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Te length of hospital stay (LOS) is a signifcant indicator of the quality of patient care, hospital efciency, and operational
resilience. Considering the importance of LOS in hospital resource management, this research aims to improve the accuracy of
LOS prediction using hyperparameter optimization (HPO). Expert physicians and related studies were reviewed to determine the
variables afecting LOS.Te electronic medical records of 200 patients in the department of internal medicine of a hospital in Iran
were collected randomly. As the performance of machine learning (ML) models can vary based on the characteristics of the
features, several models were applied and evaluated in this study. In particular, k-nearest neighbors (KNN), multivariate re-
gression, decision tree (DT), random forest (RF), artifcial neural network (ANN), and XGBoost have been evaluated and
improved. Te genetic algorithm (GA) was applied to optimize the tree-based models. In addition, the dummy coding technique,
sometimes called the One-Hot encoding, was used to encode categorical features to increase prediction accuracy. Compared with
other algorithms, the XGBoost model optimized by GA (XGB_GA) achieved higher accuracy and better prediction performance.
Temean andmedian of absolute errors in the test dataset for this model were 1.54 and 1.14 days, respectively. In other words, the
XGB_GA model reduced the mean absolute error by 37%, which is benefcial in the reliable design of a clinical decision support
system.

1. Introduction

Since the 1970s, the length of hospital stay (LOS) has been
studied and researched to achieve better quality and per-
formance in hospitals. Hospitals try to achieve better out-
comes with the least possible resources. Developed countries
evaluate the LOS as a key performance indicator to reduce
healthcare costs without compromising patients’ outcomes
[1]. Te growth in the number of patients admitted and the
increase in inpatient unit costs have resulted in issues in
hospital bed management. Te length of stay and the lack of
knowledge about the discharge time are among the com-
plications that afect hospital bed management [2]. While
the length of stay is afected by various factors that maymake

it difcult to predict, knowing its accurate value can sig-
nifcantly help manage beds and staf schedules [3]. LOS is
one of the indicators of hospital quality, productivity, and
performance. As a result, in dealing with issues such as
planning resources, managing capacity, and staf level, LOS
prediction could be an efective solution. It increases the
number of patients receiving services, increases their safety,
reduces healthcare costs, and helps optimize resource
consumption [4]. Incorrect prediction of LOS can cause
wasting and blocking bed days. It can also lead to disruption
in the provision of medical services and dissatisfaction
among patients and health workers.

On the other hand, accurate prediction leads to better
allocation of resources and better organization of services
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from the time of admission to the discharge of the patient
[5, 6]. LOS prediction, traditionally performed by experts, is
unreliable because the patient’s background information is
not considered [7]. Healthcare professionals assign diferent
LOS to a patient; therefore, the assigned LOS depends on the
predictor, not the patient. Hence, the automatic prediction
of LOS is valuable and signifcant [8]. Apart from the future
planning for the use of beds, LOS estimation is also helpful
for the scheduling of specialists and human resources, de-
termining the appropriate insurance plan and re-
imbursement system in the private sector, and preparing the
patient’s relatives to plan for the return of their patients [9].

A recent review revealed that worldwide scientifc at-
tempts for accurate LOS prediction over the past ffty years
have led to a rise in the number of related publications,
suggesting the importance of this topic. Many publications
provide a model for LOS and focus on the best statistical
technique to provide the most accurate results. Te latest
studies, however, move toward more sophisticated methods,
such as machine learning (ML), rather than regression [8].
Te focus of the literature has been chiefy on proposing
innovative prediction methods. Alahmar et al. proposed
a stacked-ensemble method combining the result of diferent
models to improve performance [10]. In a similar study,
Muhlestein et al. came up with another ensemble approach
for ranking the result of diferent models to select the most
accurate one [11]. Danilov et al. have applied a deep learning
algorithm, the RNN-GRU, for text-mining operative reports
[12]. Although the regression technique is still used for
prediction purposes [13–15], many studies applied various
ML techniques to compare their result and fnd the most
accurate one for their prediction purpose [4, 16, 17].

Related works can also be classifed in terms of the type of
studied sample. Various types of hospital units, such as in-
tensive care units (ICUs) [14, 18] and newborns units [4, 19], as
well as diferent medical diagnoses, were studied, including
COVID-19 patients [20] and lung cancer [21]. Although the
methods used in the literature have yielded good results, the
hyperparameter tuning problem still exists in the modeling
procedure [4, 16, 18, 20, 21]. Tere are two types of parameters
in ML models, those learned during the training process and
hyperparameters, such as maximum depth in a decision tree.
Finding the optimal setting of hyperparameters is called
hyperparameter optimization (HPO) [22]. Some algorithms
have many hyperparameters making the HPO more compli-
cated. Studies have shown the impact of HPO on performance
improvement. By HPO, we mean that we are looking for
optimal performance using the tuned hyperparameters of the
model. Te least complicated method is manual tuning.
Manual search is a demanding task in terms of time and efort,
and since there are many possible settings, this solution needs
to scale. Some well-known alternative methods are grid search
and random search, performing Bayesian optimization and
heuristic approaches such as GA [23].

Another issue worth noting in the literature is the oc-
casional use of the XGBoost algorithm. When applied to
structured data, XGBoost is popular and capable of pow-
erfully solving large-scale ML problems, and it outstands
many other complex ML algorithms. Its high accuracy and

many hyperparameters can be mentioned to outline good
reasons for choosing XGBoost over other alternatives [23]. It
is suitable for large-scale datasets due to its parallel in-
tegration mechanism and has regularization promotion
characteristics. It is also highly accurate and interpretable
[24]. A well-tuned XGBoost can provide better prediction
results than a poorly confgured XGBoost. Terefore, it is
benefcial to improve XGBoost in a time-efcient way rather
than doing the calculation manually [23]. Te XGBoost
model, which has many applications in the feld of data
science and has achieved many successes in other areas, has
rarely been used in LOS prediction. Chen has proposed
a “nonlinear weighted XGBoost” model to predict LOS as
a classifcation problem and grid search for HPO.Temodel
presented by Chen has the highest accuracy compared to
other models, such as the support vector machine (SVM)
[24]. Budholiya et al. utilized an optimized XGBoost clas-
sifer to predict heart disease. To optimize the hyper-
parameters of XGBoost, they used Bayesian optimization
and achieved a prediction accuracy of 91.8% [25]. Other
examples of XGBoost applications in other areas include
early detection of sepsis in ICU [26], early diagnosis of heart
disease [27], diagnosis of chronic kidney disease [28],
prediction of the groundwater level [29], and breast cancer
prediction [30].

