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Te treadmill is widely used in running fatigue experiments, and the variation of plantar mechanical parameters caused by fatigue
and gender, as well as the prediction of fatigue curves by a machine learning algorithm, play an important role in providing
diferent training programs. Tis experiment aimed to compare changes in peak pressure (PP), peak force (PF), plantar impulse
(PI), and gender diferences of novice runners after they were fatigued by running. A support vector machine (SVM) was used to
predict the fatigue curve according to the changes in PP, PF, and PI before and after fatigue. 15 healthy males and 15 healthy females
completed two runs at a speed of 3.3m/s± 5% on a footscan pressure plate before and after fatigue. After fatigue, PP, PF, and PI
decreased at hallux (T1) and second-ffth toes (T2–5), while heel medial (HM) and heel lateral (HL) increased. In addition, PP and PI
also increased at the frst metatarsal (M1). PP, PF, and PI at T1 and T2–5 were signifcantly higher in females than in males, and
metatarsal 3–5 (M3–5) were signifcantly lower in females than in males. Te SVM classifcation algorithm results showed the
accuracy was above average level using the T1 PP/HL PF (train accuracy: 65%; test accuracy: 75%), T1 PF/HL PF (train accuracy:
67.5%; test accuracy: 65%), and HL PF/T1 PI (train accuracy: 67.5%; test accuracy: 70%). Tese values could provide information
about running and gender-related injuries, such as metatarsal stress fractures and hallux valgus. Application of the SVM to the
identifcation of plantar mechanical features before and after fatigue. Te features of the plantar zones after fatigue can be identifed
and the learned algorithm of plantar zone combinations with above-average accuracy (T1 PP/HL PF, T1 PF/HL PF, andHL PF/T1 PI)
can be used to predict running fatigue and supervise training. It provided an important idea for the detection of fatigue after running.

1. Introduction

Te most serious threat to health in modern times has
been identifed as sedentary behavior with insufcient
physical activity [1]. Running has long been a popular
leisure activity. Athletes have much lower resting heart
rate, body weight, body mass index (BMI), and tri-
glyceride levels compared to the general population [2],
indicating that regular physical exercise can minimize the

risks of cardiovascular disease. At the same time, running
carries a considerable risk of injury. In follow-up cases in
the population, the incidence of running-related injury
was reported to be 2.5 to 33.0 cases per 1000 h [3].
However, the causes of injuries are varied. Most running-
related lower limb injuries, for example, are the result of
avoidable training errors [4, 5]. In addition, accumulating
long and strong training may lead to an increase in shin
pain [6].
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Muscle tiredness is a complicated physiological state
induced not only by changes in muscle capacity but also by
the central nervous system’s inability to appropriately drive
motor neurons [7]. Long-term running has been proven to
cause central fatigue, which diminishes the strength of the
maximal autonomic plantar fexor muscle. Plantar fexor
fatigue can limit the power of these muscles during the
propulsion phase of running, and lower limb strength can be
lowered by 30 to 40% after running [8, 9].Te biomechanical
features of the lower limbs change as a result of exhaustion,
which is crucial in preventing sports injuries. Changes in
knee angle and moment because of fatigue, for example, can
be used to predict anterior cruciate ligament injuries [10].

Several measurement approaches have been utilized in
many studies to quantify the association between foot dy-
namics and lower extremity overuse injuries. Plantar me-
chanical measurement has been frequently utilized to
evaluate overall running performance as a result of this
[11, 12]. Te second and third metatarsals exhibit a 10%
increase in peak pressure immediately after fatigue, and an
11% increase after 30mins, with a signifcant 12% drop in
load at the frst toe [13]. It is worth noting that increased load
under the metatarsal bone can produce biomechanical
imbalance, which could lead to metatarsalgia [14]. Fur-
thermore, the increasing plantar load will promote
stretching stresses on the plantar aponeurosis, which leads to
microtraumas and degradation of connective tissues, pro-
moting the development of plantar fasciitis [15, 16]. In
conclusion, there is an urgent need to refect on and evaluate
fatigue and fatigue injuries through changes in plantar
mechanical parameters. Insole technologies for activity
classifcation couple plantar pressure with accelerometer
data, increasing technology cost, and complexity [17, 18].
Te advantage of the platform is that it is easy to use because
it is stationary and fat and can be well applied to the lab-
oratory environment [19]. Terefore, we used the footscan
force platform to detect the mechanical characteristics of the
plantar. Treadmills have been widely used in laboratory
studies to easily control speed gradients. Previous studies
have also shown that treadmill running is diferent from
running on the ground. Whether treadmill running can
simulate running on the ground is still a controversial issue
[20]. Tis experiment only examined the change form of
plantar mechanical parameters after fatigue running on
a treadmill.

