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Background. Artifcial intelligence (AI) has developed rapidly, and its application extends to clinical decision support system (CDSS) for
improving healthcare quality. However, the interpretability of AI-driven CDSS poses signifcant challenges to widespread application.
Objective. Tis study is a review of the knowledge-based and data-based CDSS literature regarding interpretability in health care. It
highlights the relevance of interpretability for CDSS and the area for improvement from technological andmedical perspectives.Methods.
A systematic searchwas conducted on the interpretability-related literature published from 2011 to 2020 and indexed in the fve databases:
Web of Science, PubMed, ScienceDirect, Cochrane, and Scopus. Journal articles that focus on the interpretability of CDSS were included
for analysis. Experienced researchers also participated in manually reviewing the selected articles for inclusion/exclusion and catego-
rization. Results. Based on the inclusion and exclusion criteria, 20 articles from 16 journals were fnally selected for this review. In-
terpretability, which means a transparent structure of the model, a clear relationship between input and output, and explainability of
artifcial intelligence algorithms, is essential for CDSS application in the healthcare setting. Methods for improving the interpretability of
CDSS include ante-hoc methods such as fuzzy logic, decision rules, logistic regression, decision trees for knowledge-based AI, and white
box models, post hoc methods such as feature importance, sensitivity analysis, visualization, and activation maximization for black box
models. A number of factors, such as data type, biomarkers, human-AI interaction, needs of clinicians, and patients, can afect the
interpretability of CDSS. Conclusions. Te review explores the meaning of the interpretability of CDSS and summarizes the current
methods for improving interpretability from technological and medical perspectives. Te results contribute to the understanding of the
interpretability of CDSS based on AI in health care. Future studies should focus on establishing formalism for defning interpretability,
identifying the properties of interpretability, and developing an appropriate and objective metric for interpretability; in addition, the user's
demand for interpretability and how to express and provide explanations are also the directions for future research.

1. Introduction

Clinical decision support system (CDSS), which combines
clinical knowledge, patient data, and information technol-
ogy, provides decision-making for health institutions to

improve the quality of healthcare [1]. CDSSs are developed
ranging from diagnosis [2, 3], disease management [4], and
prescription [5, 6] to prediction [7–9].

Over the years, CDSSs have been attempting to integrate
artifcial intelligence (AI) into clinical tasks and have been
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recognized as the main form of application of artifcial
intelligence technology in the medical domain [10]. AI
methodologies can be classifed into two diferent types:
knowledge-based AI and data-driven AI [11]. Some notable
examples of CDSS have been developed with knowledge-
based AI approaches. For example, early expert systems
include MYCIN for treating bacterial infection [12], the
DXplain with a large knowledge base [13], and the UpTo-
Date based on large-scale evidence-based medicine
knowledge [14]. With the application of machine learning
techniques in the medical domain, data-driven AI ap-
proaches have brought tremendous advancement for CDSS
during the past decades. While CDSS can be classifed into
diferent types, there are two subtypes based on the AI
methodologies used: knowledge-based CDSS (KB-CDSS)
and data-based CDSS (DB-CDSS) [11, 15].

KB-CDSS consists of three components: a central
knowledge base, an inference engine, and end-user interface
[16]. Knowledge bases are extracted from experts’ knowledge
represented in the forms of ontology, rules, computer in-
terpretable guidelines (CIG), and fuzzy logic. Tese knowl-
edge representations can directly express semantics and
medical implications to clinicians and patients. Two common
knowledge representation methods for KB-CDSS are decision
rule and fuzzy logic.Wagholikar [17] developed a CDSS based
on decision rules generated from guidelines to screen cervical
cancer. Tis decision rule method provides both the trace-
ability of the model and greater information density. Fuzzy
logic handles uncertainty and imprecision by defning reality
with parameters between 0 and 1 and relations between inputs
and outputs [18].Te fuzzy logic method is easy to implement
and understand with high accuracy and low complexity.
Others also try to combine ontology and fuzzy logic to unify
and normalize various types of crisp knowledge and the
uncertain nature of the medical domain [19]. Generally
speaking, KB-CDSS is relatively transparent and interpretable
[20]. Te main challenge is acquiring and upgrading the
knowledge base [21].

DB-CDSS, characterized by large amounts of medical
data and statistical machine learning methods, has a high
level of accuracy but is less undesirable and unexplainable
[22, 23]. DB-CDSSs have been used for stroke prediction
[24], diabetic retinopathy grading [25], meningitis diagnosis
[26], and therapeutic efects evaluation [27], and they are
often described as white box or black box models [22, 28].
White-box models have the properties of linear and
monotonic constraints or convey explicit information about
their internal structure, such as logistic regression and de-
cision trees [3, 22]. Based on the logistic regression model,
DB-CDSSs are used for assessing patients with COVD-19
[4], diagnosing cardiovascular disease [29], and providing
clinical insights of feature importance and feature correla-
tion via coefcients. Developed based on the decision tree
algorithm, online patient-oriented CRC CDSS [30] and
CDSS for headache disorders [22] convey understandable
information to physicians and patients. Yet, despite white
box models’ interpretability, its performance tends to be
lower than that of black box on complex and large-scale
datasets [24].

