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Graft-versus-host disease (GVHD) is the most serious complication limiting the clinical utility of allogeneic hematopoietic stem cell
transplantation (HSCT), in which lymphocytes of donors (graft) are activated in response to the host antigen. This disease is associated
with increased inflammatory response through the release of inflammatory mediators such as cytokines, chemokines, and reactive
oxygen species (ROS). In this study, we have evaluated the role of ROS in GVHD pathogenesis by treatment of recipient mice with
apocynin (apo), an inhibitor of intracellular translocation of cytosolic components of NADPH oxidase complex. The
pharmacological blockade of NADPH oxidase resulted in prolonged survival and reduced GVHD clinical score. This reduction in
GVHD was associated with reduced levels of ROS and TBARS in target organs of GVHD in apocynin-treated mice at the onset of
the mortality phase. These results correlated with reduced intestinal and liver injuries and decreased levels of proinflammatory
cytokines and chemokines. Mechanistically, pharmacological blockade of the NADPH oxidase was associated with inhibition of
recruitment and accumulation of leukocytes in the target organs. Additionally, the chimerism remained unaffected after treatment
with apocynin. Our study demonstrates that ROS plays an important role in mediating GVHD, suggesting that strategies aimed
at blocking ROS production may be useful as an adjuvant therapy in patients subjected to bone marrow transplantation.

1. Introduction

Graft-versus-host disease (GVHD) is an immunological sys-
temic syndrome associated with hematopoietic cell trans-
plantation that is performed to cure many hematological
diseases. Recently, it was estimated that about 35-50% of

hematopoietic stem cell transplant recipients develop GVHD
[1–4]. The degree of inflammation in the gastrointestinal tract,
lymphoid organs, lung, and kidney correlates with the severity
of the disease and mortality of transplant recipients. Previous
studies have demonstrated the role of innate and adaptive
immune responses in the development of GVHD and target
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organ damage [1, 5, 6]. The overproduction of inflammatory
mediators and recruitment of effector leukocytes, including
macrophages and T cells, causes destruction and loss of func-
tion in organs [5, 7, 8]. In addition, GVHD may disrupt the
intestinal barrier leading to translocation of bacteria, causing
sepsis and multiorgan failure [9, 10]. Many GVHD therapies
have been proposed based on immunosuppression, provid-
ing increased susceptibility to opportunistic infection and
loss of beneficial graft-versus-leukemia effect [2, 10, 11].
Thus, novel therapies are constantly being explored.

It is well known that systemic inflammatory response
involves a complex array of proinflammatory molecule pro-
duction. In this context, our group has demonstrated that
the disruption of this cascade by targeting specific mediators
might result in the protection against GVHD [12–16]. How-
ever, the network of proinflammatory mediators that govern
the pathogenesis of GVHD is still an underestimated field,
remaining to be explored.

One of the hallmarks associated with inflammatory
response is the activation of a powerful oxidative burst, which
is implicated in the pathogenesis of a broad range of diseases
including cancer, atherosclerosis, and metabolic and infec-
tious diseases [17–20]. The generation of reactive oxygen
species (ROS) by cells occurs via several enzymatic systems,
but NADPH oxidases and mitochondria are the major
sources of intracellular superoxide [21]. ROS are produced
by cells that are involved in immune response and can trigger
the production of a wide range of proinflammatory mole-
cules. It is also acknowledged that cytokines can lead to
increased ROS production [18, 19, 22, 23]. ROS act as both
proinflammatory mediators and signaling molecules and
have a deleterious action through tissue damage, mainly
due to the oxidative modification of structural molecules in
the cells [17, 18, 22, 24]. In a previous study, we have shown
an increase in ROS in the mouse liver subjected to GVHD.
Based on the elimination of GVHD after treatment with
fullerol, a nanocomposite with antioxidant properties [13],
we hypothesized that ROS seems to be involved in the estab-
lishment of GVHD. Despite the evidence of ROS involve-
ment in the pathogenesis of GVHD, description of the
effects of GVHD treatment on dinucleotide phosphate oxi-
dase (NOX)-derived ROS production is still lacking.

In order to determine whether overproduction of ROS
contributes to the pathogenesis of GVHD in the present
study, we tested the impact of apocynin treatment in the pre-
vention of inflammatory response, organ injury, weight loss,
and mortality, in mice subjected to GVHD.

