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Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological
intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the
inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which
contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate
immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins
play important regulatory roles in inflammation and ALIL Herein, we integrate emerging evidence regarding the roles of TRIMs in
ALL Articles were selected from the searches of PubMed database that had the terms “acute lung injury,” “ubiquitin ligases,”
“tripartite motif protein,” “inflammation,” and “ubiquitination” using both MeSH terms and keywords. Better understanding of

these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.

1. Introduction

Acute lung injury (ALI) is an acute hypoxic respiratory
insufficiency caused by various direct (pulmonary) or indirect
(extrapulmonary) injuries including sepsis syndrome, ische-
mia-reperfusion, pneumonia, and mechanical ventilation,
which leads to the destruction of the barrier of alveolar epithe-
lial cells and capillary endothelial cells, resulting in overinfiltra-
tion of inflammatory cells and diffuse pulmonary interstitial
and alveolar edema [1]. In 1994, the diagnostic criteria of ALI
were put forward by the American-European Consensus Con-
ference: an acute onset; oxygenation index (PaO,/FiO,) >
200 mm Hgand < 300 mm Hg (1 mmHg = 0.133 kPa); patchy
shadows in both lungs on the chest X-ray; pulmonary artery
wedge pressure < 18 mmHg or no clinical evidence of left atrial
hypertension; etc. [2]. Due to the lack of drug intervention, ALI
remains a significant cause of morbidity and mortality in the
critically ill patient population [2]. More severe situations with

Pa0,/FiO, <200 mm Hg, ALI turns to the worse stage acute
respiratory distress syndrome (ARDS) [3].

Pathological hallmarks of ALI are injury to the vascular
endothelium/alveolar epithelium, activation of innate immune
response, and enhanced coagulation [4]. Exposure to several
risk factors (ie., pneumonia, sepsis, and shock) firstly leads
to endothelial and/or epithelial monolayers damage, increas-
ing permeability and impairing their barrier function [4]. A
large amount of protein-rich fluid and inflammatory cells
leaks into the alveoli and lung interstitium, resulting in
pulmonary edema, neutrophil infiltration, cytokine and reac-
tive oxygen species-mediated inflammation coagulation disor-
ders, and pulmonary fibrosis [5]. Notedly, mast cells (MCs)
and polymorphonuclear neutrophils (PMNs) are the main
inflammatory cells, which play a critical role in the pathogen-
esis of ALI [6, 7]. MC activation induces tryptase release to
trigger ALI [8], which is supported by the finding that MCs
“stabilizers” can reduce ALI severity [9].
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At present, there is still no effective pharmaceutical
intervention for ALI; mechanical ventilation is the main
approach to prevent respiratory failure and, combined with
intensive care support, could improve health condition
[10]. However, mechanical ventilation can exacerbate preex-
isting lung injury or even induce de novo injury in healthy
lungs, which is called ventilator-induced lung injury (VILI)
[11, 12]. In recent years, researchers have paid close atten-
tion to the identification of new routes at cellular level which
could provide a better understanding of the physiopathology
of ALIL but the precise cellular and molecular underlying
mechanisms are still to be fully elucidated. Chen et al.
recently summarized and introduced the role of IncRNAs
in ALI in detail [13]. However, emerging evidence points
out to the ubiquitination which functions as an important
regulator in the pathobiology of ALI since it regulates the
proteins evolved in the modulation of the alveolocapillary
barrier and inflammatory response, opening a highly prom-
ising research field for the treatment of lung diseases [14].

2. Ubiquitination in ALI

Ubiquitination is the major protein posttranslational modifi-
cation in cells by which ubiquitin (Ub) covalently attached
the target protein for degradation through the 26S protea-
some or lysosome or nonproteolytic modifications [15]. It
plays crucial roles in diverse biological processes such as
DNA repair, cell proliferation, signal transduction, apopto-
sis, and inflammation, whose dysregulation leads to many
diseases [16]. However, bacterial infection or inflammatory
stimulation often disrupts the process of protein ubiquitina-
tion. We and some other investigators have shown that
expressions of some E3 Ub ligases were altered by infection
or inflammation thus affecting the levels and functions of
their target proteins. Thus, uncovering new E3 Ub ligase-
related molecular mechanisms and signaling pathways will
provide a unique opportunity for the potential design of
new strategies to alleviate ALIL

2.1. The Ubiquitin System. As a multicomponent regulatory
system, the Ub system is composed of three types of Ub
enzymes, which is a highly controlled mechanism of protein
degradation and turnover in cells, starting with approximately
8kDa monomeric Ub [17]. Ub is activated by a Ub-activating
enzyme (E1) in an adenosine-triphosphate- (ATP-) depen-
dent manner and then conjugated by a ubiquitin conjugating
enzyme (E2), finally resulting in transfer of Ub to an internal
lysine of the substrate protein by an E3 ligase [18]. To date,
there are only two El enzymes (UBAl and UBAG6) [19],
around 40 E2 enzymes [20], but more than 600 E3 ligases
[21] existed in the human genome. Although the addition of
Ub moieties to specific residues on a substrate protein is partly
because of E2/E3 enzymes pairings, E3 ligases were considered
the predominant source of substrate specificity [22].