In contrast, black box models, such as nonlinear random
forests, support vector machines, and neural networks, are
opaque, and end-users do not know about its reasoning
process and the inner connections since only the input and
output can be observed during data training [3]. According
to General Data Protection Regulation (GDPR), there are
clauses on automated decision-making, for all individuals
have the right to obtain “meaningful explanations of the
logic involved” [31]. Without enabling technology capable of
explaining the logic of black boxes, the DB-CDSS is hardly
acceptable.

Interpretability is a crucial factor in the decision to adopt
CDSS or not for healthcare institutions [32]. Clinicians and
health professionals need to be assured of accuracy and
safety before they can trust CDSS [33, 34]. Te interpretable
methods help clinicians understand the inner working
mechanism of CDSS and share the results with patients in an
understandable way. A survey of CDSS users reveals that
interpretability signifcantly increases healthcare practi-
tioners’ engagement, satisfaction, and usage intentions with
AI technology [35]. A variety of CDSSs using explainable AI
models have been developed, such as diabetes diagnosis
based on the fuzzy rule to express complexmedical problems
[19], heart failure survival prediction based on decision trees
focusing on features importance [36], screening treatable
blinding retinal diseases based on neural network by
highlighting the regions of optical images [15], guideline
recommendations of breast cancer based on data-driven
clinical decision trees (CDTs) by transforming guidelines
[37], and reviewing sleep staging results based on AI with
explanations in a user-centered manner [38]. While CDSSs
based on data-driven AI can often lead to more accurate
results without laborious construction of the knowledge
base, its insufcient interpretability presents a signifcant
barrier to its widespread application in clinical practice
[23, 39].

Te explainability for AI has been a topic of concern in
healthcare, and diferent opinions spring up from a multi-
disciplinary perspective [31, 40]. Some studies focus on
opening the black box of medical AI [31, 41, 42]. Guidotti
et al. [31] identifed the diferent components of the family of
the explanation problems, and then proposed a classifcation
of methods of the specifc explanation problem addressed,
the black box model opened, the type of data used as input,
and the type of explanator adopted. Te proposed defnition
and classifcation of black box models should also be useful
for medical AI. For interpretability in the medical feld,
clinical features’ importance using deep Taylor decompo-
sition for MLP, Shapley values for tree boosting, model
coefcients for logistic regression [24], and activation
maximization generating high-quality visualizations of
classifer decisions are generally adopted for opening the
black box [43]. More than just algorithm design from
technological perspective, experts and clinicians have more
requirements for the interpretability from medical per-
spective. Solutions for explainable AI include using multi-
modal and multicenter data fusion, expert knowledge
integration, and AI to identify clinical traits [42, 44].
Kolyshkina [41] proposed a methodology CRISP-ML on the
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determination, measurement, and achievement of the nec-
essary level of interpretability of ML solutions in public
healthcare, taking into account public healthcare specifcs,
regulatory requirements, project stakeholders, project ob-
jectives, and data characteristics. To gain trustiness and
acceptance of users toward medical AI, the needs of clini-
cians and patients for explainability get more attention.
Hwang et al. [38] conducted user interviews, user obser-
vation sessions, and an iterative design process to provide
clinically sound explanations in a CDSS in a user-centered
design framework. It focused on what information should be
contained in explanations and how explanations can be
provided in the CDSS. Te fndings show that users concern
with explanations for the input data, domain knowledge
used in the task, causal information leading to output, and
results infuenced by input data, which should be closely
related to clinical processes. Moreover, the information
sources for explanations are supposed to be provided in a
user-friendly and easily understandable manner, such as
methods of visualization.

In addition, some systematic reviews summarize the
literature of explainability for medical AI from diferent
perspectives [32, 39, 45]. Chakrobartty and [32] provide a
systematic review of the explainable AI within the medical
domain focusing on methods and techniques. Moreover,
more attention is being paid to issues of explainable AI from
other perspectives. Amann et al. [45] adopted a multidis-
ciplinary approach to analyze the relevance and ethical
evaluation of explainability for medical AI from the tech-
nological, legal, medical, and patient perspectives to deter-
mine the need for explainability in medical AI. Te fnding
showed that the technological perspective’s explainability
focused on how to attain it, whereas the legal perspective’s
explainability focused on informed consent, certifcation and
approval as medical devices, and responsibility; both the
physician’s and patient’s perspectives highlight the inter-
action between humans and medical AI. As the most im-
portant form of medical AI’s application, the explainable AI
in clinical decision support systems (CDSSs) has also raised
concerns. Antoniadi et al. [39] reviewed the application of
explainable AI in machine learning-based CDSS and sum-
marized the fndings of data type, preference of developers,
type of explanations, and benefts of using explainable AI.
Tese studies primarily concern on explainability of AI
rather than the interpretability of CDSS, and there are still
gaps regarding the relevant impacts and solutions of in-
terpretability of CDSS. Tis paper intends to focus on
technical solutions and medical relevant impacts of inter-
pretability to help developers integrate explainable AI into
the clinical workfow with the aim of improving the trust and
acceptance toward CDSS. (1) To identify and categorize the
meaning and relevant impact of interpretability of CDSS
under the patient-centered principle and (2) to summarize
the main interpretation methods for CDSS in clinical
practice both from technological and medical perspectives.