2. Materials and Methods

2.1. Ethics Statement. The animal care and handling proce-
dures were in accordance with the guidelines of the Institu-
tional Animal Care and Use Committee, and the study
received prior approval from the Animal Ethics Committee
of Universidade Federal de Minas Gerais (protocol number:
191/2012). Animals judged to be moribund were euthana-
tized with an overdose of anesthesia (100μl of mixture of
ketamine (37.5mg/ml) and xylazine (2.5mg/ml), intrave-
nously) and counted as GVHD lethality. At the end of these

experimental procedures, the remaining mice were also eutha-
nized with an overdose of anesthetics. In all experiments, the
efforts were made to minimize suffering at all times.

2.2. Mice. Eight- to 12-week-old C57BL/6 and B6D2F1
(C57BL/6 X DBA/2) were obtained from the Centro de Bio-
terismo (UFMG) and maintained in our biotery. All mice
were housed under standard conditions in a temperature-
controlled room (23 ± 1°C) on an automatic 12h light/dark
cycle. The mice had free access to commercial chow and
water. The number of mice in each specific group is provided
in the figure legend.

2.3. Induction of GVHD

2.3.1. Induction of GVHD in B6D2F1 Mice. Recipient
B6D2F1 mice were irradiated at 9Gy total-body radiation
(source 60Co) in two doses at 2 h intervals to minimize gas-
trointestinal toxicity and then given an i.v. infusion of 3 ×
107 splenocytes and 1 × 107 BM cells from C57BL/6 donors.
The B6D2F1 mice that received splenocytes from B6D2F1
mice (B6D2F1 to B6D2F1) did not develop any disease and
were considered the control group.

2.3.2. Induction of GVHD in BALB/c Mice. Recipient BALB/c
mice were irradiated with 7Gy total-body radiation (source
60Co) in two doses at 2 h intervals to minimize gastrointesti-
nal toxicity and then given an i.v. infusion of 1 × 107 spleno-
cytes and 1 × 107 BM cells from C57BL/6 mice. The BALB/c
mice that received splenocytes from BALB/c mice (BALB/c
to BALB/c) did not develop any disease and were considered
the control group. Because of the toxicity of the high level of
body irradiation, the recipient mice received an oral suspen-
sion of ciprofloxacin (70mg/l) in their drinking water from
1d before to 15 d after transplantation. The BM cells and
splenocytes were isolated as previously described [13, 25].

2.4. Treatment. The apo group was treated with apocynin
(3mg/kg, intraperitoneally) dissolved in sterile PBS-5%
ethanol 30 minutes before transplant and each 24 hours
until the end of experiments. The vehicle group received
PBS-5% ethanol.

2.5. Mortality Rate and Assessment of GVHD Clinical Score.
After disease induction, mice weremonitored daily for survival
and evaluated clinically by a standard scoring system that gen-
erates a GVHD score comprised of individual scores for weight
loss, posture (hunching), activity, fur texture, skin integrity,
diarrhea, and occult blood in feces. Following to that, a clinical
index was generated by summation of scores of the seven cri-
teria (maximum index = 14), as described previously [16].

2.6. Oxidative Stress Analysis

2.6.1. Reactive Oxygen Species (ROS) Production. ROS
production was analyzed at the onset of mortality (13 days
after transplantation) in bone marrow, spleen, liver, and
ileum using 20,70-dichlorodihydrofluorescein diacetate
(DCF-DA), as described previously [26, 27]. The isolated
cells (105 cells/well) were incubated in 96-well plates with
50μM of DCF-DA for 30min at 37° C, and fluorescence
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was performed in a spectrophotometer (Synergy 2; BioTek,
Winooski, VT) with wavelengths of excitation and emission
of 480 and 530nm, respectively.

2.6.2. Lipid Peroxidation. The thiobarbituric acid reactive
substance (TBARS, an index of malonyldialdehyde produc-
tion) levels in the liver and jejunum-ileum were determined
according to the method of Ohkawa et al. [28]. Briefly, the
liver and jejunum-ileum were homogenized, mixed with tri-
chloroacetic acid, and kept on ice for 30min to allow protein
precipitation, followed by centrifugation. At that point, 30 μl
of the clear supernatant was mixed with 270μl of phosphate
buffer 0,1M (pH 8.5) and 5.5-dithiobis-(2-nitrobenzoic acid)
in methanol. The reaction solution absorbance was measured
at 415nm.