Te XGBoost model has 25 hyperparameters, each of
which has its function and makes the optimization process
an extremely complicated problem [31]. Proper hyper-
parameter tuning is essential for the successful application of
any predictor [25]. Te HPO process is computationally
challenging. It involves multiple training cycles of the ML
model, and the dimension of the problem increases with the
increase in the number of hyperparameters. Bayesian op-
timization is explicitly designed to minimize the number of
necessary training cycles in the grid search method; how-
ever, it cannot deal with high-dimensional searches when
many hyperparameters are involved. Larger datasets add to
the training time and the complication of the problem too. A
user-defned search space for hyperparameters is required
for many tuning approaches, which is impossible in practical
cases due to the user’s lack of knowledge. As such, a primary
barrier to the broader use of HPO techniques is setting the
search bounds of hyperparameters [22].

Although other studies have achieved good results in
LOS prediction by using a wide range of ML methods, only
some have explored XGBoost or HPO.Te primary issues in
hyperparameter tuning ofMLmodels are time efciency and
space search. Bayesian optimization improves the time ef-
fciency of the grid search method, yet it works with a limited
search space such as the grid search method. On the other
hand, GA has overcome both issues, i.e., it searches over
a broader range of spaces in a more time-efcient manner.
Due to its high robustness, the GA helps the XGBoost model
to become more stable and ft better [31]. It is also a more
efcient solution to the search space-defning problem and
the computational cost of HPO. Using the GA helps to
rapidly evaluate a broader range of solutions in order to fnd
the best options. Tis issue is crucial for designing a clinical
decision support system and big data analysis.
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Te use of GA to optimize XGBoost hyperparameters is
seen in studies with diferent scopes. Jiang et al. used this
technique to detect pedestrians [32], and Feng et al. used it to
predict terrorist attacks [31]. However, this technique is yet
to be used to improve the XGBoost model in the feld of LOS
prediction. Tis study proposes integrating the GA and
XGBoost (XGB_GA) to predict LOS with higher accuracy.
Te proposed algorithm considers the HPO as an optimi-
zation problem; i.e., the algorithm is looking for the opti-
mum value of the hyperparameters so that the mean square
error (MSE) function of XGBoost is minimized. As a result,
the accuracy of the prediction improves while the compu-
tational cost is reduced.

It is clear from the reviewed studies that addressing
regularization and underftting/overftting problems is
needed [25]. Limited previous techniques provided con-
siderable improvement in the results; however, there still
exist some techniques which remain unexplored, particu-
larly in the LOS prediction: (i) previous approaches have
rarely explored tree-based ML algorithms such as XGBoost,
which have several parameters for handling underftting/
overftting and regularization; (ii) the general approaches
have not used categorical feature encoding methods to
encode categorical features in the LOS dataset; (iii) the
previous methods have not used GA as an HPO technique
for optimizing ML models for better prediction of LOS; (iv)
the previous studies have rarely researched a hospital’s
department of internal medicine to develop its own LOS
predictive model; and (v) limited research has predicted the
absolute value of LOS and they have only used one model.
Hence, this research uses k-nearest neighbors (KNN),
multivariate regression, tree-based ML algorithms, artifcial
neural networks (ANNs), and genetic algorithm (GA) to
design an accurate model to predict the absolute value of
LOS. Te signifcant contribution of the study includes the
following:

(i) Exploring the application of tree-based ML algo-
rithms, including XGBoost, in the LOS prediction

(ii) Using the one-hot encoding method to encode
categorical features in the LOS dataset

(iii) Applying GA for hyperparameter optimization of
XGBoost, decision tree, and random forest to in-
crease the accuracy of prediction

(iv) Investigating the hospital’s department of internal
medicine to develop its own LOS predictive model

(v) Predicting the absolute value of LOS using several
data mining algorithms

Te organization of this study is as follows. In Section 2,
LOS prediction literature and standard HPO techniques are
discussed. In Section 3, data collection, data preprocessing,
model training, and HPO are presented. Section 4 describes
the results, and the conclusion is presented in Section 5.

2. Related Works

In this section, LOS prediction in the literature is discussed.
First, studies have been evaluated from diferent points of

view, including the studied sample, prediction method,
results, and approaches used for hyperparameter tuning.Te
second section discusses standard HPO methods and their
advantages and disadvantages.

2.1. LOS Prediction. Te three primary categories of LOS
predictionmethods are (1) regressionmodel, (2)ML, and (3)
deep learning, which is a subcategory of ML [8]. For ex-
ample, Baek et al. ftted a multivariate regression model on
all hospital inpatient information, and the R2 value for their
model was 0.267 [13]. Like Beak et al., Ray-Zack et al.
predicted the LOS of radical cystectomy for muscle-invasive
bladder cancer patients with a multivariate regression
model. Te R2 value reported for the regression model was
0.048 [15]. Meadows et al. built a logistic regression model to
predict short-term (less than 48 hours) and long-term (more
than 48 hours) hospitalization of ICU patients following
cardiac surgery with an accuracy of 79% [14].

Alahmar et al. applied the stacked-ensemble method to
predict the LOS of diabetic patients [10].Teir new proposed
method showed the best performance (accuracy 0.81)
compared to nonensemble models, including regression-
based, tree-based, and ANN models. However, the results
showed that the improvement achieved by the ensemble
method compared to the random forest model (accuracy
0.80) and the gradient boosting method (accuracy 0.80) was
insignifcant. To optimize the selected hyperparameters, they
performed the manual HPO.

Tompson et al. explored a newborns unit dataset to
predict LOS using methods such as Näıve Bayes, logistic
classifer, multilayer perceptron, SVM, decision tree (J48),
and random forest [17]. Tey used 10-foldcross-validation
and achieved the highest accuracy of 0.87 using random
forest but did not mention the hyperparameter tuning
process. Daghistani et al. applied random forest, SVM,
Bayesian network, and ANN to predict the LOS of cardiac
patients and reported the highest accuracy of 80% from
random forest [4]. Te hyperparameter tuning issue could
also be noticed in this research study.

Using an innovative solution, Danilove et al. applied
deep learning algorithms, the RNN-GRU, for text-mining
operative reports of neurosurgery patients to predict their
LOS as a continuous variable. Te mean absolute error
(MAE) resulting from the proposed method was 2.8 days
[12]. Muhlestein et al. used brain surgery data and developed
a new approach that systematically ranks diferent ML
models [11]. Te new technique selects the best models
automatically and achieves the optimal answer by com-
bining the results. Te strength of this research is the in-
crease of RMSLE in predicting the test dataset (0.63)
compared to the training dataset (0.55) although model
hyperparameters were optimized using the grid search
method.