Te review is organized as follows: the Methods section
outlines the search strategy, selection criteria, and quality
assessment. Te Results section represents the fndings of
our systematic review from a technological and medical

perspective. Te Discussion section discusses the fndings,
and the last section concludes the review and suggests the
future direction of research.

2. Methods

2.1. Search Strategy. Tis literature search includes three
steps: search, select, and extract. Te databases for the
reviewed literature include Web of Science, PubMed, Sci-
ence Direct, Cochrane, Scopus, and the period ranging from
2011 to 2020. Search strategies are detailed in Table 1.

2.2. Selection Criteria. Inclusion and exclusion are based on
the relevance of topics, clinical tasks, evaluation, language,
and types of journal articles. Specifcally, articles were in-
cluded if they (1) are developed for CDSS, (2) are covered by
at least one of the healthcare processes (e.g. prediction,
diagnosis, prognosis, risk assessment, treatment recom-
mendations, or therapeutic management), (3) discuss the
interpretability, (4) are verifed and evaluated, and (5) are
written in English. Studies were excluded if they (1) do not
cover the application of CDSS, (2) are reviews, editorials,
conference proceedings, abstracts, or book chapters, (3) lack
detailed evaluation or verifcation, and (4) do not discuss the
interpretability. In addition, two experienced reviewers
screened the inclusion. Figure 1 shows the complete pro-
cesses of search and selection.

2.3. Data Extraction and Quality Assessment. Te charac-
teristics of included articles were identifed separately by two
reviewers and further verifed by a senior researcher. Tey
consist of (1) frst author and publication year, (2) tech-
nological methods, (3) data sources, (4) biomarkers, (5)
human-AI interaction, and (6) performance assessment.
Two researchers independently assessed the quality of in-
cluded articles using the widely accepted Critical Appraisal
Skill Program (CASP) [46], an 11-questions tool for
assessing the quality of quantitative studies [47, 48]. Mul-
timedia Appendices 1 present the quality assessment tools
used in this review. By assessing the four domains (1) ob-
jectives, (2) sample selection and methods, (3) design and
results, and (4) outcomes of the research, the researchers
concluded that all articles met the quality rating (the rating
was >0.7) with over 80% agreement in their ratings.

3. Results

3.1. Characteristics of Included Articles. Te search initially
turned out 2,810 citations from the fve databases. After
screening, the remaining 20 articles which were published by
16 journals (e.g., “BMC medical informatics and decision-
making,” “Expert systems with applications,” “International
journal of medical informatics,” “Plos one,” and “IEEE
Access”), were included in this review.Te included articles
cover a wide range of healthcare domains. Specifcally, 9
articles focus on diagnosing, 4 on predicting, 2 on man-
agement, 1 on assessing health status, 2 on screening, 1 on
treatment, and 1 on interpreting health examination. While
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these studies mainly focus on the interpretability of CDSS
from the technological perspective (see Table 2), Table 3
summaries the themes related to interpretability of CDSS
from a medical perspective (see Table 3).

3.2. Interpretability of CDSS from the Technological
Perspective. All included articles discussed the interpret-
ability of CDSS for various clinical tasks and medical sce-
narios. From the technological perspective, these articles
examined the interpretability of CDSS along 2 themes: (1)
models of CDSS based on AI and (2) interpretation method
of CDSS. Table 2 summaries the themes related to inter-
pretability of CDSS from a technological perspective.

3.3. Model of CDSS Based on AI. Six articles discussed in-
terpretable knowledge-based AI methods for KB-CDSS,
namely, the fuzzy logic method [19, 54], the decision rule
method [17, 53, 55], and the Bayesian method [2]. Using a
precise mathematical method defning reality to explicitly
represent vague reality, the fuzzy logic method is an efective
knowledge representation to handle the uncertainty and
imprecision of medicine. Te decision rule method is in-
terpretable due to directly representing greater information
density from the expert’s experience and knowledge. Te
Bayesian model, essentially a key-value dictionary of esti-
mated prior and conditional probabilities, is often used for
inferring and ranking possible diagnoses for KB-CDSS.
Tese three methods are transparent and interpretable, often
applied for disease diagnosis. Te shortcomings are also
obvious: fuzzy models are difcultly partitioned and tuned
out automatically without the aid of prior defnition of
domain experts; the decision rule-based CDSS cannot
perform optimally as the inference engine totally depends on
conditions matching; the Bayesian method may result in the
error rate if there is an error in the prior probability and
input data which determine the posterior probability of
outcomes.

In contrast, the remaining 14 articles used data-driven
AI methods for DB-CDSS, which can be classifed as
“white box model” and “black box model.” Te white box
models have the properties of linear and monotonic
constraints, or they can reveal the inner working mech-
anism of the AI method. Logistic regression (LG), decision
trees, and Bayes are the most often used white box models.

Logistic regression methods for DB-CDSS [4, 7, 29] focus
primarily on interpretability in terms of feature impor-
tance and feature correlation via coefcients. Decision
trees for DB-CDSS [22, 30] represent in forms of graph
structure and provide clinical interpretation of traversal
rules in nodes of the tree to make decisions. Te Bayesian
algorithm for DB-CDSS [49] is based on prior probability
for prediction. Each of these models has its advantages and
disadvantages: logistic regression has a simple structure
and strong interpretability for linear data and small
datasets; decision trees have a transparent structure, and
they can implement large-scale data sources in a relatively
short time, and the Bayesian model has the advantage of
stable classifcation efciency for a large scale of data with
fewer features.