2.7. Histopathology. A set of experiments was conducted to
quantify the histopathological parameters in the intestine
and liver,GVHDtarget organs.Tissue sectionswereprocessed
for histological analysis as described previously [16, 29] and
evaluated by a pathologist. A numerical value was attributed
to the changes observed in the intestinal layers (mucosal,
lamina propria, muscular, and serosal) and in the liver
(degenerative alterations in the parenchyma). Each animal
received a score that was generated by summation of all
observed changes (maximum index: 9 for intestine and 6
for liver). Histopathological scores were determined for sam-
ples that were obtained from mice on day 13 after the trans-
plant, which corresponded to the GVHD mortality phase.

2.8. Quantification of Cytokines and Chemokines. The con-
centrations of cytokines and chemokines were quantified
from intestinal or liver homogenates from animals at onset
mortality. The tissues were mixed with PBS which con-
tained antiproteases (0.1mMphenylmethanesulfonylfluoride
(PMSF), 0.1 nM benzethonium chloride, 10mM ethylenedi-
aminetetraacetic acid (EDTA), 20 Kallikrein Inhibitor Units
(KIU), and aprotinin A) and 0.05% Tween 20. The samples
were centrifuged for 10min at 10000 rpm and 4°C. Dilutions
of the supernatants in PBS and bovine serum albumin (BSA)
0,1% (1 : 3) were immediately analyzed by ELISA. The cyto-
kines and chemokine concentrations were measured accord-
ing to the manufacturer procedures (R&D Systems,
Minneapolis, MN, USA), and the colorimetric reactions
were analyzed with a spectrophotometer at a wavelength of
492nm.

2.9. Quantification of Macrophage Infiltration. Macrophages
infiltrating in the liver and ileum were indirectly quantified
by measuring NAG activity at day 13 after transplant. A
portion of 100mg of the liver or ileum was resuspended in
saline 0.9% (4°C) containing 0.15 v/v Triton X-100 (Merck,
Rahway, NJ, USA), homogenized, and centrifuged at 4°C
for 10min at 1500 rpm. The supernatants were collected
and assayed immediately for NAG using a 1 : 3 dilution, as
described previously [12]. The results were described as rela-
tive numbers of macrophages in 100mg of tissue.

2.10. Intravital Microscopy. GVHD was induced, and the
mice were treated with apo or vehicle. At day 13 after trans-

plant, the mice were anesthetized, and the intestinal venules
were exposed in a perfusion system with warm bicarbonate-
buffered saline (pH 7.4). An intravital microscope (ECLIPSE
50i, Nikon, Japan) with a 20-objective lens was used to exam-
ine the mesenteric microcirculation. A digital camera (DS-
Qi1MC, Nikon, Japan) was used to project the images onto
a computer monitor, and the images were recorded for
playback analysis with Nikon Imaging Software (Nikon,
Kawasaki, Japan). The intestinal venules 40–60 μm were
selected, and the numbers of rolling and adherent leukocytes
were determined off-line during the video playback analysis.
Rolling leukocytes were defined as those cells that moved at a
velocity less than that of the erythrocytes within a given ves-
sel. The flux of rolling cells was measured as the number of
rolling cells that passed by a given point in the venule per
minute. A leukocyte was considered to be adherent if it
remained stationary for at least 30 s, and total leukocyte
adhesion was quantified as the number of adherent cells in
the intravascular space within an area of 100 μm.

2.11. Flow Cytometry Analysis. Cells from the spleen, bone
marrow, and liver were plated, 1 × 106 cells/well, in a 96-
well plate and stained with monoclonal antibodies (1 : 100)
to surface markers from T helper lymphocytes (CD3+/-
CD4+). The chimera formation was evaluated in the spleen
and bone marrow by the stain of H2b+/H2d+ surface markers.
As negative controls were used monoclonal antibodies IgG1
and IgG2a. The cells were incubated with 20 μl/well of anti-
body solution 30′/4°C, followed by fixation in 4% of parafor-
maldehyde to further reading in BD FACSCanto™ II.