Steele andTompson have addressed LOS prediction for
better planning of the hospitalization of elective patients.
Tey constructed the prediction model using Naı̈ve Bayes,
Bayesian network, KNN, kstar, locally weighted learning,
C4.5 decision tree, SVM, and decision table. Te Bayesian
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network has the best accuracy (0.9) among other models,
and their research did not discuss hyperparameter tuning
[16]. In another study, Abd-Elrazek et al. used ML models
such as fuzzy logic, KNN, Näıve Bayes, random forest, SVM,
and ANN to predict the LOS of ICU patients. Fuzzy logic
had the best prediction results, followed by random forest,
with an accuracy value of 0.92 and 0.9, respectively. Pa-
rameter tuning was not mentioned in the modeling process
[18]. Mahboub et al. used the decision tree model to predict
the LOS of COVID-19 patients. Te MAE reported for this
model was 2.8 days, and no other method was applied to
compare the results with [20].

In a study, Chen investigated the performance of the
nonlinear weighted XGBoost model compared to other ML
models in predicting LOS. To optimize the hyperparameters
of the XGBoost, the K-CV method was used with a value of
K� 3. In all the models considered in this work, only four
values were investigated for each hyperparameter. Te results
showed that the nonlinear weighted XGBoost model was the
most accurate among all models, and its RMSE value was
1.52 days [24]. Similarly, Alsinglawi et al. developed logistic
regression, random forest, and XGBoost models to predict the
LOS of lung cancer patients hospitalized in the ICU. Te
random forest has shown the best performance among other
models. Hyperparameter tuning and evaluating the models
have not been performed in this study. Consequently, the
reported results were based on the training dataset [21].

Table 1 shows a summary of the studied literature
chronologically. Te table gives a better view of diferent
aspects of LOS perdition in similar studies. In terms of the
studied sample, it can be observed that previous studies
rarely researched a hospital’s department of internal med-
icine to develop LOS predictive models. Limited research
predicted the absolute value of LOS and those that developed
models for LOS’s absolute value prediction using only one
method. Previous approaches have hardly explored tree-
based ML algorithms such as XGBoost, which have several
parameters for handling underftting/overftting and regu-
larization. In addition, there needs to be a report on using
GA as an HPO technique for optimizing ML models for
faster prediction of LOS.

2.2. Hyperparameter Optimization Methods. Grid search is
a prevalent method in which the user manually defnes
a subset of hyperparameters for a target ML algorithm, and
the method searches through that subset. Despite straight-
forward implementation and parallelism capabilities that
make grid search a reliable method in low-dimensional
spaces (i.e., 1D or 2D), the computational cost increases
dramatically as the number of hyperparameters
increases [23].

In random search, a generative process defnes the
confguration space and draws random samples, and this
random sample assigns the hyperparameter and evaluates
them. Random search and grid search have common ad-
vantages; however, random search is more efcient in high-
dimensional spaces, and generally, random search perfor-
mance is better than grid search [23].

For objective functions that are slow and costly to
evaluate, Bayesian optimization is a powerful strategy that
tries to predict the performance of untested combinations
[23, 33]. Compared to grid search, Bayesian optimization is
more dynamic and requires two key components to func-
tion. Tose components are the probabilistic surrogate
model and the acquisition function.Te role of the surrogate
model is to be ftted to all the target function observations
made so far. Ten, the acquisition function looks for pa-
rameters that improve the search process to fnd the most
optimum hyperparameters.

Te GA is one of the population-based metaheuristic
optimization algorithms developed with inspiration from
the theory of natural selection. In this algorithm, a new
population is generated by repeatedly using genetic oper-
ators on each individual in the population. Te critical el-
ements of this algorithm are chromosomes, selection,
crossover, mutation, and ftness function. Te general
performance of this algorithm is as follows: Initially, the
population Y (Y is the number of answers or solutions)
consisting of n chromosomes (n is the number of parameters
of the problem) is randomly generated. Two chromosomes
(two answers or two solutions), namely, C1 and C2, are
selected from the population based on their ftness. C1 and
C2 will produce the new ofspring O with the crossover
operator. Te probability of this operation would be CP,
which is the crossover probability parameter. Te genetic
mutation operator with the probability of MP is then applied
to O to generate a new member O’. Member O’ is added to
the previous population to form a new population. Te
selection, crossover, and mutation process continue until an
entire population is generated. Te probability of crossover
and mutation is why the GA can dynamically search for the
optimal solution and reach it [34].

3. Materials and Methods

3.1. Data Source. Te studied hospital in this research has
300 beds and 1055 physicians and staf. Te hospital pro-
vides clinical and paraclinical services and has 19 inpatient
departments. It has a health information system to collect
and store patients’ data. Te information studied in this
research was extracted from the department of internal
medicine.

In order to determine the variables that may afect LOS
and collect the necessary data, similar studies were reviewed.
Two hundred records of electronic data of 100 men and 100
women were randomly extracted from the information
system. Table 2 shows the variables used in this study, in-
cluding age, sex, type of insurance, marital status, medical
advice number, and physician’s expertise level.

3.2. Data Preprocessing. Te data were checked, and there
were no missing values. Te mean age of the patients was
63 years, with a standard deviation of 19 years. 50% of the
data were related to women, and 50% were related to men.
90% of patients were married, and others were single. Te
average number of medical advice numbers was two, with
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a standard deviation of 3. Te LOS had a mean value of
5.6 days and a standard deviation of 3.4 days. Te primary
insurance type and physician’s expertise level variables had
relatively unbalanced distributions. 90% of the patients had
ordinary social security insurance, and the rest were in other
insurance groups. 45% of the patients were treated by
general practitioners, 54% by specialists, and the remaining
2% by subspecialists. Table 3 shows the statistical charac-
teristics of each variable.

Dummy coding, sometimes called “one-hot encoding,”
was used to turn the categorical variables into numerical
variables. In order to remove outliers, data with 1.5 times
IQR (interquartile range) greater and less than the frst and
third quartiles were removed from the data. Te lower limit
value of outliers was calculated as −0.5, and the upper limit
value was 11.5. Terefore, patients with LOS of more than
11.5 days (eight records of data) were excluded from
the data.

Since ML algorithms cannot analyze categorical data, the
one-hot encoding technique creates binary variables rep-
resenting the old categorical variable. Te ML algorithm can
then process these new binary variables [35]. In one-hot
encoding, a new feature is created for each category level,
and a binary feature is created [25]. One-hot encoding of
four categorical variables is shown in Figure 1. For each
category of a categorical variable, one variable (one di-
mension) is added to the variables, and the value of this new
variable in each row is set to 0 or 1. Te value of the dummy
variable is 1 when the original categorical variable is the
same as the created dummy variable, and it is zero for other
cases. Finally, the original categorical variable and its records
are removed from the data.

