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Objective. To explore a centralized approach to build test sets and assess the performance of an artifcial intelligence medical device
(AIMD) which is intended for computer-aided diagnosis of diabetic retinopathy (DR). Method. A framework was proposed to
conduct data collection, data curation, and annotation. Deidentifed colour fundus photographs were collected from 11 partner
hospitals with raw labels. Photographs with sensitive information or authenticity issues were excluded during vetting. A team of
annotators was recruited through qualifcation examinations and trained. Te annotation process included three steps: initial
annotation, review, and arbitration. Te annotated data then composed a standardized test set, which was further imported to
algorithms under test (AUT) from diferent developers. Te algorithm outputs were compared with the fnal annotation results
(reference standard). Result. Te test set consists of 6327 digital colour fundus photographs.Te fnal labels include 5 stages of DR
and non-DR, as well as other ocular diseases and photographs with unacceptable quality. Te Fleiss Kappa was 0.75 among the
annotators. Te Cohen’s kappa between raw labels and fnal labels is 0.5. Using this test set, fve AUTs were tested and compared
quantitatively. Te metrics include accuracy, sensitivity, and specifcity. Te AUTs showed inhomogeneous capabilities to classify
diferent types of fundus photographs. Conclusions. Tis article demonstrated a workfow to build standardized test sets and
conduct algorithm testing of the AIMD for computer-aided diagnosis of diabetic retinopathy. It may provide a reference to
develop technical standards that promote product verifcation and quality control, improving the comparability of products.

1. Introduction

As an emerging branch of the medical device, the AIMD,
along with increasing applications of deep learning [1, 2], has
demonstrated signifcant potential in medical imaging, image
reconstruction, and postprocessing [3–16]. While hundreds
of AIMDs have been approved [17, 18], the verifcation and
validation of such devices are mainly conducted by manu-
facturers spontaneously, leading to variation in evaluation
metrics and data sets [19]. Stakeholders show rising concern
on the quality of the AIMD, such as its comparability [20] and
transparency [21], which poses considerable challenges to

regulation compared to a conventional medical device. In the
past several years, special guidelines for the AIMD have been
published [22, 23]. Tere are increasing eforts to establish
standards for the AIMD [24–27]. Te topics include termi-
nology, performance testing, dataset quality management,
and quality systems.

To support standard development, it would be helpful to
explore the approach to build and apply standardized test
sets. While the literature reports existing public datasets for
medical AI [28, 29], they are more appropriate for model
training or competition [5, 8] rather than testing. On the one
hand, the design of public datasets usually occurs before the

Hindawi
Journal of Healthcare Engineering
Volume 2023, Article ID 7139560, 9 pages
https://doi.org/10.1155/2023/7139560

https://orcid.org/0000-0003-4094-7306
https://orcid.org/0000-0001-6189-7577
https://orcid.org/0000-0003-2794-467X
https://orcid.org/0000-0001-5687-1479
https://orcid.org/0000-0002-5262-4363
https://orcid.org/0000-0003-3872-623X
mailto:luoyan2@mail.sysu.edu.cn
mailto:lijiage@nifdc.org.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/7139560


research and development of the AIMD, and they may not
match the application scenario of the AIMD. On the other
hand, test sets have special requirements. Tey should be
independent from manufacturers or developers in order to
verify the generalizability of AI.Te capacity and diversity of
data samples should be similar to the intended patient
population. Standard operation protocols should be fol-
lowed during the lifecycle. A systematic annotation process
is needed to provide the reference standard.

Tis article demonstrates a case study to build test sets
for computer-assisted diagnosis of DR, which is a common
application of the AIMD. It is reported that deep learning
algorithms can diferentiate referrable DR patients from
nonreferrable DR patients by reading colour fundus pho-
tographs [5, 7, 9, 10, 12]. Indeed, annual DR screening using
digital photographs of the retina has long been recom-
mended by several major governmental or professional
organizations, including the UK National Health Service
[10, 30], the American Diabetes Association [31], and other
international societies [32].