Males and females have diferent bone structures and
muscle strength, and studies have shown that females are
more likely than males to sustain lower limb injuries while
running [21, 22]. Females are more prone than males to have
ligamentous laxity of the ankle joint, and females are ap-
proximately twice as likely as males to have ankle sprains
[23]. Plantar mechanical parameter distributions are afected
by several factors, including weight, gender, foot structure,
and even how a person stands or walks [24]. Experts in
forensic science use variations in foot bones to determine
gender [25]. Tere are, however, no consistent results on the
gender diferences in plantar pressure characteristics.
According to research [26], there are no signifcant varia-
tions in the midfoot contact area and plantar pressure

between males and females. Te pressure under the toes was
higher in female adolescents than in male adolescents, while
the pressure was higher in male adolescents only at the
hindfoot, and the pressure at the metatarsophalangeal toe
increased more signifcantly in females [27]. Te diference
in plantar mechanical parameters caused by gender can
refect a lot of practical problems.Terefore, it is necessary to
explore the efect of gender diferences on plantar me-
chanical parameters.

In biomechanical research, traditional statistical meth-
odologies have limited the ability to classify groups based on
many variables [28]. In recent years, a support vector ma-
chine (SVM) has emerged as a new tool for solving biological
classifcation problems [29]. By creating discriminatory
parameters to separate groups from one another, the SVM
attempts to discover a hyperplane that maximizes the dis-
tance between groups [30]. Te SVM has the advantage of
producing classifcation results based on limited data sets
while minimizing structural and empirical risk [31]. Injuries
are common in individual sports and will cause serious
physical outcomes. Reduced exercise capacity because of
fatigue increases the incidence of musculoskeletal injuries
[32]. As a result, forecasting the occurrence of sports injuries
is critical to maintaining good health [33]. Previous research
[34] used the SVM to predict diabetic foot ulceration based
on plantar mechanical parameters. Aguirre et al. [35] pro-
posed a computational model for predicting tiredness
during exercise from a sitting to a standing posture, which
could be useful for rehabilitation. Si et al. [36] employed the
SVM and fractal analysis for gait recognition and test the
identifcation performance, and the testing outcomes in-
dicate an overall accuracy of 93.57% via radial basis function
kernel. Jeong et al. [37] used the SVM to classify activity
patterns based on plantar pressure characteristics, and the
recognition rate reached 95.2%. Stetter et al. [38] used the
SVM and identifed the kinematic diference between fatigue
and nonfatigue based on principal component analysis, the
strides of fatigue and nonfatigue were separated, and the
classifcation accuracy was 99.4%. Wang et al. [39] used
inertial measurement unit (IMU) and SVM to distinguish
fatigue and nonfatigue running states, and predict the degree
of fatigue. Te classifcation accuracy of tibia and thigh
IMUs was 91.10%. Te characteristics of plantar pressure
were evaluated using leave-one-out cross-validation with
machine learning algorithms: SVM, decision tree, dis-
criminant analysis, and k-nearest neighbors in the study of
Merry et al. [17]. Te results showed that the SVM and
decision tree have higher classifcation accuracy. In addition,
other studies have shown that the SVM has the best per-
formance in distinguishing gait characteristics [40].
Terefore, the SVM was used to predict fatigue in this study.
In addition, many researchers have applied SVM to the
recognition of gait characteristics before and after fatigue,
but few studies have paid attention to the plantar mechanical
characteristics before and after fatigue.