Black box models are often referring to data-driven AI,
such as support vector machine [3, 20, 52, 56], random forest
[7, 8, 50], and deep learning [8, 9, 15]. Although the internal
working mechanism of these models is difcult to under-
stand, black box models can handle a huge scale of complex
and interrelated data with higher performance than that of
the white box model and knowledge-based AI models
[3, 11]. For example, Tsao et al. [52] proposed a prediction
for diabetic retinopathy based on support vector machines
and artifcial neural networks combined with discriminative
clinical features. Kermany et al. [15] developed a predicted
diagnosis with OCT image labeling based on the neural
network. Recent research eforts have focused on how to
open the black box to enhance the interpretability of CDSS
[10, 13–15, 26].

3.4. Interpretation Method of CDSS. Lipton classifed the
interpretability of CDSS based on the AI model into two
types: (1) ante-hoc methods: transparency interpretability
with the aims of revealing the inner working mechanism or
transparent structure of the entire model and (2) post hoc
methods: interpretation for a specifc decision or outcome
[57]. By Lipton’s classifcation, the ante-hoc categorized
various methods with respect to the type of interpretation:
decision tree [22, 30], decision rule [17, 53, 55], fuzzy in-
ference [19, 54], Bayesian models [2], and logistic regression
[4, 7, 29]; post hoc methods were divided into feature im-
portance [8, 52], sensitivity analysis [3, 8], visualization
[20, 50, 51], and activation maximization [9].

Table 1: Search and fltering strategies.

Database Search strategy Filtered by
Web of
Science

AB� (“CDSS” OR “clinical decision support system” OR “clinical decision
systems” OR “CDS”) and AB� (“Interpret∗” OR “explain∗”) AB AND year published

PubMed (“CDSS” OR “clinical decision support system” OR “clinical decision systems”
OR “CDS”) and (“interpret∗” OR “explain∗”) title/abstract All feld AND year published

ScienceDirect (CDSS OR clinical decision support system OR clinical decision systems OR
CDS) and (Interpretability OR interpretable OR explainability OR explainable)

Title, abstract, or author-specifed
keywords AND year published

Cochrane (“CDSS” OR “clinical decision support system” OR “clinical decision systems”
OR “CDS”) and (“Interpret∗” OR “explain∗”)

Titles, abstract, or subject AND year
published

Scopus
(“CDSS” OR “clinical decision support system” OR “clinical decision systems”

OR “CDS”) and (Interpretability OR interpretable OR explainability OR
explainable)

TITLE-ABS-KEY AND Year published
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In essence, knowledge-based AI models and white box
models are referred to as ante-hoc methods. Ante-hoc
methods, namely, transparent boxes, directly provide local
or global interpretation for CDSS leading to a safe and
reliable decisions. Liu et al. [30] implemented the CRC
CDSS-based decision tree algorithm, focusing on providing
individualized preliminary CRC risk reports for users
through a personalized interactive visualization interface.
Jabez Christopher et al. [53] presented a CDSS for the di-
agnosis of allergic rhinitis focusing on a set of rules based on
the reports of intradermal skin tests. Liu et al. [4] proposed
CDSS for assessing patients of COVID-19 based on logistical
regression, which provided clinical insights by means of
feature importance. Müller et al. [2] proposed CDSS based
on the Bayesian model for inferring and ranking possible
diagnoses in terms of prior probability. Transparency
consists in the level of the entire model (simulatability), at

the level of individual components such as parameters
(decomposability), and at the level of the training algorithm
(algorithmic transparency) [31]. Ante-hoc methods, namely,
transparent boxes, directly provide local or global inter-
pretation for CDSS leading to the safe and reliable decision.

Black box models are referred to as post hoc methods.
Tese articles categorize post hoc methods into 4 kinds of
interpretations: (1) feature importance, (2) sensitivity
analysis, (3) visualization techniques, and (4) activation
maximization. Two of these articles examined feature im-
portance [31]. Feature importance is a simple but efective
post hoc method, as it shows the weight and magnitude of
features acting as global or local interpretation in the black
box [31]. Tsao et al. [52] proposed an interpretable pre-
diction for diabetic retinopathy based on support vector
machines and artifcial neural networks; the model identifed
high-DR-risk population in terms of the discriminative
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feature insulin treatment and duration of diabetes selected
by decision tree and logistic regression. Since feature
importance would enable clinicians and patients to un-
derstand the model intuitively, approaches to investigate
crucial clinical features for decision-making are highly
desirable for them. In practice, the interpretable

predictions for black box with varying degrees depend on
the feature importance, which is drilled down and audited
as the source of evidence for clinicians and patients in
decision-making. However, feature importance is sus-
ceptible to noise, as well as has the disadvantage of hardly
fguring out the threshold directly [58].

Table 2: Summary of interpretability of CDSS from the technological perspective.