In this article, a standardized approach is proposed to
compose test sets for DR. Te major procedure is described,
including data collection, curation, and annotation.Te test set
is applied in the testing of AUTs. Te advantages and practical
issues of this approach are discussed, which may provide
a reference for the development of technical standards.

2. Materials and Methods

2.1. Framework for Dataset Construction. Te framework to
build the test set is illustrated in Figure 1. It depicts
a workfow, including design input, requirement specifca-
tion, data collection, data curation, data annotation, and
quality inspection. Risk management and personnel man-
agement are also considered and integrated into the workfow.

2.2. Design Input and Requirement Specifcation. To initiate
dataset construction, the design input is frstly clarifed. Te
intended use of this test set is to verify algorithm perfor-
mance on classifcation of diabetic retinopathy by com-
paring algorithm outputs with the reference standard. Te
test set represents colored fundus photographs of diabetic
patients from hospitals. Common image formats such as
JPEG and BMP are accepted.

Requirement specifcation of this test set further de-
scribes dataset composition, classifcation, and data in-
clusion/exclusion criteria. Tis study uses colored
photographs taken by fundus cameras that are ofcially
approved to enter the market with a feld of view no less than
45°. Photographs taken under near-infrared illumination are
not included. According to the common intended use of
AIMD products and the clinical guidelines for DR [33, 34],
the images in the test set should include 7 categories (shown
in Table 1): no apparent DR, mild nonproliferative DR
(NPDR), moderate NPDR, severe NPDR, proliferative DR
(PDR), other fundus diseases, and ungradable images (low
image quality). No apparent DR and mile NPDR are con-
sidered nonreferrable. Moderate NPDR, severe NPDR, and

PDR are considered referrable. Te proportion of referrable
DR in the test set should be similar to the prevalence in the
patient population.

Notably, the above categorization method is a result of
justifcation since many AI products in China were designed
according to the Guidelines for Diabetic Retinopathy Di-
agnosis and Treatment in China [33], which has referenced
a previous version of the guidelines published in 1985 and
ICO guidelines for diabetic eye care. Te current guideline
[33] divides DR based on severity into 6 stages as shown in
Table 2. DR phases 0–III in Table 2 are equivalent to Classes
0–3 in Table 1. Since the treatment scheme of DR phases
IV–VI is similar and the referral strategy is identical, the test
set consolidates these stages into Class 4, which is compatible
with ICO guidelines and practical in a clinical scenario.

Fundus diseases other than DR are classifed as Class 5,
which include but are not limited to hypertensive retinopathy
[35], age-related macular degeneration [36], suspect glau-
coma [37, 38], retinal vein occlusion [39], pathologic myopia
[40], and optic nerve diseases [41]. Although these ocular
diseases are not necessarily claimed by AIMD products, they
may be imported into AIMDs in the real world. Terefore,
they serve as negative controls in the test set.

Ungradable images are classifed as Class 6. Image
quality is given special attention in the development of the
test set. DR screening is often performed in out-patients,
sometimes on patients with undilated pupils. Te colour
retinal photographs are obtained using low levels of illu-
mination. Also, human factors such as movement and
positioning in addition to ocular factors such as cataracts
and refections from retinal tissues can produce defects.
Especially, without pupillary dilatation, artifacts are ob-
served in 3–30% of retinal images to the extent that they
impede annotation [42]. Terefore, in this test set,
ungradable images are also included, with conditions
ranging from over darkness/saturation, out of focus, wrong
positioning, lens contamination, to anterior segment images.

If an image only has minor quality problems that do not
disturb annotation, it will be annotated and assigned to
category 0–5. Images with photocoagulation marks and
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Figure 1: standardized framework for dataset construction.

Table 1: Te categorization of the test set.