2.12. Statistical Analysis. Data in the text are expressed as the
mean ± SEM. Comparisons between the groups were per-
formed by unpaired t-test analysis. A log-rank test was used
to compare the relevant survival curves. Statistical signifi-
cance was set as p < 0:05, and all graphs and analysis were
performed with GraphPad Prism 6 software (GraphPad Soft-
ware Inc., San Diego, CA, USA).

3. Results and Discussion

3.1. Treatment with Apocynin Reduced Mortality and Clinical
Signs of GVHD.We first assessed whether apocynin treatment
could prevent GVHD-associated mortality and morbidity.
The control group did not develop GVHD, and all mice were
alive at the end of the experiment. Mice subjected to GVHD
and treated with vehicle developed the disease, which was
confirmed by 100% lethality, 16 days after transplantation
(Figure 1(a)), and high clinical scores (Figure 1(b)). In con-
trast, mice subjected to GVHD and treated with apocynin
exhibited 83% survival (Figure 1(a)) and lower clinical scores
over this period (Figure 1(b)). Treatment with apocynin was
discontinued on day 16. On day 18, one mouse died, resulting
in 67% overall survival until 30 days after transplantation,
when the remaining mice were euthanized (Figure 1(a)).
These findings are relevant because GVHD is still the main
source of complication in allogeneic hematopoietic stem cell
transplantation (allo-HSCT). Despite advances in the thera-
peutic strategies for the reduction in the incidence of this
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disease, about 35-50% of the transplanted patients develop
grade II–IV acute GVHD [30], causing the death of 15-40%
of these patients [1, 2, 8]. Therefore, treatment with apoc-
ynin may be exploited as a novel therapeutic strategy to
treat GVHD.

To confirm the beneficial effects of apocynin treatment
in GVHD, we tested it on mice that had been subjected to
the allogeneic model of GVHD. Leukocytes isolated from
C57BL/6 mice were transplanted into BALB/c mice, as
described in Materials and Methods. Treatment with apoc-
ynin was also protective in this model (Supplementary
Figure 1).

3.2. Apocynin Treatment Reduced Oxidative Stress in GVHD
Target Organs. The level of ROS in the liver, spleen and bone
marrow (BM) of mice with experimental GVHD was mea-
sured at day 13 after transplantation, which corresponded
with the onset of mortality. There was an increase in ROS
in the spleen and liver in the vehicle group, compared to that
in the control group (Figures 2(a) and 2(b)). Pharmacological
blockade of NADPH oxidase complex by apocynin reduced
the level of ROS in these GVHD target organs (Figures 2(a)
and 2(b)). The level of ROS in the BM was similar in mice
treated with apocynin or vehicle (data not shown).

These results were supported by our recent work that
demonstrated an increase in ROS production and liver injury
in mice subjected to GVHD [13]. Amer and colleagues [31]
have also demonstrated an increase in oxidative stress and
ROS level in blood cells after allogeneic BM transplantation
in mice. Moreover, several studies have shown that condi-
tioning regimens result in the production of ROS in allo-
HSCT patients, which contributes to the inflammatory
response and tissue injury related to GVHD [32–34].

Next, we analyzed lipid peroxidation in the liver and
jejunum-ileum using the thiobarbituric acid reactive sub-
stance (TBARS) assay. At day 13 after transplantation, there

was an increase in TBARS levels in both organs, in mice sub-
jected to GVHD and treated with vehicle. Treatment with
apocynin inhibited lipid peroxidation related to GVHD in
these organs (Figures 2(c) and 2(d)). High levels of ROS
can cause oxidative stress, a phenomenon characterized by
lipid peroxidation, protein destruction, cell death, and tissue
injury [22, 35]. In this context, the reduction of ROS by apoc-
ynin treatment might have contributed to lower intestinal
and hepatic damage and prevented GVHD-associated mor-
tality and morbidity.

