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CAR T Cell Therapy: A Game Changer in Cancer Treatment
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The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better
survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with
refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors
(CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift
in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding
domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell
activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of
CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review
discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.

1. Introduction

Chemotherapy and radiation have long been the mainstay of
nonsurgical cancer treatment options. However, many can-
cers remain refractory to treatment and develop resistance
to treatment modalities over time. Despite recent therapeutic
advances, such as the introduction of monoclonal antibodies
and small-molecular inhibitors, treatment responses vary
considerably among patients and a high relapse rate with
poor prognosis continues to be a major challenge. In case of
persistent or relapsed disease, few or no treatment strategies
are capable of definitely eradicating residual malignant cells,
necessitating therapies with greater efficacy. Overwhelming
evidence supports the critical role of the immune system,
and lymphocytes in particular, in controlling and eradicating
cancer. Harnessing the immune system to achieve clinical
efficacy has been the focus of many therapies. More than
two decades have passed since Gross and colleagues first
demonstrated the principle of genetically redirecting cyto-
toxic T lymphocytes to tumor cells and concluded their
seminal work with the statement that chimeric T cell receptors
with antitumor specificity will enable testing feasibility of this

approach in combating human tumors [1]. This study laid the
foundation for the development of a series of first generation
CARs where a tumor targeting antibody single chain variable
fragment (scFv) is fused directly to the signaling domain
of the T cell receptor (TCR) signaling complex member
CD3𝜁 (Figure 1). Despite high target-cell specific killing in
vitro and encouraging preclinical efficacies in murine tumor
models, clinical responses of adoptively transferred T cells
expressing 𝛼-folate receptor (FR) specific CAR in ovarian
cancer were disappointing [2]. No reduction of tumor burden
was seen in the 14 patients studied. The absence of efficacy
was ascribed to lack of specific trafficking of the T cells to
tumor and short persistence of the transferred T cells. First
generation CARs deliver the primary activation signal to the
T cells (signal 1) but the activated T cells are susceptible
to anergy or activation induced cell death (AICD) in the
absence of exogenous costimulation (signal 2) and fail to
persist in vivo [3]. Further, T cells were expanded ex vivo
for up to 56 days with partially insufficient costimulation,
a lengthy process known currently to reduce the numbers
of less-differentiated cells that maintain proliferative capacity
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Figure 1: Elements involved in TCR and CAR recognition and
activation. The TCR is disulfide-linked heterodimer consisting
of one 𝛼 and one 𝛽 chain expressed in complex with invariant
CD3 chains (𝛾, 𝛿, 𝜁, and 𝜀). The TCR recognizes intracellular or
extracellular proteins presented as peptides by MHC molecules.
Costimulation of CD28 through its ligands, CD80/CD86, is required
for optimal activation and production of interleukin-2 (IL-2) and
other cytokines. While most hematological tumors express costim-
ulatory molecules, solid tumor cells as well as antigen presenting
cells in the tumor microenvironment usually lack such molecules.
CARs recognize surface antigens in an MHC unrestricted manner.
CARs are fusion proteins between single-chain variable fragments
(scFv) from a monoclonal antibody and one or more T cell receptor
intracellular signaling domains. Various hinges and transmembrane
(TM) domains are used to link the recognition and the signaling
molecules [5]. While first generation CARs signaled through the
CD3𝜁 chain only, second generation CARs include a signaling
domain from a costimulatory molecule, for example, CD28 (illus-
trated), 4-1BB, OX40, CD27, or ICOS.

and produce a continuous source of effector progeny after
adoptive transfer [4].

Years of successive and significant innovations have
finally culminated in clinical studies demonstrating the
tremendous potential of second generation CAR expressing
T cells (Figure 1). Genetic redirection of patient T cells with
CARs targeting the B lymphocyte antigen CD19 has met
with exceptional success in various therapy-refractory hema-
tologic diseases (reviewed in [9]). Given their remarkable
activity, CAR T cells are expected to enter the mainstream
of health care for refractory or relapsed B-cell malignan-
cies within few years and become the game changer for
similar approaches in treating other cancers, such as solid
tumors. Recent achievements result from novel molecular
and immunological insights and provide the basis for further
improvements of T cell therapies by driving consecutive
developments of CAR design, optimization of T cell manu-
facturing, and incorporation of patient preconditioning and
suggest novel treatment combinations [10].