Class Meaning
0 No apparent DR
1 Mild NPDR
2 Moderate NPDR
3 Severe NPDR
4 PDR
5 Other fundus diseases
6 Ungradable images
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other treatment marks are annotated according to their
posttreatment features. Te comparison between pre-
treatment and posttreatment images is not within the scope
of the test set.

2.3. Risk Management. Data security, patient privacy, and
data bias are the major risks considered in this study. To
ensure data security, all activities are conducted on the local
area network with controlled user access. Data are stored in
servers independent from algorithms under testing. Data
annotation tools are not allowed to export images. To protect
patient privacy, only deidentifed images with ethical ap-
proval are accepted in this test set. To minimize data biases
such as selection bias and coverage bias, the diversity of
positive and negative samples is highlighted in the re-
quirement specifcation.

2.4. Data Collection. During data acquisition, deidentifed
fundus photographs are collected retrospectively from
partner hospitals with ethical approval from local in-
stitutional review boards. Te raw images are submitted in
JPEG formats. No modifcation or processing, such as fl-
tering, smoothing, clipping, and contrast enhancing, is
allowed. Additional information on image sources, in-
cluding data collection sites, manufacturers of fundus
cameras, and models of fundus cameras, is recommended
and submitted.

2.5. Data Curation. Data curation is the process to ensure
data safety and quality. First, the status of deidentifcation
and ethical approval proof are manually confrmed. Second,
data vetting is conducted to exclude problematic images,
including unreadable fles, incomplete images, and images

that compromise privacy information. After curation, the
images are stored, indexed, and submitted to the image
annotation process. Additional data preprocessing is not
implemented in this study.

2.6. Resource Management. Dataset construction relies on
resource management, especially personnel management
and tool management.

Personnel management focuses on annotator re-
cruitment, qualifcation, and management. Te annota-
tion task needs both junior annotators and senior
annotators. All junior annotator candidates are publicly
recruited. Te basic qualifcation is a board-certifed
ophthalmologist with at least 5 years of clinical experi-
ence. All candidates receive annotation instructions in
advance to clarify the classifcation rule according to the
literature on DR [33, 34] and other fundus diseases
[35–41]. After the training, the candidates attend an exam
to classify 100 fundus photographs (18% nonreferrable
DR, 45% referable DR, 32% other ocular diseases, and 6%
ungradable images). Tose who achieve greater than 80%
accuracy pass the exam. Tey are given an additional
training session.

Senior annotators should have professional certifcation
as image readers and receive special training to promote
consistency. In this article, senior annotators all have NHS
(UK National Health Service) certifcation.

Tool management focuses on software tools that facili-
tate data processing and annotation. In this study, a custom-
built annotation software is used. Te main functions in-
clude image preview, contrast adjustment, image magnif-
cation, flter selection, task assignment, and progress
monitoring. Annotators can add, edit, and submit anno-
tation results. Reviewers and arbitrators can visit their

Table 2: Defnition of DR phases.

DR phases and
fndings observable on
fundus photos [33]

Classes in ICO
guidelines [32]

0: no abnormalities No apparent DR
I: microaneurysms only Mild NPDR
II: microaneurysms and other signs (e.g., dot and blot hemorrhages, hard exudates,
and cotton wool spots), but less than severe nonproliferative DR Moderate NPDR

III: moderate nonproliferative DR with any of the following:

Severe NPDR
(1) Intraretinal hemorrhages (≥20 in each quadrant)
(2) De nite venous beading (in 2 quadrants)
(3) Intraretinal microvascular abnormalities (in 1 quadrant)
(4) No signs of proliferative retinopathy
IV: neovascularization of the optic disc or elsewhere. When accompanied by
vitreous/preretinal hemorrhage, it is defned as high risk PDR

Proliferative DR (PDR)
V: fbrous membrane could be accompanied by preretinal hemorrhage or vitreous
hemorrhage
VI: traction retinal detachment, combined with fbrous membrane, combined with/
without vitreous hemorrhage, and neovascularization of the iris and the anterior
chamber angle
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results and make corrections or justifcations. Te software
only exports annotation results. No modifcations are made
to images.