3.3. Treatment with Apocynin Reduced Hepatic and Intestinal
Injuries Related to GVHD. To confirm our hypothesis that
the reduction in oxidative stress by apocynin contributes to
less damage to GVHD target organs, we next evaluated the
effect of apocynin treatment on the histopathologic alter-
ations observed in the liver and intestine of mice subjected
to GVHD. At day 13, the vehicle group presented severe liver
injury throughout the parenchyma, including hepatocyte
necrosis and diffused vacuolization. There was also increased
inflammatory infiltration, mainly in the periportal areas
(Figures 3(a) and 3(c–e)). In contrast, apocynin-treated mice
showed substantial preservation of hepatic tissue and
decreased inflammatory cell accumulation (Figures 3(a) and
3(c–e)). These findings are relevant because the liver is the
second most frequent organ affected by GVHD, after skin
[36]. About 80% of allo-HSCT patients develop hepatic
aggravations, which contributes substantially to overall mor-
bidity and mortality [37]. Hepatic GVHD is characterized by
damage to bile duct epithelium, cytoplasmic eosinophilia,
and vacuolation [38]. Injury to this organ is associated with
clinical manifestation of the disease including hepatomegaly
and icterus [39, 40]. Some studies have demonstrated that
ROS can contribute to the death of hepatocytes, perpetuation
of chronic inflammatory response, and the development of
hepatic fibrinogenesis [41, 42]. We have previously shown
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Figure 1: Apocynin treatment is associated with reduced mortality and improvement in GVHD clinical signs. GVHD was induced by the
adoptive transfer of 107 BMcells + 3 × 107 splenocytes from C57BL/6 mouse donors to B6D2F1 mice. Mice that received syngeneic
(B6D2F1) BM cells and splenocytes did not develop disease and were considered the control group. After GVHD induction, recipient
mice were treated with apocynin (3mg/kg, 24 h/24 h, intraperitoneally) or vehicle 30min before transplantation until the experimental
endpoint. The mice were evaluated every 2 d for survival (a) and clinical scoring (b). The results are shown as means ± SEM, and the
numbers of animals were as follows: control group (●, n = 5), vehicle group (▲, n = 6), and apo group (■, n = 6). ∗ and #: p < 0:05
compared with the control and vehicle groups, respectively.
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Figure 2: Apocynin treatment reduces reactive oxygen species and lipid peroxidation in GVHD target organs. GVHD was induced by the
adoptive transfer of 107 BMcells + 3 × 107 splenocytes from C57BL/6 mouse donors to B6D2F1 mice. Mice that received syngeneic
(B6D2F1) BM cells and splenocytes did not develop disease and were considered the control group. After GVHD induction, recipient
mice were treated with apocynin (3mg/kg, 24 h/24 h, intraperitoneally) or vehicle 30min before transplantation until the experimental
endpoint. At the onset of mortality, mice were killed, and the levels of reactive oxygen species were evaluated in the (a) spleen and (b)
liver by DCF-DA analysis. The lipid peroxidation was also evaluated by TBARS in the (c) liver and (d) jejunum-ileum. Results are
presented as the mean ± SEM (n = 4‐7); ∗ and #: p < 0:05 when comparing to the control and vehicle groups, respectively.
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that fullerol, a nanocomposite with antioxidant properties,
also reduces hepatic injury and GVHD mortality, similar to
apocynin treatment [13]. Our results corroborated with those
obtained by Liu et al. [43], who have also demonstrated that
the use of apocynin significantly decreased the production of
ROS, leading to preservation of hepatic parenchyma, reduc-
tion in the cellular infiltrate, and limited necrosis in a murine
model of hepatic ischemia and reperfusion.

Histological analysis of the jejunum-ileum of mice sub-
jected to GVHD and treated with vehicle showed partial loss
of organ architecture, hyperplasia of crypts, villous enlarge-
ment, edema, congestion, and increased cellularity. Severe
degenerative changes, ulcerations of the mucosa, and areas
of focal necrosis in the muscular and serous layers were also
observed at this time point (Figures 3(b) and 3(f–h)). Apoc-