2. T Cell Therapy in Cancer

The efficacy of adoptive T cell therapy (ATC) in human
cancers was first demonstrated by the induction of molec-
ular remission after donor lymphocyte infusion (DLI)
in myeloid malignancies relapsing following bone mar-
row transplantation [11, 12]. Further studies demonstrated
that expanded tumor infiltrating lymphocytes (TIL) could
induce complete, long-lasting regression of large vascular-
ized metastatic melanomas [13–15]. ATC using Epstein-Barr
virus- (EBV-) specific T cells showed clinical benefit in
various EBV-associated malignancies, including Hodgkin’s
disease, Burkitt’s lymphoma, and nasopharyngeal carcinoma
[16–18]. In addition, circulating tumor-reactive T cells from
patient’s peripheral blood, when ex vivo expanded in suf-
ficient quantity and administrated to the patients, showed
clinical benefit [19].While these therapies rely on the endoge-
nous T cell repertoires, recent technological advances in T
cell engineering with retroviral and plasmid vectors allow the
generation of high numbers of tumor targeting T cells by
genetically introducing tumor specific T cell receptors (TCR)
or CARs (Figure 1). In contrast to TCRs which recognize
peptides derived from cellular proteins presented in the
context of major histocompatibility complex (MHC), the
more universally applicable CARs exhibit high-affinity MHC
independent recognition of, in theory, any surface antigen,
including carbohydrates and phospholipids [20–23].