As a consequence, this research aimed to explore the
diferences in peak pressure (PP), peak force (PF), and
plantar impulse (PI) before and after long-distance running
fatigue in novice runners, as well as gender diferences. We
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also employed the SVM algorithm to predict fatigue based
on plantar mechanical parameters. Based on previous
studies, we assumed that the change in plantar mechanical
parameters before and after fatigue mainly occurred in the
toes. It was also assumed that gender diferences in plantar
mechanical parameters were mainly concentrated in the toes
and metatarsal regions. In addition, it was assumed that the
SVM can predict fatigue at a high level.

2. Materials and Methods

2.1. Participants. Te experimental subjects for this in-
vestigation were 15 healthy males and 15 healthy females
[13, 25] who were novice runners (Table 1) with dominant
right legs. Participants were recruited from sports clubs at
Ningbo University and via social media. Tere were no
health issues, neuromuscular abnormalities, or recognized
gait difculties in any of the participants, and no lower limb
injuries in six months before the experiment. High arches
and fat feet were not allowed to participate in the re-
cruitment process. All subjects were given and signed
written consent granted by the Institutional Review Board
before the experiment (RAGH20210922205.6).

2.2. Experimental Procedures. Figure 1 depicts the exper-
imental procedure. All of the participants did fatigue-
inducing running workouts. Te 15-point Borg scale and
heart rate monitor (Polar RS100, Polar Electro Oy,
Woodbury, NY, USA) were used to record perceived
exertion, and heart rate changes per minute during the
fatigue intervention. Te individuals began the experi-
ment by running at a speed of 1.67 m/s on a treadmill
(h/p/cosmos para graphicsR, Germany). During the ex-
periment, the slope was maintained at 1% [41–43]. After
which the speed was increased by 0.28 m/s every
2 minutes until the subjects reached a Borg intensity of
13. Te subjects then continued at this speed until they
reached Borg scale 17 or 90% of maximal heart rate
(HRmax calculated at 220-age), at which point they
slowly reduced the speed to a speed of their choice
[44, 45]. Space constraints, repeatability, and better
control of climate, speed, and slope were the reasons why
treadmill running was selected by our research team [46].

In this experiment, a footscan pressure plate (Footscan®software 7.0 Gait 2nd Generation, RsScan International) was
used to monitor dynamic plantar pressure. Te footscan
pressure plate was 2m in length and the acquisition fre-
quency was 126Hz. Subjects were asked to perform
a pressure measurement on the footscan pressure plate
before and immediately after fatigue. To avoid injury during
the test, the subjects familiarized themselves with the
footscan pressure plate before the trial. After familiarity, the
subjects were asked to run on the footscan pressure plate at
a speed of 3.3m/s± 5% [44]. To manage running speed,
Brower timing lights (Brower Timing System, Draper, UT,
USA) were used.Te subjects who completed a full gait cycle
on the footscan pressure plate at the specifed speed were
regarded as successful. 5 groups of valid data were collected

from each subject before and after the fatigue intervention.
In addition, during the fatigue intervention, we uniformly
provided clothes and shoes to the subjects to avoid exper-
imental diferences and maintain consistency.

2.3. Data Analysis. We analyzed plantar mechanical pa-
rameters in the running stance phase. For each trial, ten
anatomical zones were automatically identifed by the
software (Footscan® software 7.0 Gait 2nd Generation,
RsScan International) and if necessary, manually corrected
by adjusting the pixels per zone (Figure 2): hallux (T1),
second-ffth toes (T2–5), metatarsal 1–5 (M1, M2, M3, M4,
M5), midfoot (MF), heel medial (HM), and heel lateral (HL).
During the adjustment, we performed strict controls to
ensure that the adjustment conditions and adjustment levels
were rigorous and careful. Te average values of PP, PF, and
PI for all ten regions were calculated.

2.4. Statistical Analysis and SVM Classifcation Algorithm.
Te calculated data were exported to a statistical software
package SPSS 26.0 (SPSS, Chicago, IL, USA), and the peak
pressure, peak force, and plantar impulse of each plantar
zone before and after running were statistically processed.
Te data were initially assessed for normality using a Kol-
mogorov–Smirnov test. Te data were normally distributed.
To investigate the efects of fatigue, gender, and their in-
teraction on the plantar mechanical parameters, a two-way
analysis of covariance (ANCOVA) was conducted. Te
signifcance level was set as P< 0.05.

