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2 Structural Bioinformatics Group, Institute for Physiology, Charité-University Medicine Berlin, 14195 Berlin, Germany
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Cancer is one of the most challenging diseases of today. Optimization of standard treatment protocols consisting of the main
columns of chemo- and radiotherapy followed or preceded by surgical intervention is often limited by toxic side effects
and induction of concomitant malignancies and/or development of resistant mechanisms. This requires the development of
therapeutic strategies which are as effective as standard therapies but permit the patients a life without severe negative side effects.
Along this line, the development of immunotherapy in general and the innovative concept of DNA vaccination in particular may
provide a venue to achieve this goal. Using the patient’s own immune system by activation of humoral and cellular immune
responses to target the cancer cells has shown first promising results in clinical trials and may allow reduced toxicity standard
therapy regimen in the future. The main challenge of this concept is to transfer the plethora of convincing preclinical and early
clinical results to an effective treatment of patients.

1. Introduction

1.1. Immunotherapy and Cancer. Cancer is a leading cause of
death and is responsible for a magnitude of all disease-related
deaths worldwide [1, 2]. Standard cancer therapy includes
intensive chemo- and/or radiotherapy able to effectively
eradicate cancer cells but with the disadvantage of severe
side effects. Additionally, many cancers are diagnosed at
an advanced tumor stage, where standard therapy has its
limitations and is only able to cure low numbers of patients.
Vaccination against cancer is a promising approach to induce
the immune system to specifically target the tumor cells.

However, the successful use of cancer vaccines is
dependent on several problems that need to be overcome.
Advanced tumor progression often leads to immune sup-
pression; patients are weakened by previous therapies and
aging [3]. In mouse tumor models, there are indications
that young mice are better protected against a lethal tumor

challenge showing improved primary immune responses
than older mice making the use of vaccines in patients
at an advanced age challenging because the thymus stops
producing naı̈ve T cells with age [4, 5].

The fact that the status of the patient’s immune system
is critical for the ability to develop an effective antitu-
mor immune response is supported by the correlation
between the amount of tumor-infiltrating lymphocytes with
a favourable prognosis [6, 7]. In contrast, patients who are
chronically immune suppressed as a result of therapy or
other reasons have an unfavourable prognosis [8, 9].

The challenge is to amplify the patients’ own immune
response and translate it into a long-lasting memory without
induction of unmanageable autoimmunity in order to
protect against metastasis in the future.

One approach is the use of whole inactivated tumor cells
as a source of antigen based on promising results in mouse
models [10]. The biological background to this strategy is
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the presence of tumor-specific or tumor-associated antigens
expressed by the cells used for vaccination and the malignant
target cells. Many antigens involved in effective cell-based
vaccination strategies were identified, characterized, and
found to be also expressed on normal cells. The expression is
often compartmentalized in distinct tissues and is frequently
of a significantly lower magnitude than on the cancer cells;
however, this fact always bears a risk of autoimmunity.
Therefore, the ideal cancer vaccine targets tumor-specific
antigens expressed exclusively on tumor cells or tumor-
associated antigens without harming normal cells expressing
the same antigen, a problem which is hard to solve. An
important key to success of cancer vaccines is to break self-
tolerance, since tumor-associated antigens are self-antigens
overexpressed by tumor cells. This challenge involves the use
of distinct prime-boost strategies with different formulations
of the tumor-associated antigen used for vaccination. This
includes peptide- or protein-based antigens or delivery with
viral vectors, which need to be used in combination in order
to elicit measurable immune responses [11, 12]. Promising
results were obtained with the use of self-replicating RNA
and DNA vaccines which were able to break tolerance against
tumor-associated self-antigens involving pathways of innate
antiviral immunity. These vaccines enhance the immuno-
genicity and production of antigen-specific antibodies and
CD8+ T cells without negative side effects. Although the
production of antigen was not increased in comparison with
conventional DNA vaccines, it is likely that the efficacy of
the self-replicating vaccines was associated with caspase-
dependent apoptotic cell death of transfected cells and a
subsequent uptake of these cells by dendritic cells (DCs)
[13–15].

Application of xenogeneic tumor-associated antigens
is another interesting strategy to overcome some of the
obstacles mentioned above. The magnitude of an antitumor
response is clearly improved by using a tumor-associated
antigen obtained from a different species sharing critical
epitopes flanked by xenogeneic protein sequences further
stimulating the antitumor response [16–19]. The delivery
of such xenogeneic tumor-associated antigens by DNA
vaccination may be a promising venue to the design of a
successful strategy.

1.2. DNA Vaccination. Historical observations that transfer
of foreign DNA by different in vitro and in vivo techniques
led to expression of antigen were the basis for the generation
of DNA vaccines [20]. DNA vaccines can consist of tumor-
specific or tumor-associated antigens (TAAs) and additional
immune-stimulatory factors cloned into a bacterial plasmid
downstream of an appropriate eukaryotic promoter for
strong and stable expression.

TAAs used for cancer vaccines are exogenous viral anti-
gens expressed by virus-induced cancers, tumor-restricted
antigens also called neoantigens, tumor-associated differen-
tiation antigens that are only expressed in specific tissues, or
generally expressed antigens that are overexpressed in cancer
cells.