The number of open ATC studies in cancer registered in
https://clinicaltrials.gov/ is rapidly increasing; as of Decem-
ber 2015 there are more than 200 protocols with the enroll-
ment of more than 8000 patients worldwide [24]. About 40%
of the protocols address the use of CART cells (Figure 2) with
most trials (85%) being conducted in US and in China [25].
About 65% of the studies are directed against hematological
malignancies [26, 27].While CD19 is by far themost common
antigen targeted in hematological B-cell cancers (>80%),
studies are underway to investigate other target antigens
such as CD20, CD22, CD30, ROR1, 𝜅 light chain, CD123,
CD33, CD133, CD138, and B-cell maturation antigen [28–30].
Although solid tumors were the first targets of CAR T cell
therapies [2, 31], realistic clinical responses are seen in clinical
studies where patients with various B-cell malignancies have
been treated with CD19 CAR T cells [9]. One of the first
encouraging reports came from investigators at the National
Cancer Institute (NCI) which published a case study in 2010
where a heavily pretreated patient with follicular lymphoma
experienced a dramatic partial remission (PR) after receiving
preconditioning chemotherapy followed by infusion of T cells
retrovirally transduced to express a second generation CD19
CAR with a CD28 costimulation domain [32]. Shortly after
this breakthrough, June’s group at the University of Penn-
sylvania (UPENN) presented early clinical results showing
impressive antileukemia efficacy of T cells transduced with
a lentiviral vector carrying a CD19 CARwith a 4-1BB costim-
ulation domain [33, 34]. Complete remissions (CR) were seen
in two of the three treated patients with end-stage advanced
chronic lymphocytic leukemias (CLL) and a partial response
in the third patient. The results after complete enrollment
of the trial were recently published and reported an overall
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response rate of 57% with 4 out of 14 treated patients in CR
and 4 PRs [35]. Importantly, the study demonstrated that
the sustained capability of the CAR T cells to expand in
vivo correlated with clinical responses. Furthermore, CAR T
cells persisted and remained functional beyond 4 years in
the first two patients achieving CR, with no relapse. CD19
CAR T cell function and engraftment might be improved
further when combined with ibrutinib, which is a small-
molecular inhibitor of the enzyme Bruton’s tyrosine kinase
(BTK) associated with increased B-cell activation and prolif-
eration [36]. The far most remarkable responses with CD19
redirected T cells have been reported by groups at UPENN,
Memorial SloanKetteringCancerCenter (MSKCC), andNCI
in patients with resistant or relapsed acute lymphoblastic
leukemia (ALL) with CR rates ranging from 70 to 90% in
approximately 65 patients among the three trials, combined
[37–39]. More recently, investigators at Great Ormond Street
Hospital and University College London Institute of Child
Health’s treated a 1-year-old girl with ALL who had relapsed
shortly after bone marrow transplantation (BMT) with off-
the-shelf banked CD19 CAR redirected allogeneic T cells
derived from a healthy donor (UCART19) [40]. While the
treatment resulted in cytogenetic and molecular remission
of her leukemia, a second BMT given 3 months after the T
cell injection precludes the interpretation of the long-term
efficacy of theUCART19 therapy.The infused allogeneic CAR
expressing T cells were gene edited by nucleases to disrupt
expression of the endogenous TCRs to avoid alloreactivity
[41]. Studies have clearly demonstrated that allogeneic CAR
T cells can not only induce tumor regression but also drive
GVHD [42, 43] and the UCART19 strategy is therefore
critically dependent on high TCR knockdown efficacy or
efficient depletion of TCR expressing T cells prior to infusion.
Of interest is also a case report of a multiple myeloma patient
inCR afterCD19CART cell therapy despite lack of detectable
CD19 expression in 99.95% of the patient’s neoplastic plasma
cells [44]. The response is hypothesized to be caused either
by elimination of a small population of CD19 expressing
myeloma stem cells or by elimination of CD19 expressing
cells that play a critical role in sustaining the growth of the
myeloma cells. Encouraging clinical results have also been
obtained in patients with various chemotherapy refractory B-
cell lymphomas, including CR in four out of seven evaluable
patients with diffuse large B-cell lymphoma (DLBCL) after
infusion of CD19 CAR T cells [45]. By contrast, it has
been difficult to see the clinical efficacy of CAR T cells in
nonhematological, solid tumors. By targeting the disialo-
ganglioside GD2 expressed on neuroblastoma with CAR
T cells, investigators at Baylor College of Medicine report
some clinical benefit with CR in three of eleven patients
with active disease [46]. Among open clinical protocols for
solid tumors, CARs targeting mesothelin, which is overex-
pressed in a wide range of solid tumors [47], human epider-
mal growth factor receptor family members (HER2/ERBB2
and HER1/EGFR) overexpressed in breast, ovarian, bladder,
salivary gland, endometrial, pancreatic, and non-small-cell
lung cancer (NSCLC) [48–51], and neuroblastoma associated
GD2 [52] antigens dominate. However, increasing number
of targets is being investigated in clinical trials, such as
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Figure 2: Open clinical studies investigating the safety and effi-
ciency of adoptive T cell therapy (ATC) in cancer registered in
https://clinicaltrials.gov/ as of December 2015 (search terms: “inter-
vention: T cells”, indication: “cancer”). More than 200 protocols are
registered, and about 40% of these address the use of CAR T cells,
of which 65% are studied in trials for hematological malignancies.
The use of unmodified/minimally manipulated/nongene modified
T cells (based on the endogenous T cell repertoire) isolated from
PMBC and from tumor (TILs) constitutes a similar fraction (16%
virus/antigen specific + 15%TIL+ 10%DLI/minimallymanipulated)
to CART cells. TCR genemodified T cells make-up about 11% of the
studies. The term armored T cells refers to the adoptive transfer of
T cells that have been precoated ex vivo with bispecific antibodies
targeting CD3 and tumor associated antigen, like CD19 [6].

MUC1 and carcinoembryonic antigen (CEA) overexpressed
in various carcinomas, fibroblast activation protein (FAP)
targeting cancer associated fibroblasts in the tumor stroma,
and vascular endothelial growth factor receptor 2 (VEGFR2)
overexpressed in tumor vasculature [23, 53–57].

3. Factors Affecting Efficacy of
CAR T Cell Therapy

Many known and numerous yet unidentified factors are
likely to contribute to the variability observed in clinical
responses across trials and also between individual patients.
Despite the fact that differences in clinical protocols preclude
direct comparisons, clinical data collectively point at T cell
expansion and persistence after adoptive transfer as key
critical factors for achieving an effective clearance of the
cancer [9]. The in vivo fate of the T cells is influenced
by several factors broadly related to the CAR design, the
composition of the infused T cells, the tumor type and
microenvironment, and recipient preconditioning regimen.
Savoldo and colleagues elegantly demonstrated the signif-
icance of introducing costimulatory domains into second
generation CARs by treating six lymphoma patients with
a mixture of first and second generation CAR T cells,
providing evidence for the enhanced persistence of T cells
expressing the latter CAR configuration [58]. Most second
generation CARs studied in clinical trials incorporate CD28
or 4-1BB signaling domains and preclinical and emerging