When the data sets were not easily separable, the SVM
classifer is a supervised machine learning technique that
translates the input data space to a higher dimensional space
to obtain a more accurate classifcation [35]. In our study, we
used the LIBSVM toolbox based on MATLAB 2016b
(Mathworks, MA, USA). Te linear kernel was used for the
SVM in the study. Te cross-validation technique we
employed was the hold-out method. 66.7% of the sample size
was randomly selected as the training set, and 33.3% of the
sample size was used as the test set [41].

Te SVM is suitable for small and medium data samples,
and nonlinear, high-dimensional classifcation problems. It
maps the feature vector of the instance to some points in
space. Te purpose of the SVM is to fnd a line that best
distinguishes two types of points, and when new points are
added later, this line can also make a good classifcation. Te
SVM will fnd the partitioning hyperplane that distinguishes
the two classes and maximizes the separation. For any
hyperplane, the data points on both sides have a minimum
distance (vertical distance) from it, and the sum of these two
minimum distances is the interval.

For this partitioned hyperplane, we can give the fol-
lowing equation:

ωT
X + b � 0, (1)

where ω is the weight of each feature and the column vector.
b is the displacement value.

Te distance from the point xi to the surface is as follows:
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ωT
xi + b

‖ω‖
. (2)

Ten,

ωT
xi + b

‖ω‖
× yi ≥ d, (3)

yi is the predicted value of sample i (−1 or 1, doing sign
transformation). d is the distance of the support vector to the
hyperplane. We assume that d is (2/‖ω‖).

Making all the points meet:

yi ωT
xi + b􏼐 􏼑≥ 1. (4)

Te hyperplane we need is the one that needs to max-
imize the minimum interval, i.e.,

argmax
ω,b

1
‖ω‖

min
i

yi ωT∙xi + b􏼐 􏼑􏽨 􏽩􏼨 􏼩. (5)

Ten, we need to calculate

argmax
ω,b

1
‖ω‖

. (6)

Equivalent to calculate

min
ω,b

1
2
‖ω‖

2
, (7)

and

yi ωT
xi + b􏼐 􏼑≥ 1. (8)

Using the Lagrange multiplier method:

�
1
2
‖ω‖

2
− 􏽘

n

i�1
ai yi ωT

xi + b􏼐 􏼑 − 1􏼐 . (9)

Te original problem is the minimax problem.

min
ω,b

max
α

L(ω, b, α). (10)

Te dual problem of the original problem is a maximin
problem:

max
ω,b

min
α

L(ω, b, α). (11)

Taking its partial derivative with respect to ω and b and
making it equal to 0,

Right foot

Lef foot

Pressure plate 

Sport fatiguePre pressure 
measurement

Post pressure 
measurement

Figure 1: Te experimental procedure.

Table 1: Demographic data.

Age (years) Height (m) Body mass
(kg) BMI (kg/m2) Shoe size

(cm)
Male 23.61 (0.92) 1.83 (0.12) 76.14 (8.12) 24.87 (2.32) 26.35 (0.49)
Female 23.07 (1.04) 1.69 (0.13) 54.73 (4.14) 20.13 (1.08) 24.22 (0.34)
∗Values: mean (SD).
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ω � 􏽘
n

i�1
αiyixn,

􏽘

n

i�1
αiyi � 0.

(12)

Ten,

L(ω, b, α) � 􏽘
n

i�1
αi −

1
2

􏽘

n

i�1
αiαjyiyjxixj. (13)

Combining the abovementioned condition:

􏽘

n

i�1
αiyi � 0

αi ≥ 0, i � 1, 2 · · · n

. (14)

Ten, we fnd the maximum value of α.

min
1
2

􏽘

n

i�1
αiαjyiyjxixj − 􏽘

n

i�1
αi. (15)

We continue to use Lagrange multipliers:

ω∗ � 􏽘
N

i�1
a
∗
i yixi,

b
∗

� yi − 􏽘
N

i�1
a
∗
i yixixj.

(16)

We fnd the fnal hyperplane.