Cancer vaccines include MHC class I and class II
epitopes, multiple TAAs to effectively target the whole
inhomogeneous tumor population to decrease the risk of
immune escape, and can contain TAAs that correspond
to proteins involved in tumor transformation [21]. DNA
minigenes are a special type of DNA vaccines harbouring
only short antigen epitopes which can efficiently induce a
cytotoxic T cell (CTL), B-cell or T-helper cell response. They
are as effective as whole cDNA vaccines but without the risk
of introducing a functional cDNA with possible devastating
consequences [22–25]. This is especially important if anti-
gens that are used can function as oncogenes. If whole cDNA
vaccines are favoured, rearranged or mutated sequences
were shown to be useful for full immunological activity
without the risk of negative properties of the functional
protein [26, 27]. DNA vaccines have many advantages if
compared with classical vaccines; they combine the diversity
of possible TAAs expressed on whole tumor cells or subunit
vaccines with the efficiency of in vivo antigen synthesis and
presentation able to induce both cellular (CD4+ and CD8+

cells) and humoral immune responses [28].

The risks of DNA vaccines are limited [29]. Several
groups demonstrated that cancer vaccines can be effective
in induction of specific immunity against cancer-associated
antigens without negative side effects like integration of plas-
mid DNA into the host genomes or induction of pathogenic
anti-DNA antibodies [30–38]. The results in animal models
and initial clinical trials are promising but so far have
not resulted in a successful, standardized translation into
the clinic, emphasizing the enormous differences between
animal models and patients. Possible reasons may be related
to the compromised immune system of the cancer patients
after their chemo- and/or radiotherapy. Additionally, tumors
develop mechanisms to escape the immune system, such as
the loss of MHC class I molecules or antigen, so they cannot
be recognized by CTLs [39–42]. Other mechanisms are the
occurrence of regulatory T cells that negatively influence
the induction of anti-tumour responses, systemic defects in
immune cells, secretion of immunosuppressive cytokines,
resistance to apoptosis, and many more [43, 44], which need
to be addressed.

1.3. Effective Activation of the Patient’s Immune System
by DNA Vaccines. DNA vaccines capable to activate the
patient’s immune system to effectively target cancer need
the activation of effector cells that are able to kill the
tumor or can indirectly trigger a cascade that subsequently
lead to its eradication. Naı̈ve T cells are a basic part of
this complex system which are activated if they get two
independent signals. The first signal is provided by binding
of a specific antigen-MHC class I complex to its T cell
receptor (TCR). The second costimulatory signal is diverse
in nature and may consist of CD40 expressed on antigen-
presenting cells (APCs) or soluble factors such as cytokines
(IL-2). To increase the immunogenicity of tumor cells, they
were manipulated to express costimulatory molecules and/or
cytokines thereby significantly enhancing the induction of an
immune response [45, 46].
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The delivery system used for the application of anticancer
vaccines also plays an important role in increasing the
amplitude of an immune response. Plasmid-based DNA vac-
cines can be applied with ballistic delivery (gene gun) [47],
liposomal or microsphere encapsulation [48] incorporated
in bacterial or host cell carriers [49, 50], or by electroporation
[51–54]. The latter technique is used efficiently in preclinical
and clinical trials of melanoma and prostate cancer. Using
bacteria as DNA vaccine vehicles bears the advantage of
efficient stimulation of the innate immune system through
the recognition of lipopolysaccharides (LPSs) in the bacteria
outer membrane. LPSs stimulate APCs by binding to Toll-
like receptor 4 (TLR4) which subsequently supports an
efficient activation of T cells, directly activates natural
killer cells (NK cells), or leads to an increased lifetime of
antigen-specific T cells [12, 55]. Unmethylated CpG motifs
included in DNA of bacterial origin have an additional
immune stimulatory effect on cells of the innate immune
system. Binding of CpGs to Toll-like receptor 9 (TLR9)
expressed on DCs, NK cells, or monocytes/macrophages
leads to further maturation and activation of these cells and
subsequent secretion of proinflammatory cytokines of the
Th 1 type including IL-12, TNF-α, IFN-α, and IFN-γ and the
upregulation of costimulatory molecules such as CD80 and
CD86 on APCs [56–58]. The dependency of TLR9 activation
by CpGs is challenged by recent observations indicating that
the DNA sugar backbone is also crucial for either activation
or inhibition of TLRs by DNA. Natural DNA activates TLRs
with phosphodiester (PD) backbone independent of CpGs
in contrast to synthetic phosphorothioate- (PS-) modified
DNA, which is TLR antagonistic. In the latter case, CpG
motifs can transform the antagonistic PS-modified DNA
to a strong activator of TLRs restricting the dependency
of CpGs on TLR activation to this special case [59, 60].
Furthermore, the detection of foreign non-CpG DNA is
also mediated by TLR-independent sensors leading to the
expression of interferon genes and induction of innate
immunity. One candidate sensor called DNA-dependent
activator of interferon regulatory factors (DAI) was shown to
directly interact with DNA in interplay with the interferon
regulatory factor 3 transcription factor (IRF3) leading to
a release of interferon-β in a TANK-binding kinase 1-
(TBK1-) dependent manner [61–63]. Another crucial factor
in the activation of the TBK1 pathway seems to be STING
(stimulator of interferon genes) [64]. This novel independent
pathway shows that AT-rich DNA can also serve as a template
for RNA polymerase III leading to a transcription into
double-stranded RNA (dsRNA). dsRNA subsequently acts
as a ligand for the potential cytosolic DNA sensor RIG-I
(Retinoic acid-induced gene I) and to a production of type
I interferons [65, 66].