4 Journal of Immunology Research

Blood
collection

T cell
isolation and

activation
T cell

transduction
T cell

expansion Bead removal T cell
formulation

T cell manufacturing workflow

T cell infusion
into

preconditioned
patient

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Example of manufacturing and delivery pipeline of CAR T cell therapies [7, 8]. Peripheral blood mononuclear cells (PBMCs)
are harvested from the patient (or a T cell donor) (a) and transferred to a good manufacturing practice (GMP) facility, where the T cells
are isolated and activated in the presence of magnetic beads conjugated with CD3 and CD28 antibodies (b) and subsequently genetically
engineered by viral transduction to express the CAR (c).The activated T cells are expanded ex vivo for a period, typically 10–14 days, to reach
a therapeutic relevant number (d) before magnetic bead removal (e) and formulation, either for freezing or for adoptive transfer (f). The
patient undergoes a conditional chemotherapy prior to infusion of the CAR T cells (g).

clinical experience suggest that CD28 containing constructs
undergo a more rapid expansion and subsequently decline,
whereas 4-1BB CARs confer longer persistence [10, 59].Third
generation CARs incorporating CD28-4-1BB or CD28-OX40
in combination have demonstrated sustained activation of T
cells [60–64] but their effectiveness remains to be evaluated
in clinical trials. A clinical study utilizing a CD20-redirected
third generation CD28-4-1BB-CD3𝜁 signaling CAR did not
show dramatic responses [65]. Zhao and colleagues recently
demonstrated superior efficiency of combining CD28 and 4-
1BB signaling in a novel receptor configuration that provides
CD28 costimulation through the endodomain in the CAR
and 4-1BB costimulation by expression of the 4-1BB ligand,
which is coexpressed at the cell surface with the CAR [5].
The in vivo proliferative capacity depends further on the
composition of the T cells in the infused product. Long-term
persistence and function are provided by central memory
phenotype T cells that retain longer telomeres and higher
proliferation compared to the more differentiated effector T
cell populations [4, 66, 67]. Most clinical trials performed
today utilize unselected, ex vivo expanded T cells obtained
from patient peripheral blood mononuclear cells (PBMC).
The use of paramagnetic beads covalently conjugated with
agonistic CD3 and CD28 antibodies, such as CTS� Dyn-
abeads� CD3/CD28, in combination with the CTS� Dyna-
Mag magnet adapted for culture bags, has been successfully
implemented in the clinic as they allow for simultaneous
isolation and activation of T cells from the PBMC [7, 68]
(Figure 3). Short duration, in general around 10 days, of the ex
vivo expansion results in a final T cell drug consisting of both
CD4 and CD8 T cells displaying early memory phenotypes
with the ability to expand in the blood of patients and
generate long-term memory [33]. More recently, methods
to isolate defined T cell subset under good manufacturing

(GMP) conditions have been developed with the aim to
better control the phenotype of the transferred T cells [69].
In a murine tumor model of lymphoma they demonstrated
superior efficiency using a CAR T cell formulation consisting
of CD4 T cells derived from the naı̈ve CD4 T cell pool
with CD8 T cells derived from central memory CD8 T cells
at a 1 : 1 ratio, compared to unselected batch T cells and
CD8 or CD4 cells alone [70]. Memory stem T cells [71,
72], ICOS costimulated Th17-polarized T cells [73–76], and
virus specific memory T cells [77–79] have also attracted
interest as effective T cell populations with great replicative
potential. One factor that has been shown to impact T cell
engraftment and proliferation is the use of lymphodepletion
chemotherapy in patients prior to T cell infusion [14, 80].This
preconditioning creates space for the expansion of infused
cells, limits the competition for homeostatic gamma chain
cytokines IL-7 and IL-15, depletes regulatory T cells, and
activates the innate immune system. Finally, relapse with
CD19 negative tumor cells after CAR T cell therapy remains
a challenge [81]. Single-target therapy may select for and lead
to escape of the variants and targeting multiple antigens on
tumors would increase the chances of therapeutic efficiency.
Combination of CARs with different specificities, or the
use of bispecific tandem CARs, which join two antigen-
recognition moieties, may prevent relapses due to escape of
variants but require further studies [82].