3. Results

3.1. Te Peak Pressure. According to Figure 3 and Table 2,
fatigue mainly afected the PP at T1, T2–5, HM, and HL, and
gender factors were mainly refected at T1, T2–5, andM3–5.
Specifcally, PP decreased signifcantly in T1 and T2–5 re-
gions after fatigue (P< 0.05) and increased signifcantly in
HM and HL (P< 0.05). PP at T1 and T2–5 was signifcantly
higher in females than in males (P< 0.05), and PP at M3–5
was signifcantly higher in males than in females (P< 0.05).

3.2. Te Peak Force. According to Figure 3 and Table 2, the
fatigue efect was mainly refected in the T1, T2–5,M1, HM,
and HL, while the gender efect was mainly refected in T1,
T2–5, and M3–5. PF was signifcantly decreased at T1 and
T2–5 due to fatigue and signifcantly increased at M1, HM,
and HL (P< 0.05). PF in females was signifcantly larger at
T1 and T2–5 than that in males, and signifcantly smaller at
M3–5 than that in males (P< 0.05).

3.3. Te Impulse. According to Figure 3 and Table 2, the
fatigue efect was mainly refected in the toes, M1, and heel,
while the gender efect was mainly refected in T1, T2–5, and
M3–5. PI decreased signifcantly at T1 and T2–5 after fatigue
(P< 0.05), and increased signifcantly at M1, HM, and HL
(P< 0.05). In addition, the PI at T1 and T2–5 showed that
females were signifcantly larger than males, and at M3–5,
females were signifcantly smaller than males (P< 0.05).

3.4. SVM Classifcation Algorithm. We selected combina-
tions of plantar zone parameters with signifcant diferences
(P< 0.001. Figure 4 shows the best ft separating hyperplane
lines of fatigue or not fatigue in diferent plantar zone pa-
rameter combinations. Te accuracy of the diferent plantar
zone parameter combinations in predicting fatigue is pre-
sented in Table 3. Te results showed that the average ac-
curacy was a moderate level (train accuracy: 62.5%; test
accuracy: 62.5%). Te accuracies of following combinations
were above average and showed a high level: T1 PP/HL PF
(train accuracy: 65%; test accuracy: 75%), T1 PF/HL PF
(train accuracy: 67.5%; test accuracy: 65%), and HL PF/T1 PI
(train accuracy: 67.5%; test accuracy: 70%).

4. Discussion

Tis research aimed to analyze how PP, PF, and PI changed
before and after running fatigue in novice runners, as well as
gender diferences. Based on previous studies, we assumed
that the changes in plantar mechanical parameters before and
after fatigue mainly occurred in T1 and T2–5. It was also
assumed that gender diferences in plantar parameters were
mainly concentrated in T1 and T2–5 andM1–5. In addition, it
was assumed that SVM can predict fatigue at a high level. Our
results are largely consistent with our previous assumptions.

Te changes in plantar mechanical parameters caused by
fatigue were mainly under the T1, T2–5,M1, HM, and HL.Te
plantar mechanical parameters in the toes region were also
reduced in the research of Bisiaux and Moretto [13],

MF

T1

M1 M3M2
M4

M5

HM HL

T2-5

Figure 2: Te location of ten anatomical zones on the peak me-
chanical footprint.
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Karagounis et al. [47], andWillems et al. [48].Tis may be due
to the increased dorsifexion of the metatarsophalangeal joint
after fatigue, which leads to fewer toes contributing to running,
and thus less load under the toes [49]. In a study of PP and
center of pressure (COP), it was found that the PP under the
toes decreased, with a retraction of the COP. According to

Stolwijk et al. [50], to avoid overuse of the forefoot and the risk
of incurring forefoot pain, subjects adjusted their gait pattern.
Tis could explain why plantar mechanical parameters under
the toes were decreased. Nagel et al. [49] also noted a decline in
toes load. However, in the study of Bisiaux and Moretto [13]
andWeist et al. [51], the phenomenon of decreased load under
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Figure 3: Description of PP, PF, and PI by gender before and after running fatigue.

Table 2: Changes in PP, PF, and PI before and after fatigue.