2.7.DataAnnotation. Te reference standard is based on the
combined decisions of junior annotators and arbitration
experts. Te image annotation is conducted in a laboratory
environment. Te annotation workfow is summarized in
Figure 2. Te annotation process includes two rounds:

2.7.1. First Round (Initial Annotation). Each batch of images
is assigned to a team of 3 annotators. Te annotators in-
dependently annotate images in a blinded way. If their
classifcation result on an image is fully in agreement, such
images are categorized as the prequalifed pool. Images with
discordant classifcations are categorized as the arbitration
pool. 10% of the prequalifed pool is randomly sampled and
submitted to the second round. Te annotations of the rest
of the prequalifed pool are accepted conditionally. Te
arbitration candidate group are also submitted to the
second round.

2.7.2. Second Round (Review and Arbitration). Tis step is
carried out by a team of three senior annotators, one of
whom acts as the team leader. Te team leader has served as
the director of an image reading center in a top ophthal-
mological hospital. Tey review all images submitted to this
round so as to resolve the fnal annotation in the arbitration
pool and review the samples from the prequalifed pool. If
sampled annotation results in the prequalifed pool cannot
pass the review, more samples will be submitted to the
arbitration pool. Feedback may be given to annotators in the
frst round. Senior experts can justify the number of samples
in the prequalifed pool for inspection.

All images are stored, accessed, previewed, and manually
classifed using a custom-built annotation software.

2.8. Quality Inspection. After data annotation, quality in-
spection is conducted to examine the dataset’s quality. Te
annotation records, including initial annotation, review, and
arbitration, are reviewed and compared on each image to
avoid inconsistencies and mistakes. Images that pass quality
inspection are enrolled in the test set. Te percentage of
diabetic retinopathy subtypes is calculated. Usability and
validity of each image are also examined manually.

2.9. Algorithm Testing. Five algorithm models intended to
classify fundus photographs are enrolled as AUTs. Tey are
trained by diferent manufacturers or developers. Tey all
claim to use deep learning, but details such as the neural
network structure, weights, and training sets are beyond the
scope of this article. Te test set is imported into each AUT.
Te output of AUTs is compared with the fnal annotation
results. Te overall accuracy, sensitivity, and specifcity used
to diferentiate referable DR from nonreferrable images are

reported. Te performance of AUTs is further compared
across the 7 subtypes separately.

3. Results

3.1.Diversity of theTest Set. Te test set contains 6327 images
from 11 hospitals in 10 provinces. Among them, 9 hospitals
are tertiary hospitals and contribute 71.2% of the images,
while the rest are secondary hospitals and contribute 28.8%.
No primary hospitals or community clinics are involved.
Since the images are deidentifed, the location of the hospital
is used to indicate geological distribution of patients. Te
provincial distribution of images is shown in Table 3, which
demonstrates that representative provinces in Northeast
China, North China, Central China, East China, Southeast
China, and South China are involved.

Te images are acquired by more than 13 types of fundus
cameras made by 9 manufacturers, all in compliance with an
ISO standard on fundus cameras [43].Te feld of view is 45°.
Te optical resolution is between 80 and 120 pairs s/mm. All
images are larger than 1000 pixel by 1000 pixel. Te dif-
ference in image size, detector, light source, and embedded
software may add more diversity to image quality and
features.

In this test set, all fundus photographs are rectangular
images with a pure background (either dark or white pixels)
enveloping the round-shaped images of interest. Te ratio
between the pure background area and the whole area of
each photograph is also considered an important source of
image variation.