1.4. Presentation of Antigens Encoded in DNA Vaccines.
Based on the DNA vaccine delivery system and the DNA
design of the antigen sequences, there are at least three
different mechanisms as DNA vaccines can be processed
and presented in vivo. First, DNA vaccines can directly
lead to production of the antigen by somatic cells like
keratinocytes or myocytes. These cells share a poor capability

to directly present processed antigen to immune cells by
MHC class I and II molecules. Therefore, this mechanism
is considered to play only a subordinate role. Second, the
production of antigen by somatic cells may result in effective
presentation to the immune system by a mechanism called
“cross-priming”. Antigen may be released from the site of
production travelling to the draining lymph node, where
it is taken up by APCs processed and presented to T cells
[67, 68]. Third, DNA vaccines also lead to the production
and direct presentation of antigen by professional APCs. For
this purpose, the normal infection pathway of intracellular
bacteria, for example, attenuated Salmonella thyphimurium,
can be used for oral DNA vaccination. The bacteria enter
the host through the gastrointestinal tract after oral gavage
and move through the M cells that cover the Peyer’s patches
(lymph nodes) of the gut. From there, they enter APCs
like macrophages or DCs by phagocytosis. In the APCs, the
bacteria die, delivering multiple copies of the vaccine DNA
that can encode for antigen to the phagosome or cytosol
[69, 70].

1.5. Processing DNA-Encoded Antigen. The activation of
CTLs which are key players in DNA vaccine-mediated tumor
immunity is induced by degradation of protein components
into smaller peptides and presentation of antigen by APCs
[71, 72].

Processed antigens can be either presented by the endoge-
nous or the exogenous pathway. CD8+ T cells, the precursors
of CTLs, are in general activated by intracellular pathogen-
derived antigens of 8–10 amino acids length which are
presented by MHC class I molecules (endogenous pathway)
[73, 74]. In contrast, CD4+ T-helper cells generally recognize
exogenous antigens presented as 12–15 amino acid long
peptides bound to MHC class II molecules. Upon activation,
T-helper cells secrete cytokines, which is crucial for the
induction and maintenance of immunologic memory [75–
78]. If antigens are transported to the cytoplasm or proteins
are produced endogenously, they are degraded by the
proteasome into small peptide fragments. These peptides are
then transported by TAP1 and TAP2 into the endoplasmatic
reticulum (ER) and bind to a dimer consisting of an MHC
class I molecule and β2-microglobulin. MHC class I antigen
complexes are then transported to the cell surface, where they
are presented. The trimolecular complex can be recognized
by CD8+ cytotoxic T cells. This mechanism is important for
induction and activation of antigen-specific CD8+ T cells by
APCs and for the effector function of CD8+ cytotoxic T cells
after trimolecular complex recognition on the tumor cell
resulting in subsequent target cell lysis [79–82]. Presentation
of antigens via the endogenous pathway dominantly leads
to activation of Th 1 cells and CTL responses, whereas the
exogenous pathway leads to the activation of Th 2 cells
and the production of antibodies [83, 84]. DNA vaccines
can increase the Th 1 immune response and the levels of
immunoglobulins by directly inducing the expression of
interferons, IL-12, IL-18, or TNF-α [85]. The activation
of the exogenous pathway is usually insufficient to prevent
tumor growth in animal models of cancer but is in contrast
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preferable in the case of protection against extracellular
pathogens or in targeting chronic infections.

The introduction of specific sequences to the antigen
like an N-terminal ubiquitination signal can further enhance
the induced CTL response, preferentially of the Th 1 type
[86]. It is possible to increase the protection against virus
or tumor challenge by directing the antigen to specific
cell compartments like the proteasome leading to fast
degradation and presentation of antigen to MHC class I
molecules [87]. Ubiquitination of DNA minigenes probably
leads to polyubiquitination of the cleaved peptide epitopes
resulting in a more effective delivery of the minigene to
the proteasome and an increase of the frequency of CTL
precursors [24].

2. Melanoma

Malignant melanoma is a neuroectodermal solid tumor
affecting predominantly Caucasians. More than 160.000 new
cases were diagnosed in 2002 with an increasing incidence.
Despite favourable survival rates in the developed countries
of greater than 90% in early stages, around 40.000 deaths
were caused by melanoma in 2002. In the US alone, more
than 10.000 people will probably die of skin cancer in 2010,
and the prognosis of stage IV melanoma remains poor
(<20% 5 y EFS) [1, 88]. Melanoma is a highly immunogenic
cancer and maybe the most prominent model for DNA
vaccination and the development of tumor vaccines in
general [89]. In patients, spontaneous complete melanoma
remission is occasionally detected, a phenomenon medi-
ated by endogenous CTLs and subsequent tumor rejection
[90, 91]. A variety of melanocyte differentiation antigens
were identified as tumor antigens and found to be highly
expressed in melanoma cells. Consequently, these antigens
were successfully used as targets for DNA vaccination, and
their application in humans, dogs, and preclinical models are
discussed in the following paragraphs [92, 93].