Male/pre Male/post Female/pre Female/post
P value

F G F× G

PP (N/kg·m2)
T1 0.06 (0.02) 0.04 (0.02) 0.12 (0.03) 0.10 (0.01) 0.001 <0.001 0.693
T2–5 0.01 (0.005) 0.01 (0.005) 0.04 (0.02) 0.03 (0.01) 0.00 <0.001 0.115
M1 0.23 (0.05) 0.20 (0.06) 0.24 (0.06) 0.22 (0.07) 0.583 0.396 0.056
M2 0.30 (0.09) 0.28 (0.07) 0.29 (0.07) 0.28 (0.07) 0.256 0.99 0.476
M3 0.24 (0.09) 0.24 (0.07) 0.21 (0.05) 0.18 (0.05) 0.423 0.0 1 0.156
M4 0.19 (0.08) 0.18 (0.04) 0.14 (0.05) 0.12 (0.03) 0.238 <0.001 0.842
M5 0.12 (0.05) 0.12 (0.04) 0.07 (0.03) 0.07 (0.02) 0.832 <0.001 0.983
MF 0.05 (0.01) 0.05 (0.003) 0.04 (0.02) 0.04 (0.01) 0.283 0.067 0.086
HM 0.19 (0.05) 0.19 (0.04) 0.14 (0.06) 0.16 (0.04) 0.0 4 0.16 0.453
HL 0.16 (0.04) 0.18 (0.05) 0.13 (0.04) 0.16 (0.05) 0.007 0.29 0.449

PF (N/kg)
T1 0.96 (0.29) 0.81 (0.40) 2.20 (0.67) 1.69 (0.58) <0.001 0.001 0.063
T2–5 0.25 (0.14) 0.13 (0.11) 0.83 (0.50) 0.54 (0.30) 0.00 0.004 0.098
M1 3.92 (1.46) 4.54 (1.07) 5.00 (2.03) 5.34 (2.09) 0.017 0.213 0.309
M2 2.87 (0.75) 3.00 (0.92) 2.60 (0.49) 2.83 (0.66) 0.163 0.235 0.975
M3 1.76 (0.67) 1.91 (0.92) 0.99 (0.30) 1.27 (0.33) 0.579 0.014 0.084
M4 1.45 (0.38) 1.55 (0.66) 0.88 (0.30) 0.92 (0.26) 0.578 0.001 0.334
M5 1.18 (0.31) 1.20 (0.50) 0.58 (0.27) 0.59 (0.29) 0.968 <0.001 0.936
MF 2.50 (0.90) 2.27 (0.86) 1.59 (0.87) 1.55 (0.80) 0.079 0.055 0.097
HM 3.14 (0.71) 3.59 (1.12) 3.34 (0.82) 3.85 (0.57) 0.005 0.483 0.838
HL 2.70 (0.73) 3.18 (0.81) 2.73 (0.64) 3.36 (0.89) <0.001 0.702 0.285

PI (N·s/kg)
T1 0.13 (0.03) 0.10 (0.06) 0.30 (0.09) 0.22 (0.09) <0.001 <0.001 0.072
T2–5 0.04 (0.04) 0.03 (0.05) 0.10 (0.06) 0.06 (0.03) 0.017 0.001 0.078
M1 0.47 (0.21) 0.58 (0.21) 0.62 (0.27) 0.66 (0.23) 0.0  0.405 0.054
M2 0.38 (0.16) 0.43 (0.20) 0.36 (0.06) 0.37 (0.10) 0.296 0.162 0.234
M3 0.23 (0.10) 0.27 (0.16) 0.14 (0.04) 0.16 (0.05) 0.901 0.006 0.109
M4 0.18 (0.05) 0.22 (0.12) 0.10 (0.03) 0.11 (0.03) 0.369 <0.001 0.499
M5 0.13 (0.04) 0.14 (0.07) 0.06 (0.03) 0.06 (0.02) 0.597 <0.001 0.711
MF 0.22 (0.08) 0.20 (0.07) 0.13 (0.08) 0.13 (0.07) 0.243 0.066 0.185
HM 0.29 (0.15) 0.31 (0.12) 0.27 (0.07) 0.39 (0.07) 0.0 1 0.478 0.639
HL 0.23 (0.12) 0.24 (0.10) 0.16 (0.09) 0.23 (0.14) 0.011 0.386 0.413