3.2. Performance of Annotators. During the recruitment of
annotators, 47 ophthalmologists registered and attended the
exam to classify 120 fundus images, including 63 DR images.
15 candidates fnally passed and joined the annotation.Teir
average professional experience is above ten years. Tey are
from 15 diferent hospitals in 7 provinces.Teir accuracies in
the exam range from 80% to 87%. Te interannotator
agreement is evaluated by calculating Fleiss’ kappa. Te
result is 0.75, which is considered substantial given the fact
that annotators come from diferent hospitals and regions.
Te intraannotator agreement is evaluated by calculating
intraclass correlation, which is >85% for all qualifed oph-
thalmologists. Additional training is given before the cen-
tralized annotation to reinforce the guidelines and minimize
misunderstandings.

3.3. AnnotationResults. In the frst round, 15 annotators are
evenly divided into 5 groups randomly. Individual workload
is between 1000 and 1500 images. 3694 images yield con-
cordant results, and 369 images are submitted to the second
round as samples for inspection. 2356 images are graded
with a majority opinion reached within each grading group
and submitted to the second round for arbitration. 277
images yield totally diverse results within each group and are
sent for arbitration too.

In the second round, the images are read by two NHS
certifed retinal experts and a senior expert with an NHS
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certifcate independently in a blinded way. Ten, they dis-
cuss all results and reach consensus on the fnal annotation
results. According to the fnal results, 55.41% of images are
directlydetermined by the consensus within each group in
the frst round. 16.02% of the images are graded according to
the major opinion within each group in the frst round.
26.81% of the images are graded with a reference to the
minor opinion in each group in the frst round. Only 1.76%
of the images are graded only by the arbitrators.

Using the fnal annotation results as the reference stan-
dard, the accuracy of each annotator is calculated.Te average
accuracy is 83%.Teminimum is 75%, while the maximum is
90%. 13 out of 15 annotators have accuracy higher than 80%.
Te performance of the 15 annotators comports with their
qualifcation exam results and is considered satisfactory in
comparison with the commonly accepted diagnostic accuracy
by single-feld fundus photography [42].

Te composition of the annotated images is described in
Table 4. Te overall proportion of DR is 39.51%, comparable
with the prevalence of DR in the Chinese DM population
(24.7%–37.5%) [33].Te prevalence of other fundus diseases
is 41.08%. Tis test set balances the proportion between DR
and other fundus diseases that may be assessed by future
AIMD products.

Te classifcation of the current test set can be expressed
in a simplifed manner. Class 0 and Class 1 in Table 1 are
consolidated into nonreferrable DR. Class 2 to Class 4 in
Table 1 are consolidated into referrable DR. Class 5 and Class
6 may remain independent or be consolidated into a certain
type. In the following algorithm testing, they are considered
nonreferrable.

3.4. Comparison with Raw Labels. During data collection,
partner hospitals submitted raw labels, which were anno-
tated by local annotators without centralized examination or
training. Te number of annotators deployed in each hos-
pital varied from 1 to 3. Te requirement for annotator
qualifcation was diferent among partner hospitals. Te
minimum requirement was graduate student level, and the
maximum requirement was associate professor level. Using
the fnal annotation results as the reference standard, the
overall accuracy of raw labels is 61.64%, and Cohen’s Kappa
is 0.5173, indicating the quality problems with raw labels.

3.5. Algorithm Testing Results. Te overall accuracy, sensi-
tivity, and specifcity to diferentiate referable DR from
nonreferrable images are calculated and compared among
the 5 AUTs. Table 5 shows the results of the 5 AUTs. Te
accuracy ranges from 0.77 to 0.88. Te sensitivity ranges

Table 3: Geological distribution of image sources.

Region Province Percentage
North China Beijing 16

Northeast China Heilongjiang 13
Liaoning 22

Central China Henan 2
Hubei 2

East China
Shanghai 9
Zhejiang 4
Anhui 3

Southeast China Fujian 15
South China Guangdong 14

Total 100

Initiate annotation task

Annotator 1 Annotator 2 Annotator 3

Compare classification results of 
the same images

All in
agreement?

