set as 1024 sample
points, about 100ms according to the sampling frequency.
Te windowmoves foreword by overlapping the half of itself
to keep enough details of the observation. Ten, the fre-
quency energy distribution of the breathing sound signal
would be calculated by power spectrum density (PSD) in the
second step. Te PSD estimation is an important part of
modern signal processing and refects the energy distribu-
tion of the frequency component of the signal. Te autor-
egressive (AR) method is the most frequently used
parametric method because the estimation of AR parameters
can be performed easily by solving the linear question. Here,
Yule–Walker’s method is used to make the power spectrum
density instead of the energy of the FFT result. Te order of
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an autoregressive prediction model for the signal is set as
32 [31].

In the third step, the energy of the signal is fltered by the
Mel frequency flter banks including 20 triangle flters. Te
triangle flter bank is selected by default in speech processing
shown in Figure 6, which simulates the auditory charac-
teristics of the human ear. Te mathematical expression of
the triangular window is simple, reducing the amount of
computation.

And the 20-dimension Mel-scale features are extracted
after the logarithm operation in the fourth step. Te hori-
zontal of the feature matrix represents frames of observation
time. Te vertical of the matrix represents the Mel-scale
flters of the flter bank.

To stand out the frequency energy distribution of each
frame, a new feature set has been proposed in the ffth step,
the core of our proposed method. Te procedure of the
proposedmethod to extract the efective features is described
in detail. Te sketch map of extraction for one breathing
cycle can be found in Figure 7 to illustrate the algorithm.

(a) Extract the Mel-scale features of one segmented
breathing cycle according to the frst four steps of the
fowchart in Figure 5.
Te Mel-scale features fi,j can be displayed by the
stretch map shown in Figure 7(b). i is the label of the
triangle flters of the Mel frequency flter bank in the
frequency domain, from 1 to 20. j is the number of

3

2

1

0.5

0
0 10 20 30 40 50

Time (s)

CM
W

Br
ea

th
in

g 
so

un
d

Figure 3: Segmentation result by CMW.

0.5
0

-0.5

0.5

0

-0.5

0 10 20 30 40 50 60

0 5 10 15 20 25 30

0 5 10 15 20 25 30

Time (s)

Time (s)

Time (s)

A
m

pl
itu

de
 (v

)
A

m
pl

itu
de

 (v
)

A
m

pl
itu

de
 (v

)

Movement of nose and mouth

Labored breathing

0.2
0

-0.2
-0.4

Figure 4: Tree parts of abnormal sleep breathing sound data.

Journal of Healthcare Engineering 5



frames in the time domain, from 1 to N. N is the
total number of frames of each breathing cycle.

(b) Find the maximum point of each column of fi,j,
denoted by Ai,j.

i is corresponding to the label of the Mel-scale flter
and represents a fxedMel-scale frequency range.We
proposed it as Mel-scale label (MsL) as shown in
Figure 7(c). Te X-axis is the frame number, and Y-
axis is the Msl. MsL can be explained by the main
part of frequency energy distributing in one observed
duration in the time domain.

(c) Compute the present times of each MsL to represent
the distribution of frequency energy in each cycle,
marked as NMsL which is shown in the bar chart of
Figure 7(d). MsL and NMsL are proposed to detect
the abnormal breathing sound signal. For the normal
breathing cycle shown in Figure 7(a), it is found that
the label number i of MsL is from 4 to 14 in the
duration of inspiration and expiration compared
with the breathing stopping intervals as shown in
Figure 7(c). So, the frequency energy of this
breathing cycle is mainly fltered by the No. 4 to No.
14 Mel-scale flter as same as the results of NMsL
shown in Figure 7(d).

After all the fve steps, we can use MsL and NMsL to
analyze the components of the breathing sound signal and to
detect the abnormal breathing states fnally. Te results of

detecting abnormal breathing states will be demonstrated in
the next section.

5. Experiment

5.1. Analysis of Breathing Sound Signal by the Proposed
Identifcation Method. Te label of Mel-scale features, MsL,
and the corresponding NMsL in each segmented breathing
cycle during one-night monitoring can be extracted. Te
energy of distribution in a fxed frequency range is useful to
present the features of diferent breathing states. We mainly
separate snoring, normal breathing, and abnormal breathing
components of the breathing signal.