Based on the successful use of gp100, MART-1/Melan-
A, and tyrosinase, several clinical trials were conducted
or are still ongoing. In an initial study, patients with
metastatic melanoma were immunized with human gp100
(hgp100) expressing naked plasmids showing no clinical
or immunological responses, indicating that the delivery
system and adequate costimulation play an important role
for the success of this approach. For example, the use of
fowl poxvirus encoding for hgp100 or hgp100 peptides was
capable to break the self-tolerance against the gp100 tumor
antigen [40]. Also the use of particle-mediated epidermal
delivery (PMED) of hgp100 cDNA in combination with
costimulatory granulocyte macrophage colony-stimulating
factor (GM-CSF) into healthy skin of melanoma patients
revealed the recruitment of DCs to the vaccination sites.
Subsequently, a low but detectable antimelanoma immune
response was observed [94]. A role for GM-CSF DNA as
an adjuvant was established in a phase I/II trial using a
DNA vaccine encoding for hgp100 and tyrosinase epitopes
resulting in specific CD8+ responses in 42% of the treated
melanoma patients [95]. Another strategy effectively break

tolerance against self-antigens is the use of xenogeneic
DNA vaccines. This is indicated by two recent phase I
trials using mouse gp100 (mgp100) DNA vaccines alone
or in combination with the human homologue. Melanoma
patients immunized with the xenogeneic vaccines developed
hgp100-specific and IFN-γ-secreting CD8+ T cells, and 30%
of them showed an immune response [16, 96].

MART-1 is another melanoma antigen used in clinical
DNA vaccination trials. In an early phase I study, 12 patients
with resected melanoma received MART-1 plasmids, again
without further adjuvant strategy. Immunological responses
were not detectable [97]. Similar poor results were observed
in nineteen patients with stage IV melanoma which were
treated with a plasmid encoding T cell epitopes from
MART-1 and tyrosinase by intranodal injection [98]. The
vaccination approach induced an immune response in some
of the patients but was not able to stop the progression of
the disease. This again suggested that DNA vaccines have to
be used in combination with adjuvants, cytokines, or in the
context of distinct prime/boost approaches to increase the
immune response for effective treatment of melanoma.

Changing the application system from naked plasmid
to a viral delivery system may not be sufficient to translate
immune to clinical response demonstrated by clinical DNA
vaccination trials using tyrosinase as antigen. Tyrosinase was
used as single cDNA vaccine applied in stage II melanoma
patients by recombinant modified vaccinia virus Ankara
(MVA). There was a strong immune response against the
virus, indicated by virus-specific CD4+ and CD8+ T cells
and antibody titres, but no tyrosinase-specific T cells or
antibodies were detected [99]. In two subsequent clinical
trials, tyrosinase was delivered by vaccinia or fowlpox viruses
which were applied to patients with advanced metastatic
melanoma who also received systemic IL-2 [100]. Antityrosi-
nase immunity was enhanced in some patients but without
clinical benefit compared to effects expected for IL-2 alone.