While solid tumors have proven largely refractory to T
cell therapy, encouraging preclinical and clinical data support
further development. Solid tumors are challenging; their
microenvironment is extremely inhospitable and induces T
cell anergy [83]. Technological advances required to enhance
CAR T cell function and survival in solid tumors include
strategies to increase T cell trafficking, T cell resistance to the
immunosuppressive environment, and recruitment of other
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immune effectors (reviewed in [84–86]). T cells must survive
and overcome an environment characterized by oxidative
stress and hypoxia, the presence of suppressive immune
cells and factors, and T cell intrinsic negative regulatory
mechanisms including upregulation of inhibitory receptors.
CAR design has been configured to create “Trucks” (T
cells redirected for universal cytokine-mediated killing) and
“Armored CARs” that express cytokines and chemokine
receptors and recently also modified to coexpress catalase to
protect the T cells from oxidative stress-mediated repression
and heparanase to improve T cell penetration through tumor
stroma and enhance infiltration [87–90]. Combination of
ATC with checkpoint inhibitor blockade using antagonistic
antibodies against the negative regulators CTLA-4 and PD-
1/PD1-L has also been suggested, and it has been demon-
strated that the specific blockade of the PD-1 immuno-
suppressive pathway significantly enhanced the function of
HER2 redirected CAR expressing T cells leading to enhanced
tumor eradication in immune competent HER2 transgenic
mice [91]. Recently, studies have also demonstrated promis-
ing potential of T cells gene modified with fusion receptors
comprising the extracellular domain of PD-1 linked to the
cytoplasmic domain of CD28 in reversing inhibitory effects
of PD-1 binding [92, 93].

4. Factors Affecting Safety of
CAR T Cell Therapy

Given the extremepotency ofCARmodifiedT cells, the use of
this therapy has significant toxic potential [94–96]. Toxicities
range from life threatening cytokine release syndromes (CRS)
and macrophage activation syndromes (MAS) to on-target
off-tumor toxicity, neurotoxicity, and tumor lysis syndrome
(TLS). CRS and neurotoxicity appear to be frequent in
B-cell malignancies but are in most cases treatable and
reversible [38, 97]. CRS is associated with high circulating
levels of several cytokines, including interleukin-6 (IL-6) and
interferon-𝛾, and seems to correlate with high antitumor
activity and high tumor burden. CRS is frequently accom-
panied by MAS, which may partly be driven by elevated
levels of IL-6 [98]. Both CRS and MAS can be mitigated
by infusion of the monoclonal antibody tocilizumab which
blocks the action of IL-6 and reduces inflammation [37]. The
mechanisms underlying the neurologic symptoms including
aphasia, tremor and seizures remain poorly understood;
however, it has been reported that MAS can be associated
with neurological toxicity [9]. On-target off-tumor toxicity
of CAR modified T cells was first reported in a phase I
clinical trial of renal cell carcinoma patients treated with T
cells expressing a CAR recognizing carbonic anhydrase IX
(CAIX) [31]. Here, several patients experienced significant
liver toxicity due to the expression of CAIX on normal bile
duct epithelium, necessitating cessation of treatment. The
first fatal adverse event due to off-tumor recognition by a
CAR occurred in a patient with colorectal cancer treated
with high numbers of T cells expressing a third generation
CAR targeting ERBB2/HER2 [95]. The patient developed
respiratory distress and cardiac arrests shortly after the T cell