Ref. CDSS based on AI Interpretation method CDSS
type

Saak et al. [7] Lasso regression, elastic nets random forests Feature importance

DB-
CDSS
White
box

Raja and Asghar [49] Cooperative Bayesian game-theoretic Fuzzy genetics

DB-
CDSS
White
box

Liu et al. [4] Multiclass logistic regression Feature importance

DB-
CDSS
White
box

Vandewiele et al. [22] Decision tree, annotated with expert knowledge base Decision tree

DB-
CDSS
White
box

Liu et al. [30] Decision tree Decision tree visualization dashboard

DB-
CDSS
White
box

McRae et al. [29] Cardiac score card based on lasso logistic regression Lasso logistic regression model

DB-
CDSS
White
box

Esmaeili et al. [8] Random forest, Naı̈ve Bayes, K-NN, and deep learning Sensitivity analysis DB-
CDSS

Rho et al. [50] Random forest k-nearest neighbors logistic regression Interface (visualization) DB-
CDSS

Kaji et al. [9] Deep learning long short-term memory recurrent neural
networks (RNNs) Activation maximization DB-

CDSS

Kermany et al. [15] Neural network Feature importance DB-
CDSS

Tolonen et al. [51] DSI classifer, RUSBoost Visualization DB-
CDSS

Billiet et al. [20] DSI classifer combination of complex machine learning Interval coded scoring with toolbox
interface (visualization)

DB-
CDSS

Tsao et al. [52] Decision trees, support vector machines, artifcial neural
networks, and logistic regressions Features weights DB-

CDSS

Gaw et al. [3] LDA, QDA, and SVM (LSVM) Sensitivity analysis (biomarker
identifcation)

DB-
CDSS

Müller et al. [2] Bayesian for inferring and ranking possible diagnoses Bayesian visualization KB-
CDSS

El-Sappagh et al. [19] Ontology-fuzzy rule-based Fuzzy logic KB-
CDSS

Jabez Christopher
et al. [53] Decision rule Decision rule KB-

CDSS

Wagholikar et al. [17] Free-text rule base and guideline rule base Decision rule KB-
CDSS

Esposito et al. [54] Fuzzy logic Fuzzy logic KB-
CDSS

Kuo and Fuh [55] Decision rule Decision rule KB-
CDSS
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Table 3: Summary of interpretability of CDSS from the medical perspective.

Ref. Data source Data
type Biomarkers Human-AI interaction

Saak et al. [7] 595 provided by the Hörzentrum
Oldenburg GmbH (Germany). Tabular Visualization of the

functional aspects
Raja and
Asghar [49]

Wisconsin Breast Cancer, Indian
Diabetes, Cleveland Heart Tabular

Liu et al. [4]

2243 datasets demographic
information, clinical symptoms,

contact history blood tests CRP, lung
CT reports

Tabular Mobile terminal apps for the
patient-end and GP-end

Kaji et al. [9]

MIMIC-III Clinical Dataset, patient
ICU stays (n� 56,841), time steps

(n� 14), and features (n≤ 225) from
Beth Israel Deaconess Medical Center

Tabular

El-Sappagh
et al. [19]

60 patients distributed as 53% diabetic
and 47% nondiabetic from hospitals

of Mansoura University, Egypt
Tabular

Tolonen et al.
[51]

504 patients from the Amsterdam
Dementia Cohort, subjective
cognitive decline as controls

Tabular
Biomarker: Neuropsychological tests,
CSF samples, and both automatic and

visual MRI ratings

PredictND tool ofering a
visualization of its decision-

making process

Billiet et al. [20]
Acute infammation breast cancer
cardiotocography chronic kidney

disease Indian liver
Tabular

Users interacting with the
training procedure by
graphical toolbox

Tsao et al. [52] 536 selected patients in “DM shared
care” database Tabular

McRae et al.
[29]

579 patients with 6 risk factors and 14
biomarker measurements from AMI
diagnosis in the Texas Medical Center

(TMC) in Houston, TX

Tabular

Biomarkers cTnI, creatine, kinase MB,
C-reactive protein, myeloperoxidase,
myoglobin, BNP, adiponectin, CD40
ligand, interleukin-1 beta, matrix
metalloproteinase 9, regulated on
activation normal T cell, soluble
intracellular adhesion molecule 1,

tumor necrosis factor alpha

Panel of biomarkers
expressing CVD progression

Kuo and Fuh
[55]

Computer databases of Hospital
Information

System (HIS) and Laboratory
Information System (LIS)

Tabular

Blackboard control
converting the results to
human readable text with

familiar interface
Esmaeili et al.
[8]

2441 mammography reports from
Imam Khomeini Hospital Text

Rho et al. [50]
7,128 clinical data of prostate cancer

from EMR treated with radical
prostatectomy

Text

Patients obtaining report,
determining treatment,

predicting the outcome with
a user-friendly interface

Vandewiele
et al. [22]

Migbase dataset to questionnaires of
849 diferent patients in Turkey Text

Physician and patients with
user-friendly manner by

visualizations
Jabez
Christopher
et al. [53]

872 patients allergic symptoms for this
study Text

Wagholikar
et al. [17]

Free-text rule base using 49293 Pap
test reports in the Mayo Clinic,

Rochester, EMR
Text

Esposito et al.
[54]

Interviews, questionnaires, and
observations Text

Müller et al. [2]
2000 ICD-10 coded diseases and 450

RX-Norm coded medications,
SNOMED-CT and LOINC

Terms
Diagnosis: user interface for
fnding best diagnosis for

input symptoms

Liu et al. [30] Colorectal Cancer Risk Assessment
Tool CCRAT)