Pearson correlation analysis has been performed, and the
coefcients are reported in Table 4. According to Table 4,
LOS has the highest positive correlation, with a p value of
less than 0.05, with the medical advice number of 0.46,
primary insurance type_employee health insurance of 0.2,
and physician expertise level_subspecialty physician of 0.17.
Te highest negative correlation, with a p value of less than
0.05, is with the primary insurance type_without insurance
variable (−0.16). Other correlation values were insignifcant,
and their p valuewas greater than 0.05; nevertheless, they
were not removed from the dataset to check their impact on

the output of the models. Te dataset was divided into
training and test sets in the last step. 85% of the data was
assigned to the training dataset and 15% to the test dataset.
Te data distribution was checked in each dataset, and both
had relatively the same distribution. Tis control mattered
since the data were unbalanced.

3.3. Model Training. Te models used in this work include
KNN [18], multivariate regression [36], decision tree [37],
random forest [4], ANN [38], and XGBoost [39] so that the
results of the improved model can be compared. All models
were built in Python version 3.8.5. Te number of param-
eters in the KNN model (the number of neighbors) was
estimated at 12. Te estimation was performed with the help
of the K-CV method with a value of k� 10. Te regression
model was built in two forms. First, one was built with all
variables on LOS. After checking the regression assump-
tions, the natural logarithm of LOS was calculated and added
to the data. Another multivariate regression model was built
on transformed LOS, which hereafter will be known as
a transformed regression model. Regression and trans-
formed regressionmodels were rebuilt based on t-test results
with a p value of less than 0.05 and evaluated on the test
dataset. Tese two models will be referenced with the names
Lm and Lm_transformed, respectively. Since changing LOS
to the natural logarithm of LOS improved the regression
assumptions and brought the data closer to the normal
distribution, other models were also built using the natural
logarithm of LOS. Decision tree (DT_default), random
forest (RF_default), and XGBoost (XGB_default) were built
on the training dataset using default hyperparameter values.
Te ANN model was built with a 2-layer structure. Twelve
neurons were placed in the frst layer and six in the second
layer. Finally, the evaluation of the models was performed on
the test dataset. Te details of default hyperparameters of
tree-based models are presented in Table 5.

3.4. Optimization with the Genetic Algorithm. Te values set
for the hyperparameters of the tree-based models are based
on the default values in the libraries developed for Python
(see Table 5). Diferent combinations of the mentioned
hyperparameters can be used in the models. In this research

Table 2: Potential variables afecting LOS.

No. Author Ref. Age Sex Insurance Marital status Medical advice number Physician’s expertise level
1 Baek et al., 2018 [13] ∗ ∗
2 Meadows et al., 2018 [14] ∗ ∗
3 Alahmar et al., 2018 [10] ∗ ∗
4 Tompson et al., 2018 [17] ∗ ∗
5 Daghistani et al., 2019 [4] ∗ ∗ ∗
6 Danilov et al., 2019 [12]
7 Ray-Zack et al., 2019 [15] ∗ ∗ ∗
8 Muhlestein et al., 2019 [11] ∗ ∗
9 Steele and Tompson, 2019 [16] ∗ ∗ ∗
10 Abd-Elrazek et al., 2019 [18] ∗ ∗
11 Mahboub et al., 2021 [20] ∗ ∗
12 Alsinglawi et al., 2022 [21] ∗
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study, the PyGAD module and the PyGAD.GA class de-
veloped for Python were used to apply the GA for HPO [40].

Implementing the GA for each model has three basic
steps: determining the ftness function, determining the
range of hyperparameters of each model to be evaluated in
the GA, and specifying the parameters of the GA.Te ftness
function for each model is the mean squared error (MSE)

calculated with the K-CV method and k� 5 to reduce the
overftting of the model on the training data [31].

Te hyperparameter space of eachmodel that needs to be
checked by the GA is as follows. For the decision tree model,
the maximum depth of the tree is set between 1 and 1000.
Te higher value of max_depth leads to more tree expansion
and overftting on the data. Te minimum number of

Table 3: Statistical characteristics of variables in the studied sample.

No. Variable n Mean± SD/percent
1 Age (year) 200 63± 19
2 Sex
3 Female 100 50%
4 Male 100 50%
5 Marital status
6 Married 179 90%
7 Single 21 11%
8 Main insurance type
9 Ordinary social security insurance (ordinary SSI) 180 90%
10 Occupational social security insurance (occupational SSI) 5 3%
11 Employee health insurance (employee HI) 3 2%
12 Special social security insurance (special SSI) 6 3%
13 Without insurance (without insurance) 6 3%
14 Physician expertise level
15 General practitioner 90 45%
16 Specialist 107 54%
17 Subspecialty physician 3 2%
18 Medical advice no 2± 3
19 LOS (day) 5.6± 3.4
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Figure 1: One-hot coding of four categorical features.
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samples per node is between 1 and 50. Te alpha value is
between 0 and 1. When ccp_alpha equals zero, no pruning
occurs, and higher values lead to more pruned trees.

For the random forest model, the maximum tree depth is
between 1 and 7, and the minimum number of samples per
node is between 1 and 50. Tese two hyperparameters have
the same function as in the decision tree. Te number of
variables that should be used in constructing each tree is
between 1 and 12. It ranges from one to the maximum
number of features which in our problem is 12. Te number
of trees is considered to be between 50 and 1000, as fewer
trees will provide inaccurate results.

On the other hand, too many trees will add to the
training time while no improvement happens. Te maxi-
mum number of samples, defned as the number of samples
to draw from X to train each base estimator, is set between
0.1 and 1. We are looking for its optimum value that ranges
from 10% to 100%.

In the XGBoost model, the learning rate is between 0.001
and 1. Te learning rate is the step size shrinkage used in the
update to prevent overftting. Te number of trees is set
between 50 and 1000. Te maximum depth of the tree is
between 1 and 7.Te percentage of samples (subsample) and
variables (colsample_by_tree) used in constructing each tree
is between 0.1 and 1. Te subsample is the ratio of the

training instances, and it will prevent overftting. Sub-
sampling will occur once in every boosting iteration. Setting
it to, for example, 0.1 means that XGBoost would randomly
sample 10% of the training data before growing trees.
Colsample_by_tree is the subsample ratio of columns when
constructing each tree. Subsampling occurs once for every
tree constructed. Te regularization term is considered
between 1 and 3. Increasing this value will make the model
more conservative [31]. Te hyperparameter space of each
model that the GA should check is also presented in Table 5.
Te evaluation result of the decision tree, random forest, and
XGBoost model that improved by utilizing the GA will be
referenced with the names DT_GA, RF_GA, and XGB_GA,
respectively.