Numerous DNA vaccination studies in animal models
of melanoma demonstrated efficacy. Particular success was
reported for xenogeneic strategies, viral delivery systems,
and the use of IL-2 as an adjuvant [101]. In mouse
models, efficacy of DNA vaccines encoding for all known
melanoma-associated antigens was reported including gp100
(melanocyte protein 17/Pmel-17), GRP (gastrin-releasing
peptide) [102], MAGE-1 (melanoma-associated antigen)
[103], MART-1, MUC-18/MCAM [104], TRP-1 (tyrosinase-
related protein-1/gp75), TRP-2, or tyrosinase. Also inhibitor
of apoptosis proteins (IAPs) like ML-IAP (melanoma
inhibitor of apoptosis protein) [105] and survivin [106] were
used. In some approaches, less relevant antigens were used
such as melanoma cell lines stably transfected to express viral
antigens of hepatitis B virus or HPV (human papillomavirus)
or human oncogenes like Mucin 1 (MUC-1) [107–109]. For
vaccination studies in mice, usually the melanoma cell line
B16 is used syngeneic to C57BL/6 mice leading to melanoma
growth and metastasis serving as a model for the human
disease [110, 111]. In view of the limited efficacy of DNA
vaccines in clinical trials so far, these successful studies in
murine models reflect the difficulty of the transfer of results
from mice to man.
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However, there are important lessons to be learned from
animal models such as the important role of adjuvanticity
and prime/boost schedules. The majority of vaccination
studies in mice were done with gp100 as melanoma target
antigen, and some results will be discussed here in more
detail. In early studies, vaccination of mice by s.c. injec-
tion of plasmid encoding for hgp100 antigen alone or in
combination with GM-CSF DNA was conducted in a B16
model transfected with hgp100 DNA (B16/hgp100) [112,
113]. Protection against melanoma challenge and reduction
of established primary tumor growth was observed, and
hgp100-specific CTLs and antibodies were found. However,
immunity against mpg100 was poor. Changing the delivery
system by incorporation of the plasmid DNA expressing
hgp100 into liposomes was able to induce an mgp100
mediated protective immunity [114]. Vaccination induced a
delayed primary tumor growth, a phenomenon which was
also seen in another study using an mgp100 plasmid [115].
Vaccination of mice with attenuated Salmonella typhimurium
(ST) transformed with mgp100 cDNA significantly reduced
melanoma growth, an effect which was increased by IL-2
administration [116]. In the B16/hgp100 model, vaccination
with hgp100 transformed ST was able to completely protect
more than 70% of the vaccinated mice mediated by a
strong anti-hgp100 CTL response [117]. The superiority
of xenogeneic vaccination approaches became obvious in a
study were hgp100 plasmids were applied via helium-driven
DNA-gold complexes leading to a tumor protection in many
of the mice which was mediated by specific CD8+ T cells
with the typical side effect of autoimmune depigmentation
[118]. A comparison of hgp100 and mgp100 full-length
DNA and minigenes revealed that only the human constructs
were able to induce a CD8+ dependent tumor protective
immunity further strengthening the xenogeneic vaccination
concept [119]. Tumor formation was completely prevented
in more than 30% of the treated C57BL/6 mice when a
hgp100 plasmid was used together with synthetic peptides
of putative CTL epitopes, an effect which was not observed
if plasmid or peptides were used alone [120]. The used
study design also demonstrated a therapeutic effect of the
combinatorial setting and a dependency on CD4+ and
CD8+ T cells for melanoma protection. Codelivery of IL-12
DNA by direct injection into tumors was able to further
increase the antitumorale effect induced by hgp100 DNA
vaccination [121]. An autologous gp100 plasmid was able to
break self-tolerance when a different mice model was used,
showing that differences in genetic backgrounds are critical
parameters for success of DNA vaccination [122]. DBA/2
mice were challenged with either mgp100 positive or negative
syngeneic M3 melanoma cells leading to an mgp100-specific
T-cell-mediated immune response and a protection against
melanoma growth only if the mgp100 expressing cells were
used.

Similar results were obtained using TRP-1/gp75 DNA
vaccines in the B16 model in several syngeneic and xenoge-
neic settings. Murine TRP-1 (mTRP-1) expressing plasmids
were not able to break self-tolerance against mTRP-1 in
contrast to the human homologue which induced immu-
nity against mTRP-1 and subsequent tumor protection

and eradication [123]. Rejection of a lethal challenge with
B16 melanoma cells was achieved with mTRP-1 encoded
by a recombinant vaccinia virus again emphasizing that
the adjuvanticity of the delivery system is important to
break self-tolerance [124]. Boosting of DNA vaccination by
application of monoclonal antibodies is another strategy
used with a hTRP-1 DNA vaccine [125]. Lung metastases
induced by B16 were significantly decreased if hTRP-1
DNA was used with TA99, an antibody targeting TRP-1,
a synergistic effect which was not seen with vaccine or
antibody alone. The TA99 antibody seemed to be responsible
for the recruitment of TRP-1-specific CD8+ T cells to the
tumor and subsequent tumor infiltration.

Also DNA vaccination using TRP-2 as a target revealed
that vaccination of mice with murine TRP-2 (mTRP-2)
using vaccinia virus as a delivery system was more effective
than naked DNA injection [126, 127]. Again the xenogeneic
concept was more effective since hTRP-2 DNA prevented the
growth of B16 cells in the skin of treated mice by activation
of CD4+ and CD8+ T cells [128]. Additional treatment with
hTRP-2 after surgical resection of affected extremities also
reduced the reoccurrence of local disease and the number of
lung metastases. In summary, adjuvanticity, delivery systems,
and prime/boost schedules are important factors to consider
from preclinical models for the design of an effective DNA
vaccination strategy in humans. The design of the antigen
including signals for proteasomal degradation also plays an
important role in vaccine efficacy. In this regard, fusion
of mTRP-2 to ubiquitin facilitated proteasome-dependent
degradation of antigen and subsequent presentation of
epitopes to MHC-class I leading to the generation of mTRP-
2-specific CD8+ T cells. These T cells were not only capable
to protect against melanoma but also had a therapeutic
effect on established melanomas [129]. Other strategies
may enhance vaccine efficacy including lymphodepletion
with cyclophosphamide and antigen fusion with heat shock
proteins. The role of lymphodepletion in adoptive T cell
transfer strategies has been demonstrated [130, 131]. Similar
concepts may apply for DNA vaccines. Adenoviral delivery of
hTRP-2 in combination with high-dose cyclophosphamide
had a synergistic effect and improved the outcome of tumor-
bearing mice [132]. Also fusion antigens are an interesting
approach to further enhance immunogenicity. Fusion of heat
shock protein 70 (Hsp70) to tumor antigens led to efficient
delivery of antigen to APCs thereby breaking the immune
tolerance against melanoma cells [133]. An Hsp70-mTRP-
2 DNA vaccine was orally applied by transfected attenuated
S. typhimurium strain SL3261 protecting more than half of
the treated mice from a lethal challenge with B16 melanoma
cells in a prophylactic setting and prevented or significantly
reduced tumor growth in a therapeutic setting.