It is found that the MsL in the low-frequency range can
represent the snore component. Te normal breathing
component is usually represented by MsL in the middle-
frequency range. Te abnormal breathing components in-
cluding apnea, hypopnea, and irregular breathing rate can be
expressed by MsL in the high-frequency range. Checking
results manually by ear and eye is the reference under the
guidance of a professional doctor.

So, three MsL sets are proposed, i.e., low-frequency label
set, middle-frequency label set, and high-frequency label set
and marked as FL, FM, and FH, respectively, in Figure 8.

For diferent individuals, there would be a little diference
when we partition these three MsL sets. Based on the ex-
perimental attempts, the common part of each MsL set is
selected for the further analysis, that is, MsL2 for the snore
detection, MsL4 to MsL7 for the normal breathing state
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detection, and MsL15 to MsL17 for the abnormal breathing
state detection. To detect diferent breathing components in
each breathing cycle, threshold values are applied and dis-
played by red lines in Figure 8. As the time duration of in-
spiration and expiration lasts about 2.5 seconds in one
breathing cycle according to our experimental dataset, the
total NMsL equals the total number of frames, about 50 times.
Hence, according to the experiment results and observation,
the threshold values for FM and FH are set by 40% of the total
NMsL of eachMsL, about 20 times. And the threshold value of
FL is set by 20% of the total number CLi

of each MsL, about
10 times.

If NMsL is larger than the red threshold line, the cor-
responding cycle can be symbolized by 1, the opposite is 0. It
is obvious that the breathing cycles with abnormal com-
ponent always accompany the snoring component. Te
abnormal component and normal component do not exist at
the same time in the usual case from Figure 8. So, it is the
potential to detect diferent kinds of breathing states based
on these three MsL sets.

If there is ‘1’ of FH, the breathing state can be detected as
abnormal. If there is ‘0’ of FH, combined with the detection
results of FM, heavy breathing can be identifed from the
normal states which can be checked by the ear.
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Te snore can be divided into the normal type and the
abnormal type. Normal snore is related to simple snoring,
and abnormal snore is related to SBDs. However, they all
should be concerned. So, the snore is detected separately
from other abnormal breathing states and listed for a useful
index. If there is ‘1’ in FL, the breathing cycle is identifed as
breathing with snore.

Te study focuses on the ratio of abnormal breathing
states during the monitoring for sleep healthcare manage-
ment in the early stage. Obviously, the subclassifying of
breathing types is a rough judgment now and it will be
applied to a deeper discussion of accurate analysis for SBDs
in the future work.

5.2. Application for the Sleep Breathing States Detection.
Te identifed results by MsL sets for an OSA tester
(AHI � 16) are shown in Figure 9. Figure 9(a) displays the
detection results of normal/abnormal sleep state. Te
abnormal sleep breathing cycle is denoted by ‘1’ and the
normal sleep breathing is ‘0’ based on the identifcation
rules introduced in the last subsection. It is easy to
compute the time duration of normal and abnormal
breathing state lasting during the whole night. In this case,
the normal breathing lasts 2.8 hours, and the abnormal
breathing lasts 2.2 hours. Figure 9(b) displays the de-
tection result of snoring. Te breathing cycle with snore is
marked as ‘1,’ and the snore lasts 1.8 hours of the whole
night totally.

Te time duration of breathing stop from the audio
waveforms can distinguish the apnea and typical hypopnea
from normal breathing states. For apnea, the breathing stop
is larger than 10 s. As the ventilation of hypopnea will reduce
to less than 50% of the normal ventilation, the breathing stop
of the typical hypopnea is calculated from 6 s to 10 s
according to the clinical defnition of apnea and hypopnea
[2]. Irregular breathing rate can be picked up by comparing
with the normal parts.

From the original breathing waveforms of A1 to A3
shown in Figure 10, two parts of the breathing signal in each

section are shown orderly. It can be found that there is
obvious apnea (such as A1-1, A3-1, and A3-2), hypopnea
(such as A1-2), irregular breathing (such as A1-1, A2-1, and
A2-2), and breathing with noise caused by the body
movement (such as A2-1) from the waveforms in time
domain clearly. Sections A1 to A3 belong to the abnormal
breathing states with snore.