GA parameters include the number of generations or the
ending condition of the algorithm, the number of parents
that the crossover operator must use, the number of solu-
tions or individuals in each population, the type of selection
operator, the type and probability of the crossover operator,
and the type and probability of mutation operator. GA
parameters must be determined before running the algo-
rithm. For this purpose, the number of generations is 50, the
number of parents who can participate in the crossover
operation is 2, and the number of solutions (individuals) in
the population is 20. Te type of selection operator is steady

Table 4: Correlation between independent variables and LOS.

No. Variable Correlation p value p value< 0.05
1 Age −0.06 0.4032
2 Medical advice number 0.46 0.0001 <0.05
3 Sex_F 0.02 0.7823
4 Marital status_married −0.04 0.5808
5 Main insurance type_employee HI 0.20 0.0066 <0.05
6 Main insurance type_occupational SSI 0.08 0.2579
7 Main insurance type_ordinary SSI 0.02 0.7514
8 Main insurance type_special SSI −0.05 0.4677
9 Main insurance type_without insurance −0.16 0.0291 <0.05
10 Physician expertise level_general practitioner 0.02 0.7447
11 Physician expertise level_specialist −0.07 0.3696
12 Physician expertise level_subspecialty physician 0.17 0.0206 <0.05

Table 5: Hyperparameters of tree-based models in the training model and genetic algorithm.

Model Hyperparameters Type Interval Training model Genetic algorithm
Default Interval Optimized

Decision tree
max_depth Int — None (1, 1000) 224

min_samples_leaf Int — 1 (1, 50) 17
ccp_alpha Nonnegative foat — 0 (0, 1) 0.9

Random forest

max_features Int (1, no. of variables) 1 (1, 12) 6
n_estimators Int (1, inf) 1 (50, 1000) 883
max_depth Int (1, 100) 100 (1, 7) 43

min_samples_leaf Int (1, sample size) — (1, 50) 8
max_samples Float (0,1) 1 (0.1, 1) 0.65

XGBoost

learning_rate Float (0,1) 0.3 (0.001, 1) 0.4
n_estimator Int (1-Inf) 1000 (50, 1000) 139
max_depth Int (0, inf) 6 (1, 7) 1
Subsample Float (0-1) 1 (0.1, 1) 0.9

colsample_by_tree Float (0-1) 1 (0.1, 1) 0.15
reg_lambda Nonnegative foat — 1 (1, 3) 2.8
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state, the type of crossover operator is uniform with
a probability of 60%, and the type of mutation is random
with a probability of 1% [31]. Implementing the GA algo-
rithm to optimize the hyperparameters of a tree-based
model is shown in Table 6.

4. Results and Discussion

4.1. PredictionAccuracyAnalysis. Temodels detailed in the
previous section were evaluated on the test dataset, and
absolute errors were calculated for each model. Te statis-
tical indices of absolute errors, including mean, median,
standard deviation (SD), interquartile range (IQR), mini-
mum (min), and maximum (max), are reported in Table 7.

Te lowest mean absolute error (MAE) is 1.52 days and
belongs to the transformed regression (Lm_transformed).
With a slight diference from that, the improved XGBoost
(XGB_GA) model has the lowest MAE value, equal to
1.54 days. After that, the lowest MAE belongs to the re-
gression model called Lm (1.56 days), ANN (1.61 days),
RF_default (1.65 days), RF_GA (1.76 days), KNN (1.78 days),
DT_GA (1.95 days), DT_default (2.15 days), and fnally the
XGBoost_default (2.45 days).

A lower MAE generally means better model accuracy,
butMAE alone does not answer the question of whichmodel
is the best. In order to solve this problem, it is better to check
the error dispersion indices. Tese indices include the
median, SD, and the IQR of the absolute errors in addition to
theMAE. Dispersion indices help to have a better view of the
model performance on each data record in the test dataset.
Te lowest median belongs to the RF_default (1.02 days),
followed by the XGB_GA (1.14 days). Te lowest standard
deviation belongs to Lm and ANN, with values of 1.14 and
1.20, respectively. Te smallest IQR belongs to a DT_default
(1 day) and XGB_GA (1.26 days). Since there are three
dispersion indices for ranking the models, the average of all
these three indices was calculated for each model in order to
determine which model has the most negligible dispersion
error in the test dataset. Tis ranking puts the XGB_GA
model in the frst place and the Lm_transformed in second
place. After that, Lm, ANN, RF_GA, RF_default, DT_de-
fault, KNN, DT_GA, and XGB_default, respectively, have
the lowest value in dispersion indices. Tis ranking means
that we are not only looking for a model with lower pre-
diction errors on average but also we look for more records
of data that are predicted as accurately as possible. In other
words, if we draw the range of errors of each model in
a boxplot diagram, we want to see more compression in its
diagram.

Figure 2 depicts the given explanations about the error
comparison of the models in a boxplot diagram. As shown in
the fgure, the XGB_GA boxplot has the most compression
among the rest of the models. After that, the Lm_trans-
formed model has this position. Te MAE of these two
models is the lowest among the others. Another indicator
that should be assessed in the analysis of each model is the
maximum prediction error. In this case, the Lm_trans-
formedmodel and the ANN have the lowest value. However,
the graphs in Figure 2 show that in highly accurate models

such as XGB_GA and Lm_transformed, the number of cases
predicted with a high error is small. For example, for the
XGB_GA, this term is 2 out of 29 cases, which is about 6% of
the data.

In addition to comparing models and checking their
prediction accuracy, it is necessary to address the efect of
GA performance. Table 7 shows that the GA has reduced all
the error indicators in the XGBoost model by at least 25%. In
decision tree and random forest, the changes have been
slightly diferent. In the decision tree, all error indicators
have improved except IQR, which increased by 100%. Te
mean, median, standard deviation, andmaximum error have
been reduced to 10%, 17%, 10%, and 9%, respectively. In the
random forest, the mean and median errors increased by 7%
and 31%, respectively. Te standard deviation, IQR, and
maximum error decreased by 4%, 20%, and 2%, respectively.
In other words, the boxplot of errors in Figure 2 is more
compressed (see Table 8).