There are promising results with a xenogeneic DNA
vaccination strategy in dogs with melanoma, which raise
hope that this strategy will succeed in humans as well.
Therapy with xenogeneic tyrosinase DNA vaccines was
used in phase I trials of spontaneous advanced malig-
nant melanoma in dogs, a disease very similar to human
melanoma. Intramuscular injections with human tyrosinase
(hTyr) plasmids significantly increased the expected survival
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of the dogs compared to matched historical controls, and one
dog with stage IV disease had a complete clinical response
[134]. In three of the nine treated dogs, tyrosinase-specific
antibodies were induced by vaccination with hTyr DNA
which partially reacted with the syngeneic canine tyrosinase,
a phenomenon which correlated with the observed clinical
response and possibly responsible for the tumor static effects
and long-term survival of the dogs [135].

In summary, the human clinical trials led to promising
results like activation of melanoma antigen-specific CTLs
but have so far not resulted in significant improvements in
outcome. Studies in small and large animals were neverthe-
less able to demonstrate efficacy of DNA vaccination against
melanoma. Some critical parameters were identified includ-
ing the delivery systems, adjuvants, and antigen design. In
general, the use of xenogeneic antigens often showed better
results in the treatment of melanoma by DNA vaccination,
and the use of viral application methods and cytokines
further increased immunogenicity. The consideration of the
lessons learned from animal models for the design of DNA
vaccination strategies may lead to an effective approach in
the future.

3. Neuroblastoma

Neuroblastoma (NB) is the most common extracranial
solid tumor in childhood. The prognosis is still poor, and
the development of effective treatment strategies is one
of the main objectives in pediatric oncology. Despite the
development of innovative treatment strategies like passive
immunotherapy with the anti-GD2 antibody ch14.18, the
long-time survival rate especially of stage 4 tumor patients
remains poor, ranging between 35 and 40% [136, 137].
The power of immunotherapy was demonstrated in a recent
phase III trial combining ch14.18, GM-CSF, and IL-2 with
standard therapy raising the hope to significantly increase
the long time survival rate of high-risk patients in the near
future. Patients who received the immunotherapy showed
an improved outcome compared to standard therapy with
a two-year event-free survival (EFS) of 66% and 46%,
respectively [138].

In animal models, there are several promising results
showing that DNA vaccination is able to protect mice from
a lethal challenge with neuroblastoma tumor cells. Many
results in this respect were generated using the syngeneic
NXS2 neuroblastoma mouse model. This hybrid cell line
expresses ganglioside GD2 which is highly expressed in NB
and, as an established tumor marker, is used as a target in
clinical trials of NB immunotherapy.

The NXS2 model mimics the human disease in several
aspects. It features spontaneous metastasis to bone marrow
and liver after injection of the cells in syngeneic A/J mice,
making this system an ideal model to study DNA vaccination
[139]. One example is cyclic mimicking decapeptides of
GD2 which were successfully used for DNA vaccination
generating protection against tumor growth and a reduction
of spontaneous liver metastases [140]. Codelivery of the
cytokines IL-15 and IL-21 enhanced the induction of GD2

directed responses which increased the CD8+ T cell function.
The effects were NK cell as well as CD4+ and CD8+ T cell
mediated indicating the involvement of innate and adaptive
immune responses [141]. A plasmid that encoded for the
secreted form of HuD was able to induce a strong and
specific anti-HuD response in a similar mouse model using
A/J mice with the Neuro2a NB cell line. Mice that were
challenged with constitutively HuD-expressing Neuro2a cells
were protected against tumor growth after immunization
with HuD DNA vaccine but showed no signs of neurological
disease induction [142].

The neuroblastoma antigen tyrosine hydroxylase (TH)
is another promising candidate for immunotherapy of
neuroblastoma. Tyrosine hydroxylase is involved in the first
step of catecholamine biosynthesis, a unique feature similar
to melanin biosynthesis in melanoma, involving enzymes
restricted to the tumor tissue therefore providing tumor-
associated antigens.

Prophylactic and therapeutic vaccination with murine
TH cDNA or TH minigenes was able to protect against
tumor growth after delivering plasmid DNA by oral gavage of
attenuated S. thyphimurium to the mice. The used expression
vector contained a mutated ubiquitin leading to the expres-
sion of ubiquitin-DNA fusion proteins that were efficiently
degraded in the proteasome. T cells recognized the TH self-
antigen epitopes indicating that the self-tolerance against TH
can be overcome with this approach [143].