CRC risk to users by
interactive visualization

interface
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Te second post hoc method is sensitivity analysis.
Sensitivity analysis evaluates the uncertainty in the outcome
of a black box with respect to the source of uncertainty
inputs, and the method is generally used to develop visu-
alization tools [59]. Esmaeili et al. [8] proposed a module
based on the weight of factors analysis to provide an in-
terpretation for predictive models, in which the sensitivity
analysis focused on the information gain metric to deter-
mine the more informative features. Te sensitivity analysis
method is also used to determine the most important fea-
tures as biomarkers for decision-making. Gaw et al. [3]
employed inverse operations to identify contributing im-
aging features (biomarkers) in diagnosing the disease. Te
sensitivity analysis method focusing on the analytical
pathway traces back to the contributing features and feature
importance starting from the classifcation results. Sensi-
tivity analysis has the advantage of the ability of fnding out
the most sensitive feature among the uncertain factors,
coming with the disadvantage of hardly determining the true
degree of the factor impact on the outcomes; in fact, the
method is difcult to implement technologically, and the
sensitivity analysis on AI in medicine needs further research.

Te third post hoc method is visualization techniques.
Visualization techniques, as representations of a specifc
property of the AI model, provide interpretability by re-
vealing the inner working mechanism of black boxes [60].
Considering patients’ understanding and feelings, the Dr.
Answer AI for prostate cancer was developed on inter-
pretable visualization interfaces to represent the properties
of AI models and outcomes in an understandable way. In
addition, the abilities of interaction on treatment plans
between doctors and patients improved patients’ satisfaction
levels, which also built their confdence in treatment plans
[50]. Tolonen et al. [51] proposed CDSS for the diferential
diagnosis of dementia which focused on output interpre-
tation. Te visualization tool, representing the process of
decision-making, is highly desirable for end-users: clini-
cians. Billiet et al. [20] developed CDSS based on a colour-
coded visualization, which represented the properties of
assessment parameters to provide interpretable efects and
interactions. In [50, 51], visualization tools represent the
mechanism of decision-making. Visualization tools, by
contrast, represent evaluation criteria [20]. Basically, the
visualization tool is a kind of post hoc method that provides
interpretability by means of showing the process of decision-
making or parameters of the model. For end-user, patients
and clinicians have diferent needs. Patients focus on in-
formation transmission and interaction with doctors in an

understandable way, which will afect patients' satisfaction
and confdence. In comparison, clinicians focus on under-
standing the mechanism of decision and the interpretation
of the output of CDSS.

Te fourth post hoc method is activation maximization.
Activation maximization (AM) is a method used to provide
interpretation for neural networks and deep neural net-
works. Te method observes the fundamental neurons ac-
tivated by input records and identifes the particular pattern
of input that maximizes the activation of the certain neuron
in a certain layer [61, 62]. Kaji et al. [9] developed a CDSS
based on recurrent neural networks (RNNs) incorporating
an attention mechanism for prediction over two weeks of
patients’ ICU courses. Attention maps, an activation max-
imization (AM) method, demonstrated when the predictor
variables had the most infuence on the three target vari-
ables. Te predictor variables that were proxies for decision-
making provided a degree of interpretability and reduced
information overload for ICU physicians in a variety of
important tasks. Factually, clinicians focus more on the most
relevant variables for clinician decision-making and an
understandable visualization tool rather than the inner
structure of the neural network.

3.5. Interpretability of CDSS from the Medical Perspective.
Interpretability is a key factor in afecting the attitudes of
clinicians and patients toward CDSS based on AI [34, 63].
Four themes emerge from the reviewed articles: (1) inter-
pretable data type, (2) biomarkers, (3) interface for human-
AI interaction, and (4) needs of clinicians and patients for
interpretability.

3.6. Interpretable Data Type. Interpretability of CDSS based
on AI consists of reliable data [64], including data sources
and data structure. Multiple data sources, such as hospital
clinical data, online questionnaire data, scale evaluation
data, patient upload data guidelines, and public dataset data,
are used in the literature. Generally, hospital data are reli-
able, and containing high-dimensional medical information,
but they are susceptible to missing values or deviations. In
contrast, public datasets standardized and labeled by domain
experts are of higher quality, but their availability is limited.
Further research is necessary for the governance and pro-
cessing of hospital data for AI applications in medicine.

Data structures used in these articles include tabular,
text, images, and other formats. Tabular data can be pre-
processed and calculated without a specifc conversion, and

Table 3: Continued.

Ref. Data source Data
type Biomarkers Human-AI interaction

Kermany et al.
[15]

207,130 OCT images5,232 chest X-ray
4686 patients Image

Gaw et al. [3]
106 MRI data 57 migraine and 49
healthy controls from Mayo Clinic
Arizon and Washington University

Image

Biomarker identifcation
Area (MRI), thickness (MRI)
Volume (MRI), Resting-state
functional, connectivity (fMRI)
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the metadata associated with the tables represent medical
information. Text type data are easy to read and understand
by humans but difcult to compute for prediction models
before they are transformed into vectors. It is necessary to
use the approximate model for equivalent transformation
for model interpretation. Target recognition is widely used
for disease diagnosis by image-based deep learning, and the
model achieves desirable performance [11, 65]. AI inmedical
image processing integrating with interpretation methods is
an important application of CDSS in the future, which is
expected to provide both interpretability and signifcant
performance.