Another tool that helps to compare the performance of
the models and the GA efect is the graph of predicted
values (Y-axis) versus actual values (X-axis). Ideally, the
data in this graph should ft on a 45-degree line, meaning
that the predicted value is precisely the same as the actual
value; however, it is impossible in practice. Models whose
values have less dispersion around the diagonal line are
considered better ones. Te reason behind the lower MAE
and error dispersion in the XGB_GA and Lm_transformed
can be seen in Figure 3. Although it is difcult to compare
the models in this type of diagram, the way the tree-based
models change after using the GA can be seen. Te MAE
value of the decision tree model decreases while the error
dispersion values for the random forest model increase.Te
improvement in the XGBoost model is notable as the values
approach the diagonal line.

4.2.Discussion. In conclusion, if the order of accuracy of the
models is considered (see Figure 4), the Lm_transformed
and XGB_GA models have an excellent ability to predict
LOS. After those two models, Lm, ANN, RFs, KNN, DTs,
and XGB_default have the best prediction accuracy, re-
spectively. Te XGB_default and both DTmodels are among
the weakest models.Teir result is even weaker than the base
model, KNN. A weaker result was expected from the DT
models than others employing ensemble learning. Figure 4
shows the error values of the models, which are arranged
relatively for comparison in the order of the MAE. Te
diagram in Figure 4 helps to compare the models and check
the trend of the error indicators. Te graph shows that the
models become weaker in the mentioned order, thereby
decreasing their accuracy. In other words, the error values
increase in them.

Te noteworthy point about the frst two models is the
competition between the complex tree-based model opti-
mized with metaheuristic methods (XGB_GA) and the
simple transformed regression model (Lm_ transformed).
Te XGB_GA model has a higher mean but lower error
dispersion than the Lm_transformed model. Since the
diference in the MAE of these two models is insignifcant,
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the XGB_GA model can be chosen as the most
accurate one.

Tere are two important points regarding the two top
models in this research. One is their interpretability and the
other is their computational process. Te regression model
has better interpretability than the XGB_GA model because
it is possible to check which variable, and to what extent, will
afect the output. At the same time, this possibility is not
available for the XGB_GA model. Te regression model was
based on t-test results and variables selected by the user’s
decision. Te XGB_GA model is immune from the user’s
intervention in creating the model, and no variable or data is
removed during the process.

To conclude, XGB_GA has three critical advantages over
other models. Te frst is the lowest value of MAE, the
second is the lowest value of prediction error dispersion, and
the third is the absence of analyst involvement in decision-
making and creating the fnal output. Te median value of

XGB_GA is 1.14 days, and the third quartile of the error is
less than two days, meaning that the model predicts LOS
with less than two days of error in 75 percent of cases. For
a future decision support system, a model that is less de-
pendent on the intervention of the researcher or analyst can
be a better choice. In most cases, the model must also predict
LOS with a minor error. Terefore, XGB_GA could be se-
lected as the best model.

As a criterion for measuring the accuracy of the models,
we can rely on the reported results of other researchers. For
this purpose, those studies that predicted the absolute value
of LOS and reported RMSE or MAE indices can be included
for comparison. Danilov et al. reported the MAE for their
proposed model to be 2.8 days. Tey applied text-mining
techniques to operative reports with deep learning methods
[12]. Mahboub et al. also reported a value of 2.8 days as the
MAE of the decision tree model for predicting the LOS of
COVID-19 patients. Chen reported an RMSE value of

Table 6: Mechanism of tree-based HPO with GA.

Input: Number of folds for cross-validationK, dataset D, number of generations G, population size P, crossover probability CP, and
mutation probability MP
Output: the optimum value of tree-based models hyperparameter
g � 0
Initialize population randomly of size P

While g<G do:
g � g+ 1
For p� 1 to P do:
Use the GA solutions for tree-based hyperparameters from the pth individual
For k� 1 to K do:
Divide D into K parts, 1 part as the testing set Test-S and (K − 1) parts as the
training set Train-S
Train the tree-based model on the training set Train-S
Predict the test set Test-S using the trained tree-based model
Calculate the mean square errors (MSEs)

End for
Calculate the value of the ftness function based on calculated MSEs

End for
Select 2 individuals by the steady-state selection method
Use the uniform crossover operator with the probability CP on selected individuals
Use the mutation operator with the probability MP on a new individual
Add the new individual to the population

End while
Return the optimum hyperparameter values of tree-based models

Table 7: Absolute error indices of predictive models on the test dataset.

No. Model Mean (day) Median (day) SD (day) IQR (day) Min (day) Max (day)
1 KNN 1.78 1.75 1.50 1.75 0.00 6.33
2 Lm 1.56 1.33 1.14 1.56 0.00 4.56
3 Lm_transformed 1.52 1.19 1.26 1.37 0.10 5.19
4 DT_default 2.15 2.00 1.79 1.00 0.00 7.00
5 DT_GA 1.95 1.65 1.61 2.00 0.35 6.35
6 RF_default 1.65 1.02 1.47 1.87 0.09 5.71
7 RF_GA 1.76 1.34 1.42 1.50 0.04 5.57
8 XGBoost_default 2.45 2.56 1.93 2.54 0.00 7.67
9 XGBoost_GA 1.54 1.14 1.38 1.26 0.04 5.68
10 ANN 1.61 1.20 1.20 1.75 0.03 4.71
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1.52 days for the nonlinear weighted XGBoost model, whose
hyperparameters were optimized using a grid search
method. Terefore, the models presented in this research
study have had acceptable results compared to the existing
literature. At least, this has been the case with MAEs. Te

best model in this research had an MAE of 1.54 days and the
worst model had an MAE of 2.45 days. However, since the
error dispersion indices were not reported in similar re-
search, it is impossible to compare and judge the results from
this perspective.
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Table 8: Te percentage change of the absolute error in the GA-optimized models.

No. Model Mean (%) Median (%) SD (%) IQR (%) Min Max (%)
1 DT_GA −10 −17 −10 100 — −9
2 RF_GA 7 31 −4 −20 — −2
3 XGB_GA −37 −56 −28 −50 — −26
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Te main issue this research tried to study was the efect
of GA in improving ML model results. Te GA was used to
calculate the optimal hyperparameters of the decision tree,
random forest, and XGBoost models. Te positive efect of
the GA on the XGBoost model is undeniable. It has reduced
all the error indicators. Considering the value of the error
indicators, the error distribution, and the related graphs, the
decision tree model has become weaker, and the random
forest model has generally improved. Te random forest
model has generally improved. Graph (e) in Figure 3 shows
that the optimized decision tree only ftted a constant
number on the data to reduce the MAE. A constant value as
the fnal model is considered a poor result since every case
will have the exact prediction regardless of the input vari-
ables. In Figure 3(j), for the RF_GA model, the general form
of data dispersion is similar to Figure 3(i)—RF_default. Te
only diference is that the data are closer to the diagonal line,
which means that the random forest model has improved
after optimization.