In subsequent studies the same mTH-based minigenes,
novel epitopes, and xenogeneic TH DNA vaccination were
effective in therapeutic settings to suppress established
neuroblastoma metastases. Modifications of mTH had addi-
tional positive effects. The mutated ubiquitin of the used
plasmid was crucial for the strong antitumoral effect leading
to a CD8+ T cell immune response. Primary tumors
were infiltrated by CD8+ T cells, and TH-expressing cells
were specifically lysed in vitro. Depletion of CD8+ T cells
completely abrogated the anti-NB immune response induced
by the hTH vaccine. Rechallenge of surviving mice resulted in
reduced primary tumor growth, indicating the induction of
a memory immune response. An important observation was
that immunization with the self-antigen TH did not lead to
autoimmunity [18, 144, 145].

In a different study using the same mouse model, novel
natural MHC class I ligands from neuroblastoma were
characterised and used in a DNA minigene approach. Immu-
nization of mice induced protective immunity and thus
underlines the assumption that disruption of self-tolerance
against neuroblastoma-associated epitopes is important for
an effective neuroblastoma immunotherapy [146].

The inhibitor of apoptosis protein (IAP) survivin is
highly expressed in neuroblastoma and is associated with a
poor prognosis. Therefore, survivin was chosen as a target for
NB DNA vaccination. A survivin DNA minigene efficiently
inhibited the growth of primary tumor and metastases in
the NXS2 tumor model. The used DNA minigene was as
effective as a survivin full-length cDNA vaccine showing the
power of DNA minigene vaccination. Immunization with
survivin minigene was associated with an increased presence
of CD8+ T cells in the primary tumor and production
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of the proinflammatory cytokines INF-γ and TNF-α by
systemic CD8+ T cells. Depletion of CD8+ but not CD4+

cells led to a complete abrogation of the tumor immunity.
Therapeutic vaccination with the minigene was able to
eradicate neuroblastoma in more than half of the mice, and
surviving mice were protected from primary tumor growth
after rechallenge with tumor cells [147].

In summary, these preclinical studies suggest that DNA
vaccination using S. thyphimurium as a delivery system
may provide an important strategy to develop an active
immunotherapy strategy for this challenging disease.

4. Prostate Cancer

Prostate cancer is the most common cancer and the fourth
leading cause of cancer-related death in men in the developed
countries worldwide [1, 88, 148]. Standard prostate cancer
therapy in early diagnosed patients involves prostatectomy,
cryotherapy, radiotherapy, and antiandrogen therapy. These
treatments are effective but bear the risk of severe side effects
like incontinence and impotence [149–151]. Therefore, there
is an urgent need for novel approaches to treat this disease.

CD4+ and CD8+ T cells are detectable in prostate glands
of men with prostate cancer supporting the assumption that
prostate cancer might be a good candidate for immunother-
apy. Prostate cancer cells are usually growing rather slow,
permitting enough time to use vaccination as an approach
to overcome immunosuppressive factors [43]. Currently,
there are several clinical trials using immunotherapy against
prostate cancer targeting prostate cancer-associated anti-
gens including Prostate-Specific Antigen (PSA) [152], Six-
Transmembrane Epithelial Antigen of the Prostate (STEAP)
[153], Prostate Stem Cell Antigen (PSCA) [154], Prostate-
Specific Membrane Antigen (PSMA) [54, 155], and Prostatic
Acid Phosphatase (PAP) [156].

PSMA was one of the first prostate cancer-associated
antigens used for DNA vaccination. Plasmid DNA and
adenoviral vectors encoding for PSMA were used to immu-
nize patients with prostate cancer in a phase I/II trial.
Costimulation of plasmid DNA with the molecule CD86
led to delayed-type hypersensibility to PSMA in half of the
patients, but additional boosting with the adenovirus was
necessary to induce immunity in all of them. However,
the success of this study is difficult to interpret due to the
heterogeneity of the patients, and the concomitant hormone
therapy many of the patients received albeit local disease,
distant metastases, and PSA levels changed positively [39]. In
another study, patients were vaccinated against PSMA with
plasmid DNA and adenovirus as well leading to the detection
of specific anti-PSMA antibodies in the sera of the patients
[157]. A recent clinical phase I/II demonstrated the power of
electroporation in induction of a humoral immune response
against prostate cancer. PSMA-specific DNA vaccines were
delivered by intramuscular injection or in combination
with an additional delivery by electroporation (EP). The
boosting by EP significantly enhanced (24.5-fold increase)
the immune response during an 18-month followup period
[54].

In summary, the efforts made in clinical trials using
DNA vaccination against prostate cancer are promising,
but the response rates have to be improved. Therefore,
the evaluation and characterization of DNA vaccination
strategies in preclinical models is an important venue. The
following paragraphs summarize some of the research in this
respect.

One approach is the use of xenogeneic vaccination
strategies. The effectiveness of mouse PSMA and human
PSMA (hPSMA) DNA vaccines were tested in an animal
model indicating that only xenogeneic hPSMA was able to
induce both antibody as well as T cell responses against
the murine self-antigen. The antibodies induced were able
to recognize the human and the murine PSMA, and it
was concluded that xenogeneic DNA is a requirement to
overcome the immunologic tolerance against the poorly
immunogenic PSMA in contrast to other studies [158].
These results were improved in a setting with immunization
of mice using xenogeneic hPSMA DNA followed by boosting
with hPSMA protein [17].