ynin treatment reduced the degenerative process in the
intestine, resulting in the preservation of jejunum-ileum
architecture and reduction in inflammatory infiltration into
the lamina propria and in the muscle and serous layer
(Figures 3(b) and 3(f–h)). About 50-60% of the patients
receiving HSCT develop intestinal GVHD, which is associ-
ated with bacterial translocation, sepsis, and death [39, 44].
The loss of redox homeostasis characterized by high ROS
levels and inhibition of antioxidant systems has been demon-
strated to participate in the pathogenesis of many gastroin-
testinal diseases, such as Barrett’s esophagus, esophageal
adenocarcinoma, ischemic intestinal injury, celiac disease,
inflammatory bowel disease, and colorectal cancer [45, 46].
Thus, we believe that the injury observed in GVHD target
organs was produced in part by oxidative stress. Therefore,
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Figure 4: Apocynin treatment reduces the concentration of cytokines and chemokines in the liver of mice subjected to GVHD. GVHD was
induced by the adoptive transfer of 107 BMcells + 3 × 107 splenocytes from C57BL/6 mouse donors to B6D2F1 mice. Mice that received
syngeneic (B6D2F1) BM cells and splenocytes did not develop disease and were considered the control group. After GVHD induction,
recipient mice were treated with apocynin (3mg/kg, 24 h/24 h, intraperitoneally) or vehicle 30min before transplantation until the
experimental endpoint. At the onset of mortality, mice were killed, and the concentrations of (a) TNF, (b) IFN-γ, (c) IL-17, (d)
CCL2, (e) CCL3, and (f) CCL5 in the hepatic homogenates were evaluated by ELISA. Results are presented as the mean ± SEM
(n = 6‐10); ∗ and #: p < 0:05 when comparing to the control and vehicle groups, respectively.
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ROS inhibition and reduction in lipid peroxidation by apoc-
ynin may have contributed to reduced damage of the intes-
tine and liver, improved survival, and decreased GVHD
clinical score.

3.4. Inhibition of NADPH Oxidase Complex Reduced
Proinflammatory Cytokines and Chemokines in GVHD
Target Organs. The levels of TNFα, IFNγ, IL-17, CCL2,
CCL3, and CCL5 were increased in the liver and jejunum-
ileum of mice subjected to GVHD and treated with vehicle at
13 days after transplantation (Figures 4 and 5). In accordance
with reduced overall hepatic and intestinal histopathological
score, the main inflammatory mediators that orchestrate
GVHD target organ injury were decreased by apocynin
treatment, including TNFα, CCL2, CCL3, and CCL5 in the
liver (Figures 4(a) and 4(d–f)) and TNFα, IL-17, CCL2,
CCL3, and CCL5 in the small intestine (Figures 5(a), 5(c),
and 5(d–f)).

Previous studies by our group have explored the partici-
pation of these proinflammatory molecules in GVHD
pathophysiology [12–16, 25]. The role of TNFα in GVHD
development has been supported by several clinical trials
which have demonstrated a strong correlation between
increased levels of this cytokine and GVHD. A study of 61
GVHD patients treated with corticosteroids and etanercept,
a TNFα inhibitor, found significant improvement in the dis-
ease symptoms compared to patients treated with corticoste-
roids alone [47]. Furthermore, TNF participates in the

activation of antigen-presenting cells (APC) and stimulates
mononuclear cell recruitment and proliferation of cytotoxic
T cells [6]. Interestingly, Scott et al. [48] showed that ROS
regulates the activity of TNFα-converting enzyme (TACE),
which is responsible for the cleavage of TNF from the mem-
brane to its soluble form. TNFα also plays a role in enhancing
the activity of NADPH oxidase in macrophages, monocytes,
and neutrophils, inducing ROS production [49]. Thus, ROS
inhibition by apocynin after GVHD induction may be
related to reduced levels of TNFα, which in turn may also
contribute to the further reduction of ROS, accentuating
the decrease in the levels of this mediator. Apocynin treat-
ment also reduced the levels of TNFα in a model of hepatic
ischemia and reperfusion in mice, thereby corroborating our
results [43].