From the original breathing waveforms of N1 and N2
shown in Figure 11, these two sections are normal stable
breathing, and breathing of N2 is snoring. Te red line in
Figure 10 is the envelope of the spectrum, and it is easy to
fnd that there is a large energy in the middle-frequency
range (500–1500Hz), representing the normal breathing
component for both N1 and N2. Te amplitude of N2 is
higher than N1. And the higher ratio of frequency energy
distributes below 500Hz is the main feature of snore shown
in section N2.

Applying the proposed method based on Mel-scale
features, the monitoring results of all the testers are listed
in Table 1. We can fnd the total time of the whole night
monitoring and the time durations of diferent breathing
states. To evaluate the sleep quality, the ratio of the normal
breathing during the night is computed by the following
equation:

RSleep �
TNormal

TMonitoring
, (5)

where RSleep is used to test the quality of sleep by the de-
tection of normal breathing state, TNormal is the total time
duration of normal breathing state lasting, and TMonitoring is
the total time duration of the sleep monitoring. It will be
a meaningful index to know and manage sleep health in
one’s daily life.

According to the detected results of breathing states, the
ratio of normal breathing states is over 70% for testers no. 1,
2, 3, and 5 which is higher than the OSA testers no. 7 and 8,
which were diagnosed by PSG. Testers No. 4 and 6 have
lower ratios of normal breathing state and there are indeed
a lot of apnea and hypopnea events during the monitoring
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procedure by checking up on the original breathing signal.
Testers no. 4 and 6 were diagnosed as severe rhinitis by the
doctor during the experimental period. Actually, after the
relief from rhinitis symptoms, the results of monitoring are
within the normal range. Te extreme cases of young testers
can also show the efciency of the proposed method.

Moreover, it is found that the testers with a low ratio of
normal breathing state always snore with a longer time

duration. Hence, snore is really an important sign related to
the analysis and prevention of sleep breathing-related
disorders.

Te accuracy of detecting normal and abnormal
breathing states can be given based on the prepared manual
labels in our experiment, and the accuracy of our proposed
method of the testers can reach 95.2% shown in Table 1, and
the average value is 93.1%.
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Figure 9: Monitoring results by MsL sets for an OSA tester. (a) Detection of normal and abnormal breathing states. (b) Detection of
snoring state.
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6. Discussion

In the studies of breath state detection by breath sound
signal, some researchers used the measurement of energy to
detect apnea events during the breath and breath hold [23].
From [24] in Table 2, it can be seen that the MFCC feature
parameters are themost efective in classifying snores among
the three features used. Using MFCC combined with the
LSTM method can achieve 87% accuracy. At the same time,
the AHI index was also estimated. Although there is
a particular gap with the AHI value detected by PSG, it can
be used as an auxiliary reference in the classifcation of
OSAHS. It can also be found that the average accuracy of
snoring recognition of OSA patients and normal people is
95.3% by combining deep learning and two-dimensional
spectral features in [25]. Literature [23] used spectral energy
and VAD criterion threshold for apnea detection for sim-
ulated apnea signals and achieved an accuracy of 97%. Still, it
is not applied to the actual breathing signals of OSA patients,
nor does it mention hypopnea detection.

Te method in this paper does not use classical machine
learning and deep learning methods, so the amount of
calculation is small. Moreover, the threshold displays the fact
between the characteristic parameters and the breathing
signal. At the same time, the normal and abnormal breathing
and snoring sounds are distinguished. Te accuracy rate of
93.1% can be achieved by judging normal and abnormal

breathing. Te judgment of abnormal breathing includes
apnea, hypopnea, and other respiratory disturbance events.
However, due to the small amount of breathing data and
individual diferences among testers, there is a state of
misjudging normal breathing as snoring in snoring de-
tection. It is necessary to refne the types of abnormal
breathing and accurately fnd them for the intervention in
continuous work.

Some researchers combined a sound sensor, acceler-
ometer, and pulse oximeter to get AHI index for SBDs [16].
Moreover, the degree of blood oxygen saturation (SpO2)
acquired by the pulse oximeter is a vital index for the re-
spiratory system in the clinic. Te SpO2 will decrease when
there is an obstruction in the upper airway; that is, apnea,
hypopnea, and irregular breathing will accompany the lower
value of SpO2.