Compose pre-qualified pool
Compose arbitration

pool
Submit 10%

Yes

No

Review and arbitration
by senior experts

Feedback and justification

Completion

Figure 2: Te annotation workfow.
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from 0.80 to 0.86. Te specifcity ranges from 0.73 to 0.89.
AUT1 shows the highest accuracy and sensitivity among the
5 AUTs.

Te capability of the algorithm to correctly classify
images of a specifc class as referable or nonreferrable is also
calculated. For class 2–class 4, it is represented as the number
of true positives over the total number of samples in this
category, which is equivalent to sensitivity. For other classes,
the specifcity of each category is calculated instead. Table 6
compares the performance of 5 AUTs on each specifc class.
It provides more details to demonstrate the variation in
algorithm performance. For class 0, class 3, and class 4, the
capability of all AUTs is above 95% on average. For class 1,
the capability of AUT1 is signifcantly lower than the rest (on
average above 90%). For class 2, the capability ranges from
0.64 to 0.75, indicating a common weakness among all 5
AUTs. For class 5, the capabilities of AUT1 and AUT3
signifcantly outweigh the rest of the AUTs. For class 6,
AUT1 shows the top capability among the 5 AUTs. No AUTs
in this experiment shows homogeneous capability to classify
all 7 classes.

4. Discussion

Tis article demonstrates a centralized pathway to build test
sets and conduct third party testing of AIMD products. Te
test set is composed of 6327 images, which are annotated
into 7 classes covering all stages of DR according to ICO
guidelines, as well as “other fundus diseases” and
“ungradable images.” Te diversity of the test set considers
data sources (11 hospitals from 10 provinces), fundus
cameras (>13 models from 9 manufacturers), and image
parameters (image sizes, detectors, and light sources).

Te pathway for test set construction in this article is
diferent from that in algorithm challenges, where test sets
and training sets are usually constructed under the same
protocol or as subsets of a larger dataset. Tis pathway relies
on independent data collection, curation, annotation, and
storage, which decreases the possible similarity between this
test set and training sets owned by developers of AUTs and

promotes the verifcation of AI algorithm generalizability. It
may be suitable for third party testing laboratories to
conduct conformity assessment.

According to the literature [5, 9, 10, 44], the pathway to
form the reference standard in other studies is based on
various combinations of annotators and reviewers. In this
study, a combination of prequalifed annotators and arbi-
trators conducted data annotation. Under this scheme, the
annotators’ performance is estimated quantitatively (Fleiss
Kappa� 0.75, individual accuracy>80%, and intra-class
correlation>85%). During the annotation process, each
image in the test set is reviewed by 3–6 experienced pro-
fessionals, and 98.2% are determined by the major decision
(3 votes out of 3 annotators or >4 votes out of 6). Only 1.76%
are determined by the arbitration experts. Te results show
that the annotation scheme helps enhance consensus among
annotators.

On the other hand, the raw labels from partner hospitals
show signifcantly lower accuracy and consistency compared
to the fnal annotation results. According to information
provided by partner hospitals, the raw labels are annotated
by an inconstant number of annotators, ranging from 1 to
3, including graduate students, residents, and junior and
senior ophthalmologists. It suggests the importance to
organize annotation task systematically and the necessity to
establish consistent annotation rules among diferent
hospitals. Otherwise, the discrepancy in data annotation
may impact dataset quality and further inhibit the quality
of the AIMD.

Using the annotated test set, the performance of 5 AUTs
is tested quantitatively as technical demonstration. It is
straightforward to compare the overall accuracy, sensitivity,
and specifcity in the scenario of DR classifcation. Algo-
rithm performance can be further observed on subgroups of
the test set. However, no AUT in this experiment shows
homogeneous capability to classify diferent categories of
images. While public stakeholders pay attention to algo-
rithm fairness and generalizability, this study shows the
necessity to reveal and understand how the AI algorithm
performs diferently on subtypes of diabetic retinopathy
images. It also indicates that algorithm performance may
change with the proportion of these categories. A strategy to
tune the composition of test sets in a fexible manner is
needed to guide future testing.