5. Conclusions

Tis study aimed to improve the LOS prediction accuracy by
focusing on the HPO process. Literature shows that this
procedure has been neglected in most similar studies. Due to
its superiority over other standard methods, GA has been
selected for this purpose. In this work, the impact of GA on
performance improvement was tested experimentally by
integrating it with one of the most accurate ML models,
XGBoost. Te newly proposed method outperformed other
modeling techniques. However, only one set of GA pa-
rameters was used for the optimization, making it the main
limitation of this research study. For future studies, it is

suggested to apply other combinations of the GA parameters
and compare their performance to fnd the most optimum
setting. With other metaheuristic algorithms, such as PSO,
GA could be used on a more extensive dataset with the ICD-
diagnosis code added to the input variables. Previous studies
that have used diagnostic ICD codes in their research study
have models with a prediction accuracy of over 80%
[10, 16, 17]. Improving the ftness function of XGBoost by
simultaneously including dispersion indices and the mean of
errors is another idea to work on and improve the results for
practical uses. GA could also be used to optimize deep
learning models such as ANN, which in future studies can be
investigated more deeply.

Data Availability

Te dataset used to support the fndings of this study is
available from the corresponding author upon request.

Disclosure

Tis research is extracted from the master’s thesis of Atefeh
Mansoori in the Islamic Azad University, Science and Re-
search Branch under the title “Development of an Improved
Model by Integrating Data Mining and Genetic Algorithms
to Predict the Length of Hospital Stay” in the Persian
language.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] S. C. Buttigieg, L. Abela, and A. Pace, “Variables afecting
hospital length of stay: a scoping review,” Journal of Health,
Organisation and Management, vol. 32, no. 3, pp. 463–493,
2018.

[2] L. He, S. Chalil Madathil, A. Oberoi, G. Servis, and
M. T. Khasawneh, “A systematic review of research design and
modeling techniques in inpatient bed management,” Com-
puters and Industrial Engineering, vol. 127, pp. 451–466, 2019.

[3] S. Bacchi, Y. Tan, L. Oakden-Rayner, J. Jannes, T. Kleinig, and
S. Koblar, “Machine learning in the prediction of medical
inpatient length of stay,” Internal Medicine Journal, vol. 52,
no. 2, pp. 176–185, 2022.

[4] T. A. Daghistani, R. Elshawi, S. Sakr, A. M. Ahmed, A. Al-
Twayee, and M. H. Al-Mallah, “Predictors of in-hospital
length of stay among cardiac patients: a machine learning
approach,” International Journal of Cardiology, vol. 288,
pp. 140–147, 2019.

[5] R. Hills and S. Kitchen, “Satisfaction with outpatient phys-
iotherapy: a survey comparing the views of patients with acute
and chronic musculoskeletal conditions,” Physiotherapy
Teory and Practice, vol. 23, no. 1, pp. 21–36, 2007.

[6] R. Schmidt, S. Geisler, and C. Spreckelsen, “Decision support
for hospital bed management using adaptable individual
length of stay estimations and shared resources,” BMC
Medical Informatics and Decision Making, vol. 13, no. 1,
pp. 3–19, 2013.

[7] A. P. Nassar and P. Caruso, “ICU physicians are unable to
accurately predict length of stay at admission: a prospective

Relative Absolute Error of Predictive
Models on Test Dataset 

Max (day)
IQR (day)
SD (day)

Median (day)
Mean (day)

Lm
_t

ra
ns

fo
rm

ed

XG
B_

G
A Lm

A
N

N

RF
_d

ef
au

lt

RF
_G

A

KN
N

D
T_

G
A

D
T_

de
fa

ul
t

XG
B_

de
fa

ul
t

Figure 4: Relative comparison of errors statistical indices.

12 Journal of Healthcare Engineering



study,” International Journal for Quality in Health Care,
vol. 28, no. 1, pp. 99–103, 2016.

[8] V. Lequertier, T. Wang, J. Fondrevelle, V. Augusto, and
A. Duclos, “Hospital length of stay prediction methods:
a systematic review,” Medical Care, vol. 59, no. 10, pp. 929–
938, 2021.

[9] A. Morton, E. Marzban, G. Giannoulis, A. Patel, R. Aparasu,
and I. A. Kakadiaris, “A comparison of supervised machine
learning techniques for predicting short-termin-hospital
length of stay among diabetic patients,” in Proceedings of
the 2014 13th International Conference on Machine Learning
and Applications, pp. 428–431, Detroit, MI, USA, December
2014.

[10] A. Alahmar, E. Mohammed, and R. Benlamri, “Application of
data mining techniques to predict the length of stay of
hospitalized patients with diabetes,” in Proceedings of the
2018 4th International Conference on Big Data Innovations
and Applications (Innovate-Data), pp. 38–43, Barcelona,
Spain, August 2018.

[11] W. E. Muhlestein, D. S. Akagi, J. M. Davies, and
L. B. Chambless, “Predicting inpatient length of stay after
brain tumor surgery: developing machine learning ensembles
to improve predictive performance,” Neurosurgery, vol. 85,
no. 3, pp. 384–393, 2019.

[12] G. Danilov, K. Kotik, M. Shifrin, U. Strunina, T. Pronkina,
and A. Potapov, “Prediction of postoperative hospital stay
with deep learning based on 101 654 operative reports in
neurosurgery,” in ICT for Health Science Research, pp. 125–
129, IOS press, Amsterdam, Netherlands, 2019.

[13] H. Baek, M. Cho, S. Kim, H. Hwang, M. Song, and S. Yoo,
“Analysis of length of hospital stay using electronic health
records: a statistical and data mining approach,” PLoS One,
vol. 13, no. 4, Article ID 195901, 2018.

[14] K. Meadows, R. Gibbens, C. Gerrard, and A. Vuylsteke,
“Prediction of patient length of stay on the intensive care unit
following cardiac surgery: a logistic regression analysis based
on the cardiac operative mortality risk calculator, Euro-
SCORE,” Journal of Cardiothoracic and Vascular Anesthesia,
vol. 32, no. 6, pp. 2676–2682, 2018.

[15] M. D. Ray-Zack, Y. Shan, H. B. Mehta, X. Yu, A. M. Kamat,
and S. B. Williams, “Hospital length of stay following radical
cystectomy for muscle-invasive bladder cancer: development
and validation of a population-based prediction model,”
Urologic Oncology, vol. 37, no. 11, pp. 837–843, 2019.