Hence, SpO2 has been monitored for the testers as well
and the abnormal breathing states can be evaluated by
subtracting a fxed value from the medium value of SpO2.
In our experiment, it is easy to fnd that the results of SpO2
are included in the scope of the proposed detection. Te
comparison results with SpO2 are given in Figure 12. Te
red line represents the median value of the tester’s SpO2.
It can be seen that the period when SpO2 has a signifcant
decrease compared to the median value is detected as an
abnormal breathing state which matches the detection
results.
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Figure 11: Validation of the normal breathing state detection by the proposed method.

Table 1: Detection results of sleep breathing states of testes.

Tester
no Years Time

(hour)
Normal
(hour)

Abnormal
(hour)

Snoring
(hour)

Accuracy
of S/N
(%)

Normal
ratio
(%)

Accuracy
of A/N
(%)

1 20 7.7 6 1.7 0.5 93.5 77.9 93.2
2 21 7.5 5.6 1.9 0.3 96.0 74.7 94.4
3 21 6.8 4.9 1.9 0.1 98.5 72.1 91.9
4 20 6 2.4 3.6 2.2 96.4 40 90.2
5 31 7.5 5.5 2 1 90.8 73.3 94.9
6 34 8 4.2 3.8 3.2 97.6 52.5 92.2
7 58 5 2.8 2.2 1.8 97.5 56 95.2
8 60 6.8 2.3 4.5 3.8 98.2 33.8 92.7
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However, the abnormalities caused by the light ob-
struction of the airway can be pointed out by the proposed
detection, which is not clearly defned. It may be related to
the threshold values set by our proposed detection. More
types of abnormal breathing states will be discussed deeply
in future work. And because the tapes may become loose and
the microphone’s location may change occasionally, the
acquisition system should be developed. And the classif-
cation and identifcation of breathing states are further
refned. Te analysis of the hypopnea state is limited by the
small amount of experimental data and cannot be further
refned and analyzed.

In other words, the tester dataset should be enlarged and
the types of abnormal breathing states should be discussed in
detail. We will optimize the ranges of MsL sets to analyze the
components of breathing sound signal, such as dividing
diferent frequency ranges to show more precise results. Te
relationship between our defnitions of abnormal breathing
and the pathological characteristics of SBDs will be discussed
deeply in further study.

7. Conclusion

In this study, the sound sensor and microphone in a headset
with Bluetooth were utilized to record and transmit the
breathing sound signal during the whole night. Te portable
and wireless acquisition system proposed in this paper has
less impact on sleep quality and can be operated simply
anywhere. And the MFCCs are introduced from speech
signal processing to the processing of breathing signal for
sleep monitoring in-home healthcare. TeMsL representing
the main distribution of frequency energy in each frame is
proposed to detect the diferent sleep breathing states. In
addition, the data acquisition operation is simple, the cost of
detection is low, and the accuracy can satisfy individual
monitoring needs. Recognition of respiratory status and
detection of abnormal breathing can be popularized in daily
monitoring. It can also be used as an aid for clinical di-
agnosis based on a more detailed analysis of the results. Te
study is limited by the small amount of experimental data, so
the classifcation and identifcation of breathing need to be

further improved, and the adaptability and accuracy of the
algorithm need to be further enhanced. Although it has
particular reference signifcance for the long-term sleep
monitoring of individuals, the algorithm is still unstable in
monitoring diferent people.

Te core of the Mel frequency analysis is to refect the
relationship between the monitoring time and the frequency
energy simulating the acoustic character of the human ear.
For each frame in the time domain, the MsL is extracted by
fnding the maximum value of the frequency energy in each
Mel scale.Ten, the present times of eachMsL are computed
to show the frequency energy distribution of each segmented
breathing cycle. Tree MsL sets are determined corre-
sponding to the normal breathing component, abnormal
breathing component, and snore component, denoted by
FM, FH, and FL. Finally, with the suitable threshold values
and comprehensive evaluation rules, the normal breathing
state, abnormal state, and snore state can be detected suc-
cessfully. Te types of sleep breathing states should be
discussed deeply and classifed accurately for examination
and analysis of SBDs. And for diferent individuals, long-
time monitoring and big data analysis are necessary to
acquire more precise monitoring results for the prevention
and treatment of SBDs in the future.
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