Further improvements can be achieved by modifications
of DNA vaccines leading to expression and proteasomal
degradation of hPSMA in combination with protein boost-
ing. This resulted in antibody formation of the cytotoxic Th 1
isotypes, and the best protection against tumor challenge was
observed after immunization with the xenogeneic hPSMA
construct following boosting with the syngeneic construct
[159].

The use of cytokines in order to amplify subopti-
mal immune responses following Prostate-Specific Antigen
(PSA) DNA vaccination is another strategy to increase DNA
vaccine efficacy. A DNA vaccine expressing PSA induced
PSA-specific CTLs when coinjected with the costimulatory
cytokines IL-2 and GM-CSF and protected the majority of
immunized mice against a lethal tumor challenge [160].

Also, the delivery system is an important factor to induce
effective immunity against prostate cancer. Intradermal
immunization of mice with PSA induced strong humoral
and cellular immune responses of the Th 1 isotype indicated
by strong expression of INF-γ and IL-2 and protected
mice from challenge with PSA-expressing tumor cells [161].
Intramuscular electroporation with human PSA (hPSA)
DNA significantly reduced tumor growth and increased the
survival of mice after a lethal challenge with hPSA-expressing
TRAMP-C1 cells, a cell line developed from a prostate
tumor of a TRAMP (transgenic adenocarcinoma mouse
prostate) mouse. Production of hPSA-specific antibodies and
expression of IFN-γ was observed in the immunized animals
[51]. Multiple CTL and T-helper cell epitopes of hPSMA,
mPAP, and hPSA were combined to generate a DNA vaccine
that should have a stronger effect against prostate tumor cells
than single antigen vaccines. The vaccine design was chosen
to overcome the problem that tumor cells often lose antigenic
epitopes and escape immunologic detection. Vaccination
of mice by gene gun induced a strong immune response
against applied tumor cells and increased the survival time
significantly [162]. A systematic comparison with other
delivery systems including life-attenuated bacteria was not
reported so far.
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Other antigens investigated in preclinical models are the
Prostatic Acid Phosphatase (PAP) and Prostate Stem Cell
Antigen (PSCA). PAP is effective in inducing proliferating
PAP-specific CD4+ and CD8+ T cells of the Th 1 isotype
and expression of IFN-γ in rats immunized with a human
PAP DNA vaccine [163, 164]. Application of a PAP DNA
vaccine to prostate cancer patients induced a PAP-specific
T cell response and showed no side effects making the use
of PAP in clinical stage II trials likely [165]. Vaccination
of mice with plasmid encoding for human PSCA induced
strong PSCA-specific CD8+ T cell responses and inhibited
the growth of PSCA-positive tumors [166]. There are no
comparative studies allowing a decision about which antigen
might be the best choice.

The models used to study DNA vaccination in prostate
cancer are usually based on the TRAMP model. In TRAMP
mice, the Simian virus 40 (SV40) tumor T-antigens are
prostate-specifically expressed driving prostate neoplasia,
which results in poorly differentiated adenocarcinomas of
the prostate and metastasis in lung and pelvic lymph nodes
resembling the human disease [167, 168]. TRAMP mice
were strongly protected against tumor development when
vaccinated with PSCA-based DNA, an effect supposedly
mediated by CD8+ T cells and expression of the cytokines
INF-γ, TNF-α, IL-2, IL-4, and IL-15 within prostate tumors.
Importantly long-term protection was not accompanied by
an induction of autoimmunity [169]. From this mouse
model, TRAMP-C1 tumor cells were isolated which grow
in syngeneic C57BL/6 mice. In this model, vaccination with
PSCA DNA by intramuscular electroporation induced an
effective antitumor response, and the mice were either cured
or showed a significant increase in survival, which was
mediated by an immunity of the Th 1 type [170].

An interesting discovery was made when two thera-
peutic vaccination studies with the antigens PSCA and
STEAP in the TRAMP mouse model were compared. DNA
vaccination at an early stage of disease resulted in an
improved protection against tumor development and an
increased survival time when compared to vaccination after
the development of invasive carcinoma. Regulatory T cells
as well as the expression of immunosuppressive factors like
TGF-β and indoleamine-2,3-dioxygenase were detected in
more advanced prostate cancer making the use of DNA
vaccination at earlier stages of disease more promising [171].

In summary, DNA vaccination against prostate cancer
has demonstrated effectiveness in preclinical models, and
promising immune responses were observed in early clinical
trials. Given the amount of preclinical information on
selection and design of suitable and effective antigens,
a system biology approach may provide an important
venue to translate available information into an effective
immunotherapy.

5. Summary

DNA vaccination is a young field in immunotherapy of
cancer and has certainly not yet lived up to its expectations.
However, considering the fact that the development of anti-
bodies into effective cancer therapeutics followed a timeline

of over a century, DNA vaccination may be considered
to be on a fast track development. Preclinical data are
very promising and significant immune responses can be
demonstrated in several clinical trials especially in the field of
melanoma DNA vaccination. The high versatility, the ease of
production, and the stability of DNA vaccines may provide
important characteristics to further develop this approach
into effective cancer therapies of the 21st century.
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