Pre� before fatigue, post� after fatigue, F� fatigue, and G� gender. Te values in bold in the table show signifcant diferences; P< 0.05; values: mean (SD).
Te bold data in the table indicate statistical signifcance.
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the toes was not observed. Moreover, in the study of Willems
et al. andWu et al. [48, 52], it was also found that PF and PI at
M1 increased signifcantly after fatigue, which was consistent
with our fndings. Perhaps because of the reduction in me-
chanical parameters under the toes, the load was transferred to
the metatarsal. However, increased submetatarsal load may
contribute to the occurrence of metatarsal stress fractures [49].
An investigation also revealed that after running fatigue, the
contact area of the HM grewwhile the HL reduced.Ten led to
greater pronation in the rearfoot [53]. If fatigued, the quad-
riceps need to play a greater role to avoid knee instability,
resulting in less knee fexion, which leads to increased heel
pressure. Tis explanation has also been confrmed by Stolwijk
et al. [50].

Several gender-induced diferences in plantar mechan-
ical parameters were found. PP, PF, and PI were signifcantly

higher in females than in males at T1 and T2–5 and sig-
nifcantly higher in males than in females atM3–5. Tis was
also refected in studies of Ferrari et al. [54] and Demirbuken
et al. [27]. Te larger plantar mechanical parameters of
females’ T1 and T2–5 may be related to the fact that females
wear high heels, which also raised the risk of chronic par-
aspinal muscle fatigue, which was linked to postural changes
and pain [55]. Although this study did not include cases of
hallux valgus (HV), females had a higher load of the hallux
than males. Studies reported a meta-analysis that estimated
that female HV prevalence (30%) was 2.3 times greater than
that in males (13%) [21]. Although many studies cannot
reach a unifed conclusion, there was no denying that gender
diferences in plantar mechanical parameters may be one of
the reasons for the increase in hallux valgus in females. Males
hadmuchmore load in the forefoot area than females, which
could be due to males’ higher body weight, physical
structural diferences, and females’ better fexibility [56, 57].
Further to this, males tend to have a higher vertical center of
mass displacement during walking than females. Tis may
also contribute to a higher load in M3–5 [56]. Pressure is
equal to force divided by area. In all regions of the foot, males
had a considerably higher contact area than females, both
statistically and clinically [25]. At the same time, because of
the female hormone secretion, the foot ligament relaxation
reduces the degree of stifness and spreads the forces to
a larger extent [58, 59]. Tis may be the reason that the PP,
PF, and PI at M3–5 are higher in males than in females to
varying degrees. In this study, gender diferences in PP, PF,

y=0.75291*z+1.5463 where z= (x-0.083127)/0.039452 y=9.7406*x+1.7996 y=2.3912*x+0.019885

y=0.26252*x+2.2034 y=0.11203*x+0.045435 y=0.050301*x+0.087403
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Figure 4: SVM classifcation algorithm results.

Table 3: Te accuracy of the SVM classifcation algorithm results.

Plantar zone parameters Train accuracy (%) Test accuracy (%)
T1 PP/T1 PF 55 55
T1 PP/HL PF 65 75
T1 PP/T1 PI 65 55
T1 PF/HL PF 67.5 65
T1 PF/T1 PI 55 55
HL PF/T1 PI 67.5 70
Mean accuracy 62.5 62.5
Te data in bold indicates that train accuracy and test accuracy are above
mean accuracy concurrently.
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and PI were mainly found in the T1, T2–5, and M3–5.
Although the literature’s fndings are not always consistent,
factors including gender and foot anatomy are thought to be
linked to metatarsal stress fractures and lower limb
injuries [50].