Tis work explores practical approach and issue in
advancing the standardized testing of the AIMD. But due to
time and resource constraints, it has limitations in the
following aspects:

Table 5: Comparison of overall performance metrics.

Metrics AUT1 AUT2 AUT3 AUT4 AUT5
Sensitivity 0.861422 0.814484 0.831024 0.802861 0.851587
Specifcity 0.884597 0.820782 0.890465 0.799267 0.728851
Accuracy 0.876403 0.818555 0.869448 0.800537 0.772246

Table 6: Comparison of decision capability among 5 AUTs.

Class AUT1 AUT2 AUT3 AUT4 AUT5
0 0.983963 0.989691 0.988545 0.988545 0.934708
1 0.557252 0.958015 0.912214 0.885496 0.889313
2 0.752236 0.645796 0.677102 0.639534 0.746869
3 0.982729 0.991364 0.993092 0.984455 0.977547
4 0.957407 0.974074 0.975926 0.946296 0.933333
5 0.893846 0.801923 0.889231 0.761153 0.642308
6 0.814085 0.442254 0.642254 0.549295 0.738028

Table 4: Te distribution of annotated images.

Class Number Percentage
0: no apparent DR 873 13.798
1: mild NPDR 262 4.141
2: moderate NPDR 1118 17.670
3: severe NPDR 579 9.151
4: PDR 540 8.535
5: other fundus diseases 2600 41.094
6: ungradable 355 5.611

Total 6327 100
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First, the test set is based on retrospective data collection.
Although data are randomly sampled by partner hospitals,
control measures should be taken to limit bias. Continuous
sampling of data within a period may help.

Second, the proportion of mild NPDR is much smaller
than that of other DR subtypes. One possible reason is that
without compulsory DR screening, patients with mild
NPDR are unlikely to take fundus photographs, which re-
sults in the relative scarcity of mild NPDR photographs.
Increment of mild NPDR not only decreases the sampling
errors of SE and SP but also improves the balance between
diferent stages of DR. In fact, from the annotator’s per-
spective, it is important to diferentiate microaneurysm in
mild NPDR from blot hemorrhages in moderate NPDR.
Terefore, more cases of mile NPDR should be added to the
current test set.

Tird, as a colour fundus photograph dataset, it is dif-
fcult to use the test set alone to annotate important diseases
among the 41.09% “other diseases” that may be assessed by
AI in the near future. Colour fundus photographs are in-
capable of thickness measurement, which inhibits detection
of certain diseases such as AMD and glaucoma. Images from
additional imaging modalities such as OCTshould be added
to the test, but the cost will increase signifcantly.

Fourth, the diversity of this test set still needs im-
provement. Partner hospitals in this study are mostly
tertiary hospitals, without community-level hospitals. As
a result, most photographs are acquired by high-end
fundus cameras. Handheld fundus cameras, which may
be more popular in community-level clinics and rural
areas, have minor contribution to data collection. More
data should be added to compensate for this scenario and
enrich data diversity.

To promote standardization of AIMD testing, reliability
and comparability of test sets need to be addressed in the
future research. Test sets built by diferent organizations may
have diferent data sources, data inclusion/exclusion criteria,
annotation resources, and procedures, which would cause
inconsistent dataset quality. Transparent description of data
sets should be normalized. Consensus standards on dataset
construction and annotation are needed to guide the pro-
cedure. It would be necessary to conduct sample inspection
and comparison among test sets, similar to profciency
testing [45] by interlaboratory comparison.

5. Conclusions

Tis article proposes a practical approach to build test sets
for third-party testing of the AIMD. It takes quality
control measure during data collection, curation, and
annotation. It demonstrates the beneft of centralized data
annotation in comparison with individual annotators and
spontaneous annotation from single hospitals. Te ap-
plication of such a test set reveals algorithm performance
and weakness in a comparative and straightforward
manner, providing helpful information for regulation of
such medical devices.
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