transfer and died of multisystem organ failure 5 days later.
It was postulated that the CAR T cells recognized ERBB2
expressed at low levels in the lung epithelium, leading to
pulmonary toxicity and a cascading cytokine storm with a
fatal outcome. Predicted on-target off-tumor toxicity with
depletion of normal B-cells has been reported in nearly all
patients treated with CD19 CAR T cells, and depending
on the CAR configuration, B-cell aplasia lasts from months
to years [35, 39]. To mitigate this toxicity, patients receive
monthly immunoglobulin replacement; however, long-term
follow-up is needed to assess the late effects of B-cell aplasia.
Because fewCARs are truly tumor specific but recognize both
normal and malignant cells, strategies to improve specificity
are warranted. Affinity-tuned CARs based on low-affinity
scFv recognition have been demonstrated to increase tumor
specificity for targets that are overexpressed compared to
normal tissues expressing the same target at physiological
levels [99]. Furthermore, various dual targeting strategies
have been developed to increase specificity and safety. One
strategy is based on T cells modified with two different
CARs, where CAR number one provides the CD3𝜁 signal
and initiates killing, whereas CAR number two transmits
the costimulation signal [100–102]. Full CAR T cell acti-
vation and function are only achieved when the T cell
is engaged by both CAR antigens. Moreover, inhibitory
CARs (iCARs) that harness natural T cell inhibition exerted
by PD-1 and CTLA-4 have been demonstrated to protect
normal tissue from off-target effects in preclinical mouse
models [103]. The inhibitory function of the iCAR T cell
is a result of checkpoint inhibition initiated in response to
an antigen found on normal tissue but not on the tumor.
Other approaches are based on switchable CARs (sCAR)
and multichain CARs (mcCARs) that are activated only in
the presence of intermediate switch molecules [104, 105].
While the sCAR design is based on coinfusion of antibody-
based switch molecules bridging the target cell and the sCAR
expressing T cell, mcCARs are fully activated only in the
presence of the small-molecule drug, such as rapamycin.The
switch approach has been used to achieve reversible control
of sCAR T cell activity in immunocompetent mouse model
of CD19 targeting [106]. The sCARs principle further allows
for simultaneous targeting of several tumor antigens simply
by infusion of switch molecules conferring two or more
specificities, for example, CD19 and CD22. The severity of
chronic toxicities can be mitigated by introducing suicide
genes in the vector used for CAR gene transfer [107–
109] or allow surface coexpression of binding epitopes for
depleting antibodies already in clinical use, for example,
EGFR and CD20 [110, 111]. Other approaches rely on the
use of self-limiting, transiently expressed CARs [56, 112,
113] or administration of blocking antibodies and steroids
[114]. Finally, integrating vectors used to facilitate the CAR
gene transfer into T cells might constitute a safety risk in
the clinical setting as it raises the theoretical possibility of
insertional mutagenesis as demonstrated in stem cell gene
therapy studies in primary immunodeficiencies [115]. Despite
the fact that numerous studies with more than 500 patient-
year follow-uphave demonstrated the safety of retroviral gene
transfer intomature T cells [116, 117], it is too early to conclude
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that integration is safe in a larger patient population and
effective strategies are needed to eliminate gene modified T
cells.

5. Conclusions and Future Perspectives

The adoptive transfer of gene modified T cells is a rapidly
evolving innovative treatment for cancer. CAR redirected
T cells are renewable drugs with the capacity to proliferate
in the patient after infusion and further to persist and
provide sustained functional immunity.The efficacy has been
demonstrated in a range of hematological cancers including
ALL, CLL, DLBCL, FL, and multiple myeloma [26] and
further by some encouraging clinical data reported in early
phase I trials in solid tumors, including neuroblastoma, and
tumors overexpressing mesothelin, HER2, and EGFR [46,
50, 51, 56]. The clinical successes with CD19 CAR T cells
in leukemia and lymphomas have boosted the field and led
to significant pharmaceutical and venture capital funding of
the biotech sector, as well as promoting innovative academic-
industrial partnerships to explore new discoveries in basic
research that may translate into clinical and commercial
development [118].

This rapidly developing field meets with considerable
challenges which have to be addressed to realize the promise
of the CAR T cell therapy for a broader use. While CAR T
cell therapies have provided encouraging preliminary signs
of efficacy in solid tumors, clinical data so far fail by a
large margin to meet expectations for game-changing cell
therapy. A major focus of translational research is to improve
specificity, efficacy, and safety of CAR T cells to be used
in cancers beyond leukemia. Truly tumor specific surface
antigens are hardly identified, and the implementation of
effective mechanisms to mitigate life threatening and unex-
pected off-target toxicities is crucial. Further, issues regarding
tumor heterogeneity, tumor immunosuppression, and lack
of T cell trafficking and persistence are being addressed to
improve efficacy of solid tumor therapy [119]. Combining T
cell therapies with immunomodulatory agents, for example,
checkpoint inhibitors and cytokines, and/or small-molecular
antagonists that block biochemical pathways crucial for
tumor growth, constitute exciting opportunities that may
have synergistic effects in augmenting antitumor responses.