The reduction of IL-17 in the intestine after apocynin
treatment is also relevant because this cytokine can be pro-
duced by CD4+ and CD8+ T cells and is related to tissue
inflammation in GVHD target organs [12, 50]. Kappel and
colleagues [51] have shown that the transplantation of
murine IL-17(-/-) CD4(+) T cells delayed GVHD develop-
ment. A recent study by He et al. [52] also showed that
increased production of ROS by peritoneal macrophages
promoted the elevation of IL-17 levels in peritoneal lavage
and subsequently intensified the inflammatory response in
a sepsis model in mice. Thus, NADPH oxidase inhibition
mediated by apocynin may also contribute to the reduction
in intestinal levels of IL-17 as shown here.
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Figure 5: Apocynin treatment reduces the concentration of cytokines and chemokines in the jejunum-ileum of mice subjected to GVHD.
GVHD was induced by the adoptive transfer of 107 BMcells + 3 × 107 splenocytes from C57BL/6 mouse donors to B6D2F1 mice. Mice
that received syngeneic (B6D2F1) BM cells and splenocytes did not develop disease and were considered the control group. After GVHD
induction, recipient mice were treated with apocynin (3mg/kg, 24 h/24 h, intraperitoneally) or vehicle 30min before transplantation until
the experimental endpoint. At the onset of mortality, mice were killed, and the concentrations of (a) TNF, (b) IFN-γ, (c) IL-17, (d) CCL2,
(e) CCL3, and (f) CCL5 in the intestinal homogenates were evaluated by ELISA. Results are presented as the mean ± SEM (n = 6‐10);
∗ and #: p < 0:05 when comparing to the control and vehicle groups, respectively.
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Figure 6: Apocynin treatment reduces leukocyte recruitment into GVHD target organs. GVHD was induced by the adoptive transfer of
107 BM cells + 3 × 107 splenocytes from C57BL/6 mouse donors to B6D2F1 mice. Mice that received syngeneic (B6D2F1) BM cells and
splenocytes did not develop disease and were considered the control group. After GVHD induction, recipient mice were treated with
apocynin (3mg/kg, 24 h/24 h, intraperitoneally) or vehicle 30min before transplantation until the experimental endpoint. The leukocyte
recruitment was evaluated on day 13 after transplantation. The mice were anesthetized, and intestinal venules (±40μm) were selected to
count the numbers of rolling and adherent leukocytes by intravital microscopy. (a) The number of rolling cells/minute; (b) the number of
adherent cells/100 μm. Results are presented as the mean ± SEM (n = 4). Macrophages were quantified in the (c) liver and (d) jejunum-
ileum by enzymatic methods (NAG assay). Results are presented as the mean ± SEM (n = 6‐9). The percentage of (e) hepatic LT CD4+

was evaluated by flow cytometry. Results are presented as the mean ± SEM (n = 4). (f) Representative dot plot of the flow cytometry
analysis. ∗ and #: p < 0:05 when comparing to the control and vehicle groups, respectively.
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Figure 7: Continued.
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Multiple studies have shown the participation of the
chemokines CCL2, CCL3, and CCL5 in GVHD [12–16, 25,
53–56]. In our previous study, we found that the absence of
CCL3 in donor leukocytes or the pharmacological blockade
of its receptor also prevents mortality and reduces damage
in the intestine and liver of mice subjected to GVHD [16].
Furthermore, CCL2 and CCL5 are related to recruitment of

lymphocytes and macrophages to target organs of GVHD,
perpetuating an exacerbated immune response [15, 53–55].
Corroborating our results of chemokine reduction by apocy-
nin, some studies have been demonstrated that this NADPH
oxidase inhibitor also reduces the levels of CCL2 and CCL5
in other experimental models, such as influenza A virus
infection [57] and atherosclerosis [58].
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Figure 7: Apocynin treatment did not interfere with chimerism. GVHD was induced by the adoptive transfer of 107 BM cells + 3 × 107
splenocytes from C57BL/6 mouse donors to B6D2F1 mice. Mice that received syngeneic (B6D2F1) BM cells and splenocytes did not
develop disease and were considered the control group. After GVHD induction, recipient mice were treated with apocynin (3mg/kg,
24 h/24 h, intraperitoneally) or vehicle 30min before transplantation until the experimental endpoint. At day 13 after transplant, the mice
were killed and the percentage of H2d+H2b+ cells (marker for B6D2F1 cells) and H2b+ cells (marker for C57BL/6 cells) in the spleen and
BM was evaluated by flow cytometry. (a) Frequency of H2b+ in the spleen. (b) Frequency of H2b+H2d+ in the spleen. (c) Frequency of
H2b+ in the BM. (d) Frequency of H2b+H2d+ in the BM. (e) Representative dot plot of the flow cytometry analysis in the spleen. (f)
Representative dot plot of the flow cytometry analysis in the BM. Results are presented as the mean ± SEM (n = 4); ∗ and #: p < 0:05 when
comparing to the control and vehicle groups, respectively.
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Together, our data highlights the ability of apocynin to
reduce proinflammatory cytokines and chemokines and con-
sequently, to alleviate GVHD.