During running, the feet are the only part of the body that
makes direct touch with the ground, and they are critical to
progress. Running actions may be hampered by muscle ex-
haustion and physical discomfort. As a result, it is theoretically
possible to predict fatigue through plantar mechanical pa-
rameters. Previous research has shown that fatigue will afect
plantar mechanical parameter distribution and fatigue is
correlated with plantar mechanical parameters [48]. Interval
maximization is the SVM classifcation algorithm, which may
be characterized as a problem of solving convex quadratic
programming and is equivalent to the regularized hinges loss
work minimization issue. Te SVM classifcation algorithm is
an optimization algorithm for solving convex quadratic
programming, as evidenced by our SVM classifcation algo-
rithm results. Te SVM classifcation algorithm results
revealed that the mean accuracy was an above-moderate level.
Te accuracy was of an above-average level by using the T1 PP/
HL PF, T1 PF/HL PF, and HL PF/T1 PI. Tese indicated that
fatigue can be predicted to a certain extent by monitoring
plantar mechanical parameters before and after running fa-
tigue. Running fatigue can be predicted using the learned SVM
classifcation algorithm, which can also be used as a useful tool
for fatigue supervision. Te learned SVM classifcation algo-
rithm can help coaches to better identify the physical state of
athletes from start to the fnish of a run by monitoring plantar
mechanical parameters.Te classifcationmay also be useful in
identifying injuries over the running season.

Tere are some limits of this study. In the experiment,
a treadmill was used for the fatigue intervention. We only
studied the plantar mechanical parameters under treadmill
conditions but did not study the condition of running on the
ground. Future studies should include subjects performing
at diferent exercise levels, such as professional athletes. In
addition, the sample size should be expanded to improve the
accuracy of the SVM classifcation algorithm.

5. Conclusions

We found that the change of plantar mechanical parameters
caused by fatigue was mainly concentrated in T1, T2–5, M1,
HM, and HL.While the efect of gender was mainly found in
the T1, T2–5, andM3–5. Tese may indicate injuries related
to fatigue and gender factors, such as metatarsal stress
fractures and HV. Plantar mechanical parameters can be
monitored before and after long-distance running to predict
fatigue to some extent.Te learned algorithm of plantar zone
combinations with above-average accuracy (T1 PP/HL PF,
T1 PF/HL PF, and HL PF/T1 PI) can predict long-distance
running fatigue and provide supervised training strategies.
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[46] J. A. Garćıa-Pérez, P. Pérez-Soriano, S. Llana, A. Mart́ınez-
Nova, and D. Sánchez-Zuriaga, “Efect of overground vs.
treadmill running on plantar pressure: infuence of fatigue,”
Gait & Posture, vol. 38, no. 4, pp. 929–933, 2013.

[47] P. Karagounis, G. Prionas, E. Armenis, G. Tsiganos, and
P. Baltopoulos, “Te impact of the Spartathlon ultramarathon
race on athletes’ plantar pressure patterns,” Foot & Ankle
Specialist, vol. 2, no. 4, pp. 173–178, 2009.

[48] T. M. Willems, R. De Ridder, and P. Roosen, “Te efect of
a long-distance run on plantar pressure distribution during
running,” Gait & Posture, vol. 35, no. 3, pp. 405–409, 2012.

[49] A. Nagel, F. Fernholz, C. Kibele, and D. Rosenbaum, “Long
distance running increases plantar pressures beneath the
metatarsal heads: a barefoot walking investigation of 200
marathon runners,” Gait & Posture, vol. 27, no. 1, pp. 152–
155, 2008.

[50] N. M. Stolwijk, J. Duysens, J. W. K. Louwerens, and N. L. W
Keijsers, “Plantar pressure changes after long-distance
walking,” Medicine & Science in Sports & Exercise, vol. 42,
no. 12, pp. 2264–2272, 2010.

[51] R. Weist, E. Eils, and D. Rosenbaum, “Te infuence of muscle
fatigue on electromyogram and plantar pressure patterns as
an explanation for the incidence of metatarsal stress frac-
tures,”Te American Journal of Sports Medicine, vol. 32, no. 8,
pp. 1893–1898, 2004.

[52] W.-L. Wu, J.-J. Chang, J.-H. Wu, L.-Y. Guo, and H.-T. Lin,
“EMG and plantar pressure patterns after prolonged run-
ning,” Biomedical Engineering: Applications, Basis and
Communications, vol. 19, no. 06, pp. 383–388, 2007.

[53] E. Escamilla-Mart́ınez, A. Mart́ınez-Nova, B. Gómez-Mart́ın,
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