Moreover, the CAR T cell technology must be commer-
cialized at an acceptable cost. Pilot-scale processes for CAR T
cell generation were originally developed in academic centers
for early phase I clinical research, requiring small numbers
of T cell products. These processes are based on manual and
open-handling steps in safety cabinets and are not suited for
commercial manufacturing of thousands of therapeutic T cell
doses needed for a future approved therapy. Industrialized
T cell processing can only be achieved with significant
investments in automation and the establishment of a fully
closed process [120]. Current industrial commercialization
strategies are based on centralized T cell manufacturing
facilities and a coordinated infrastructure to provide cost-
effective cell-drug distribution [121]. An alternative strategy
is based on a decentralized model where T cell manufac-
turing is performed within the treatment centers. Whether

a centralized CAR T cell manufacturing will be more cost-
efficient than utilizing the existing infrastructure (equipment,
facilities, and competencies) in blood banks and clinics
depends largely on successful process automation as well as
on economics of scale [122] and on the other hand on the
regulatory approach of the developing companies.

Improvements in genemodification [123], T cell selection,
and expansion techniques, as well as the development of safe
and more effective viral and nonviral vectors, will further
enhance the integration of T cell gene therapies. Finally,
to overcome the constraints associated with complicated
logistics and manufacturing of the individualized T cell
therapy in the autologous setting, significant efforts are under
way to develop universal and off-the-shelf, allogeneic T cell
drugs. While off-the-shelf T cells might allow more efficient
manufacturing and reduce lead time for the administration of
the T cell drug, there are some concerns regarding their use,
including their potential to drive GVHD and their limited life
span after transfer.

Additional Points

Glossary of Terms. Donor lymphocyte infusion is the infusion
of lymphocytes from the stem cell donor after stem cell trans-
plantation to augment an antitumor (graft versus leukemia)
immune response. Aplasia is the absence of cell type/organ
lack of normal progression of cell generation.
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[112] H. Almåsbak, E. Walseng, A. Kristian et al., “Inclusion of an
IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a
xenograft mouse model,” Gene Therapy, vol. 22, no. 5, pp. 391–
403, 2015.

[113] K. Birkholz, A. Hombach, C. Krug et al., “Transfer of mRNA
encoding recombinant immunoreceptors reprogramsCD4+ and
CD8+ T cells for use in the adoptive immunotherapy of cancer,”
Gene Therapy, vol. 16, no. 5, pp. 596–604, 2009.

[114] C. H. J. Lamers, S. Sleijfer, S. van Steenbergen et al., “Treatment
of metastatic renal cell carcinoma with CAIX CAR-engineered
T cells: clinical evaluation and management of on-target toxic-
ity,”Molecular Therapy, vol. 21, no. 4, pp. 904–912, 2013.

[115] M. Cavazzana-Calvo, A. Fischer, S. Hacein-Bey-Abina, and A.
Aiuti, “Gene therapy for primary immunodeficiencies: part 1,”
Current Opinion in Immunology, vol. 24, no. 5, pp. 580–584,
2012.

[116] J. Scholler, T. L. Brady, G. Binder-Scholl et al., “Decade-long
safety and function of retroviral-modified chimeric antigen
receptor T cells,” Science Translational Medicine, vol. 4, no. 132,
Article ID 132ra53, 2012.

[117] S. Newrzela, K. Cornils, Z. Li et al., “Resistance ofmature T cells
to oncogene transformation,” Blood, vol. 112, no. 6, pp. 2278–
2286, 2008.

[118] D. M. Barrett, S. A. Grupp, and C. H. June, “Chimeric antigen
receptor- and TCR-modified T cells enter main street and wall
street,” Journal of Immunology, vol. 195, no. 3, pp. 755–761, 2015.

[119] H. Dai, Y. Wang, X. Lu, and W. Han, “Chimeric antigen
receptors modified T-cells for cancer therapy,” Journal of the
National Cancer Institute, vol. 108, no. 7, Article ID djv439, 2016.

[120] A. D. Kaiser, M. Assenmacher, B. Schröder et al., “Towards a
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