3.5. Apocynin Treatment Reduces Inflammatory Infiltrate in
GVHD Target Organs. To assess whether apocynin could
interfere with the initial stages of leukocyte migration to the
GVHD target organs, we performed intravital microscopy
on the intestinal postcapillary venules of animals subjected
to GVHD, at day 13 after transplantation. Treatment with
apocynin reduced the numbers of both rolling and mesen-
teric venule-adherent leukocytes (Figures 6(a) and 6(b)). This
result was similar to the findings published by Nunes-Silva
et al. [59], who demonstrated the relevance of apocynin in
decreasing the expression of adhesion molecules and subse-
quently, inhibiting cell recruitment into muscle tissue.

Moreover, apocynin treatment reduced the accumulation
of macrophages in the liver and jejunum-ileum (Figures 6(c)
and 6(d)) and the frequency of CD4+ T cells in the liver
(Figures 6(e) and 6(f)). There was no difference in the fre-
quency of CD4+ T cells in the jejunum-ileum and in the fre-
quency of CD8+ T cells in the liver and jejunum-ileum of
mice treated with apocynin or vehicle (data not shown).
The increase in ROS concentration leads to a differential T
cell response, including T cell receptor (TCR) activation
and cytokine production. On the other hand, the reduction
in ROS levels leads to low T cell activation and proliferation
[60]. The activation and interaction between donor T cells
and host APCs are essential for GVHD development. The
interference in T lymphocyte function or its depletion
through pharmacological and experimental manipulation is

a common strategy for GVHD prophylaxis [2]. Tissue dam-
age caused by cytotoxic T lymphocytes induces the recruit-
ment of other effector cells including natural killer (NK)
cells, neutrophils, and macrophages. Macrophages also have
an important role as APCs in the efferent phase of acute
GVHD. The progressive activation or priming of these cells
results in production of inflammatory mediators such as
TNFα and ROS, which causes subsequent inflammatory tis-
sue injury, weight loss, and death [61, 62]. This mechanism
of reduction in inflammatory infiltrate in the intestine and
liver after apocynin treatment observed here is consistent
with our previous results showing less injury and lower levels
of proinflammatory cytokines and chemokines in GVHD
target organs after ROS inhibition.

3.6. Inhibition of NADPH Oxidase Complex Did Not Interfere
with Chimerism. Stable donor engraftment is essential for the
reconstitution of the hematopoietic niche of transplanted
patients and for the elimination of reminiscent tumor cells
after hematopoietic stem cell transplant [63]. The main goal
of allo-HSCT is complete donor hematopoietic chimerism.
The maintenance of receptor hematopoiesis is related to the
risk of relapse and mortality after transplantation [64]. Our
next step was to evaluate if apocynin treatment could inter-
fere with engraftment. In order to achieve this objective, we
assessed the frequency of H2d+H2b+ cells (a marker of
B6D2F1 cells) and H2b+ cells (a marker of C57BL/6 cells)
in the spleen and BM at day 10 after transplantation. The
control group presented mostly H2d+H2b+ cells in both the
spleen and BM (Figure 7). Apocynin or vehicle-treated mice
showed a high frequency of H2b+ cells and a low frequency of

H2dH2bH2b

Apocynin Survival

Death

Oxidative stress

GVHD

Lipid peroxidation

Small intestine and liver damage

Cytokines
Chemokines

Leukocytes
Rolling and adhesion

Macrophages
CD4 lymphocytes

Lipid peroxidation
ROS

Figure 8: Summary of GVHD protection induced by apocynin treatment. Apocynin treatment controls oxidative stress, which in turn results
in lower liver and intestinal damage, decreased levels of proinflammatory cytokines and chemokines, reduced leukocyte rolling and adhesion,
reduced recruitment of macrophages and CD4 lymphocytes to GVHD target organs, and improvement of survival.
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H2d+H2b+ cells in both spleen and BM (Figure 7). These
results indicated that apocynin treatment did not interfere
with chimerism, confirming the success of engraftment.

4. Conclusions

Altogether, our data indicate that apocynin could be a poten-
tial therapeutic effect against acute GVHD. The ability of this
NADPH oxidase inhibitor to increase survival and reduce
severity of acute GVHD appears to be associated with con-
trolling oxidative stress, which in turn results in lower liver
and intestinal damage, reduced levels of proinflammatory
cytokines and chemokines, and decreased leukocyte recruit-
ment to GVHD target organs (Figure 8). Importantly, apoc-
ynin was able to regulate the inflammatory response related
to GVHD without impairing the engraftment.
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