3.7. Biomarkers. Biomarkers refer to biochemical indicators
of pathologic disease, pharmacologic response to treatment,
or a part of a normal physiological process that can be
defnitively measured and assessed [66, 67]. Tey are im-
portant elements for clinicians and patients to understand
the biological basis and to develop efective treatments [3].
Biomarker identifcation frommedical features, by means of
lasso-based feature selection [29] and inverse-transforma-
tion [3] based on linear discriminant analysis(LDA), qua-
dratic discriminant analysis (QDA), and linear SVM
(LSVM), could simplify the model and improve the diag-
nostic accuracy [51], as well as provide interpretability for
CDSS. Biomarkers convey medical implications to clinicians
and patients, helping them understand the model and
promoting CDSS adoption. However, it is enormously ex-
pensive and time-consuming to discover, validate, and attain
the regulatory approval of biomarkers in clinical practice. In
the future, biomarker identifcation and validation need
further research.

3.8. Human-AI Interaction. Te interface has signifcant
impacts on user experience, end-users’ understanding, and
acceptance of CDSS [68, 69]. As the operation layer of
human-AI interaction, the interface has three golden rules:
user’s control, reduction to user’s memory burden, and
consistency of interface. Visualization, as a graphical in-
terface representing the properties of AI models, helps
clinicians understand the mechanism of the decision process
and also provides patients with a way to get information and
talk to doctors directly. CDSSs provide efcient interpre-
tation, tailoring patients’ data to their needs, and a better
user experience for clinicians by using visual tools. Focusing
on patients, Dr. Answer AI [50] with a user-friendly in-
terface provided information for patients through websites
and printed reports. Liu et al. [30] adopted an interactive
visualization dashboard to display and interpret the risk
scores and factors. It is noted that under user-centered
principles for clinicians, the AI-human interfaces should be
designed in an understandable way to show the processes of
making decisions; also, they should be functioned with
identifying errors by means of visualization of important
variables. For the patient, the AI-human interface should be
designed for easy accessibility of patients’ information and
patients’ participation.

3.9. Needs of Clinicians and Patients for Interpretability.
Clinicians and patients have various needs for interpret-
ability in the application of CDSS. Most research focuses on
issues of the black box from a technological perspective, with
limited attention given to the need for interpretability from a
medical perspective. In reviewing the literature, the needs of
clinicians include eight categories: (1) visualization repre-
sentation of a process or clinical variable proxies for clinician
decision-making [2, 7, 22, 29, 30, 51, 52, 54], (2) accessibility
and reliability of patients’ data [4, 17, 19, 49–51, 55], (3)
interface of doctors-patients or human-computer interac-
tion for interpreting outcomes [4, 22, 50], (4) transparent
structure for users to validate outputs of the model with
domain knowledge [2, 7, 20], (5) identifcation of bio-
markers for supporting decision-making [3, 29, 51], (6)
feature selection distilling information overload
[9, 19, 20, 52], (7) rule of representation for knowledge
[2, 19, 20, 53], and (8) clinicians’ needs incorporated into the
clinical workfow [7]. Te needs of patients for interpret-
ability include (1) collecting patients’ data of symptoms,
physical exams, treatment, and reports of procedures and
laboratory tests [4, 17, 19, 50], (2) interface of doctors-pa-
tients interaction for interpreting outcomes [50], (3) visu-
alization representation of decision-making [30, 50], and (4)
patient information service with informed consent [17, 50].

4. Discussion

4.1. Main Findings. Tere is an increasing number of studies
on the explainability of various AI algorithms in healthcare. As
a systematic review of the interpretability of knowledge and
data-based CDSSs from technological and medical perspec-
tives, the present study found that knowledge-based AI mainly
employs fuzzy logic methods [19, 54], decision rules method
[17, 53, 55], and the Bayesian method [2]. Our results indicate
that the fuzzy logicmethod is the best ft for addressingmedical
uncertainty but falls short of granularities and inconsistency.
Te decision rule method represents knowledge intuitively in
the form of “if-then” rules with the disadvantage of crude
expression of record. Te Bayesian model adopted the prob-
ability for inferring and ranking possible diagnoses with the
disadvantage of resulting in increased error rates.