[16] R. J. Steele and B. Tompson, “Data mining for generalizable
pre-admission prediction of elective length of stay,” in Pro-
ceedings of the 2019 IEEE 9th Annual Computing and Com-
munication Workshop and Conference (CCWC), pp. 127–133,
Las Vegas, NV, USA, January 2019.

[17] B. Tompson, K. O. Elish, and R. Steele, “Machine learning-
based prediction of prolonged length of stay in newborns,” in
Proceedings of the 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 1454–1459,
IEEE, Orlando, FL, USA, December 2018.

[18] M. A. Abd-Elrazek, A. A. Eltahawi, M. H. Abd Elaziz, and
M. N. Abd-Elwhab, “Predicting length of stay in hospitals
intensive care unit using general admission features,” Ain
Shams Engineering Journal, vol. 12, no. 4, pp. 3691–3702, 2021.

[19] J. H. Wasfy, K. F. Kennedy, F. A. Masoudi et al., “Predicting
length of stay and the need for postacute care after acute
myocardial infarction to improve healthcare efciency: a re-
port from the national cardiovascular data registry’s action
registry,” Circulation: Cardiovascular Quality and Outcomes,
vol. 11, no. 9, p. e004635, 2018.

[20] B. Mahboub, M. T. A. Bataineh, H. Alshraideh, R. Hamoudi,
L. Salameh, and A. Shamayleh, “Prediction of COVID-19
hospital length of stay and risk of death using artifcial
intelligence-based modeling,” Frontiers of Medicine, vol. 8,
Article ID 592336, 2021.

[21] B. Alsinglawi, O. Alshari, M. Alorjani et al., “An explainable
machine learning framework for lung cancer hospital length
of stay prediction,” Scientifc Reports, vol. 12, no. 1,
pp. 607–610, 2022.

[22] A. Paleyes, R. G. Urma, and N. D. Lawrence, “Challenges in
deploying machine learning: a survey of case studies,” ACM
Computing Surveys, vol. 55, no. 6, pp. 1–29, 2022.

[23] S. Putatunda and K. Rama, “A comparative analysis of
hyperopt as against other approaches for hyper-parameter
optimization of XGBoost,” in Proceedings of the 2018 In-
ternational Conference on Signal Processing and Machine
Learning, pp. 6–10, Shanghai, China, November 2018.

[24] Y. Chen, “Prediction and analysis of length of stay based on
nonlinear weighted XGBoost algorithm in hospital,” Journal
of Healthcare Engineering, vol. 2021, pp. 2021–9, Article ID
4714898, 2021.

[25] K. Budholiya, S. K. Shrivastava, and V. Sharma, “An Opti-
mized XGBoost Based Diagnostic System for Efective Pre-
diction of Heart Disease,” Journal of King Saud University-
Computer and Information Sciences, vol. 34, no. 7,
pp. 4514–4523, 2020.

[26] Y. V. Singh, P. Singh, S. Khan, and R. S. Singh, “A machine
learning model for early prediction and detection of sepsis in
intensive care unit patients,” Journal of Healthcare Engi-
neering, vol. 2022, Article ID 9263391, 11 pages, 2022.

[27] U. Nagavelli, D. Samanta, and P. Chakraborty, “Machine
learning technology-based heart disease detection models,”
Journal of Healthcare Engineering, vol. 2022, Article ID
7351061, 9 pages, 2022.

[28] A. Ogunleye and Q. G. Wang, “XGBoost model for chronic
kidney disease diagnosis,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 17, no. 6,
pp. 2131–2140, 2020.

[29] A. Ibrahem Ahmed Osman, A. Najah Ahmed, M. F. Chow,
Y. Feng Huang, and A. El-Shafe, “Extreme gradient boosting
(Xgboost) model to predict the groundwater levels in Selangor
Malaysia,” Ain Shams Engineering Journal, vol. 12, no. 2,
pp. 1545–1556, 2021.

[30] S. Mohan, S. Bhattacharya, R. Kaluri et al., “Multi-modal
prediction of breast cancer using particle swarm optimization
with non-dominating sorting,” International Journal of Dis-
tributed Sensor Networks, vol. 16, no. 11, Article ID
155014772097150, 2020.

[31] Y. Feng, D. Wang, Y. Yin, Z. Li, and Z. Hu, “An XGBoost-
based casualty prediction method for terrorist attacks,”
Complex and Intelligent Systems, vol. 6, no. 3, pp. 721–740,
2020.

[32] Y. Jiang, G. Tong, H. Yin, and N. Xiong, “A pedestrian de-
tection method based on genetic algorithm for optimize
XGBoost training parameters,” IEEE Access, vol. 7,
pp. 118310–118321, 2019.

[33] H. Alibrahim and S. A. Ludwig, “Hyperparameter optimi-
zation: comparing genetic algorithm against grid search and
bayesian optimization,” in Proceedings of the 2021 IEEE
Congress on Evolutionary Computation (CEC), pp. 1551–1559,
IEEE, Kraków, Poland, June 2021.

[34] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimedia Tools and
Applications, vol. 80, no. 5, pp. 8091–8126, 2021.

Journal of Healthcare Engineering 13



[35] T. R. Gadekallu, M. Alazab, R. Kaluri et al., “Hand gesture
classifcation using a novel CNN-crow search algorithm,”
Complex and Intelligent Systems, vol. 7, no. 4, pp. 1855–1868,
2021.

[36] V. Liu, P. Kipnis, M. K. Gould, and G. J. Escobar, “Length of
stay predictions: improvements through the use of automated
laboratory and comorbidity variables,” Medical Care, vol. 48,
no. 8, pp. 739–744, 2010.

[37] P. R. Hachesu, M. Ahmadi, S. Alizadeh, and F. Sadoughi, “Use
of data mining techniques to determine and predict length of
stay of cardiac patients,” Healthcare informatics research,
vol. 19, no. 2, pp. 121–129, 2013.

[38] P.-F. J. Tsai, P. C. Chen, Y. Y. Chen et al., “Length of hospital
stay prediction at the admission stage for cardiology patients
using artifcial neural network,” Journal of healthcare engi-
neering, vol. 2016, Article ID 7035463, 11 pages, 2016.

[39] T. Chen and C. Guestrin, “Xgboost: a scalable tree boosting
system,” in Proceedings of the 22nd Acm Sigkdd International
Conference on Knowledge Discovery and Data Mining,
pp. 785–794, San Francisco, CA, USA, August 2016.

[40] A. F. Gad, “PyGAD: An Intuitive Genetic Algorithm Python
Library,” 2021, https://arxiv.org/abs/2106.06158.

14 Journal of Healthcare Engineering

https://arxiv.org/abs/2106.06158