Te DB-CDSS has the so-called white and black box
models.Tewhite boxmethods typically use logistic regression
(LG) [4, 7, 29], decision trees [22, 30], and the Bayesian [49].
Te logistic regression model provides clinical insights of
feature importance, but it performs poorly for nonlinear
datasets. Te decision tree model is transparent, but it can
sometimes overft. Te black box models contain the support
vector machine [3, 20, 52, 56], random forest [7, 8, 50], and
deep learning [8, 9, 15]. Te sheer number of articles in this
review (14 DB-CDSS versus 6 KB-CDSS) demonstrates that
DB-CDSSs have received more attention from the researchers,
signaling the potential of data-driven AI technology in health
care application, even though it is handicapped by the lack of
interpretability. Some researchers ventured into a hybridmodel
of data-driven AI and knowledge-based AI to keep trade-of
performance and interpretability of CDSS in clinical practice
[11], and more studies are needed in this line of research.
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Interpretability is essential for the application of CDSS.
Two interpretationmethods of CDSS, ante-hoc methods and
post hoc methods, are often used in the literature. Ante-hoc
methods include decision tree [22, 30], decision rule
[17, 53, 55], fuzzy inference [19, 54], Bayesian models [2], or
logistic regression [4, 7, 29]. As ante-hoc methods, fuzzy
logic, decision rule, and Bayesian are transparent and in-
terpretable models. However, the performances of this kind
of CDSS tend to that of the black box [3]. Post hoc methods
are the interpretation method aiming to provide inter-
pretability for the black box. Tese methods include feature
importance [8, 52], sensitivity analysis [3, 8], and visuali-
zation [20, 50, 51]. Feature importance shows the weight and
magnitude of features but is susceptible to noise. Sensitivity
analysis evaluates the uncertainty in the outcome of a black
box with respect to the source of uncertainty inputs but is
difcult to implement technologically. Visualization, as
representation of the inner working mechanism or pa-
rameters, provides interpretability for users. Activation
maximization provides interpretation for neural networks
and deep neural networks.

For multisources and heterogeneous structures, inter-
pretability is comprised of hospital data with dependable and
high-dimensional medical information, tables such as ma-
trices that are simple to preprocess, and superior deep
learning performance. Biomarkers, biochemical indicators
of pathologic disease, pharmacologic response to treatment,
or a part of the normal physiological process, conveymedical
implications to clinicians and patients. In fact, it is enor-
mously expensive and time-consuming to discover, validate,
and attain the regulatory approval of biomarkers in clinical
practice. In the future, biomarker identifcation and vali-
dation need further research. Interfaces and visualization of
the decision-making process or important variables have
important impacts on the user experience, end-user un-
derstanding, and acceptance of CDSS.

Meeting the diverse needs of clinicians and patients for
interpretability should be the goal of CDSS developers.
Clinicians expect CDSS to help make decisions, identify, and
avoid errors. Tus, their needs for interpretability focus on
visualization representation, accessibility and reliability of
patients’ data, transparent structure, biomarkers, feature
selection, and the rule of representation for knowledge. In
contrast, for patients, CDSS should facilitate informed
consent and enhance patient participation. Te patients’
needs for interpretability are simpler than that of clinicians,
and they mainly care about patients’ data, the interface of
doctors-patients interaction in interpreting outcomes, vi-
sualization representation, and functioning with patient
information service with informed consent.

4.2. Research Gaps. It is noted that there are four types of
challenges and gaps associated with the clinical imple-
mentation of the interpretability of CDSS in practices.
Firstly, there is no consensus on what the interpretability of
CDSS is [39], and the defnition of interpretability is often
limited to opening the black box from the technological
perspective rather than taking multidisciplinary felds into

account in medical application [45]. Future research should
provide a common formalism for defning interpretability
and identifying the properties of interpretability. Secondly,
how to evaluate and verify the interpretability of CDSS is
another challenge that we can face. Existing studies focus on
some subjective methods to evaluate the interpretability of
AI-based CDSS, such as user experience, satisfaction,
trustiness, and acceptance in the system [70]; however, the
evaluation system of interpretability is still in shortage of
appropriate and objective metrics. Te evaluation system of
interpretability requires further study. In addition, there is
limited research concerning the need of users for expla-
nations, especially focusing on what information and data
should be contained in explanations. Te users’ concerns,
such as explanations for input data, multidisciplinary
knowledge used in the clinical task, casual information about
output, and easily understandable interfaces, should be paid
more attention. Finally, the biggest challenge for designers is
how to express and provide explanations for users. Inter-
pretation strategies should adhere to the principle of in-
ferring step-by-step, explanation capacity, and user-familiar
terms to gain user acceptance. Data-driven AI in coopera-
tion with domain knowledge [11, 20] and interactive visu-
alization in clinical processes [7, 51] are the two directions of
research for the interpretability of AI-CDSS in the future.

4.3. Limitations. Despite a comprehensive approach in the
literature search, the study has several limitations. First, the
search query did not use MeSH terms because of the lack of
consistent terminology.Wemaymiss out some relevant studies.
Secondly, only articles written in English were reviewed, leaving
research in other languages out. As a result, the review might
miss some important development in this feld.

5. Conclusions

In conclusion, this review explores the meaning of the in-
terpretability of CDSS and summarizes the current methods
for improving interpretability from technological and
medical perspectives. Te results contribute to the under-
standing of the interpretability of CDSS based on AI in
health care. As a core requirement, the interpretability of
CDSS calls for a transparent structure of models, an un-
derstandable relationship between input and output, and
enhanced explainability for AI algorithms from the tech-
nological perspective, as well as data sources, biomarkers,
AI-human interaction. Furthermore, the interpretability of
CDSS is infuenced by the physicians’ and patients’ needs for
it. Future studies should focus on establishing formalism for
defning interpretability, identifying the properties of in-
terpretability, and developing an appropriate and objective
metric for interpretability; in addition, the user's demand for
interpretability and how to express and provide explanations
are also the directions for future research.

Data Availability

A systematic search was conducted on the interpretability-
related literature published from 2011 to 2020 and indexed
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