2.2. E3 Ligases. As a direct mediator of substrate tagging and
ubiquitin chain elongation, E3 ligase is considered an essen-
tial component in the ubiquitin system that determines sub-
strate specificity. In human genome, more than 600 putative
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E3 ligases have been identified [21]. There are three major
kinds of E3 ligases divided by the molecular structure and
functional mechanism, including HECT (homologous to
the E6-associated protein carboxyl-terminus) domain fam-
ily, RING (really interesting new gene) finger family, and
the RBR (RING in-between-RING) E3 ubiquitin ligases
[23]. HECT E3 ligase contains an N-terminal lobe which is
responsible for E2 binding and substrate recognition, and a
C-terminal HECT domain containing a catalytic cysteine
that receives and passes an ubiquitin molecule from the E2
enzyme before conjugating ubiquitin to a substrate protein
[24]. RING finger E3 ligases constitute the largest family of
E3 ligases which are characterized based on the presence of
a RING domain [25]. Interestingly, the canonical RING
domain is a type of zinc finger with a RING fold structure
while another type is the U-box domain which possesses
the same RING fold but without zinc [26]. Unlike HECT
E3 ligase, RING finger E3 ligase mediates the direct transfer
of ubiquitin to a substrate protein by binding to a ubiquitin-
charging E2 enzyme as a scaffold [27]. Notably, RING E3
ligases function either as monomers (e.g., c-CBL, E4B),
homodimers (e.g., cIAP, CHIP), heterodimers (e.g., Mdm2-
MdmX), or large multisubunit complexes, such as the
Cullin-RING ligases (CRLs), which make up a distinct sub-
type characterized by their common Cullin scaffold protein
[23]. RBR E3 ligases contain two RING domains (RINGI1
and RING2) with an in-between-RING (IBR) domain and
share the common features of both HECT and RING finger
E3 ligases which function as a hybrid of these two types of
E3 ligases [28]. Specifically, the RING1 domain binds to
ubiquitin-loaded E2 and transfers ubiquitin onto the RING2
domain at a catalytic cysteine residue before conjugation to
the substrate protein [29].

2.3. Role of E3 Ligases in ALL Although ubiquitination has
been reported to play a pivotal role in multiple biological
functions, its function in ALI remains poorly understood.
Recently, the key regulative role of ubiquitination in ALI
has been mentioned increasingly [14]. Of them, most studies
have been focused on the E3 ubiquitin ligases and the con-
ventional K48-ubiquitination which leads to the substrate
proteins degradation via the 26S proteasome [30]. Accumu-
lating evidence has demonstrated that E3 ligase plays a crit-
ical role in the pathobiology of ALI since it modulates
critical proteins involved in the alveolocapillary barrier and
the inflammatory response [14].

Tight junctions form a highly selective diffusion barrier
between endothelial cells and epithelial cells by preventing
most dissolved molecules and ions from passing freely
through the paracellular pathway [31]. The function impair-
ment of tight junction is a sign of ALI [32]. E3 ligase Itch, a
member of the HECT Ub ligases, could directly interact with
and degrade the tight junction-specific protein occludin [33]
via ubiquitination. E-cadherin, a well-studied member of the
classical cadherin family, is a central component in the cell-
cell adhesion junction and plays a critical role in maintain-
ing cell polarity and the integrity of epithelial cells [34].
Dysfunction of E-cadherin contributes to the pathogene-
sis of ALI [35]. A RING finger E3 ligase Hakai induces
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E2-dependent ubiquitination and endocytosis of E-cadherin
complex in epithelial cells [36]. Recently, Dong et al. found
that the HECT E3 ligase Smurf2 induced y-opioid receptor 1
(MORL1) degradation in the ubiquitin-proteasome system in
lung epithelial cells, and MORI1 has a potential effect in lung
repair and remodeling after ALI [37].

E3 ligase Cblb inhibits the MyD88-dependent Toll-like
receptor 4 (TLR4) signaling and attenuates acute lung
inflammation induced by polymicrobial sepsis [38]. The
ST2L receptor for interleukin 33 (IL-33) mediates pulmo-
nary inflammation during ALI, which is bound and ubiqui-
tinated by FBXL19, a member of the Skpl-Cullin-F-box
family of E3 ubiquitin ligases [39]. In addition, E3 ligase
FBXO3 targets the TRAF inhibitor FBXL2 for its destabiliza-
tion and potently stimulates cytokine release, leading to
changes in lung permeability, alveolar edema, and ALI
[40]. FBXO17 has been described as an E3 ligase that recog-
nizes and mediates the ubiquitination and degradation of
GSK3p to reduce inflammatory responses in lung epithelial
cells after LPS injury [41]. Most recently, Lear et al. reported
that E3 ligase KIAA0317 targets SOCS2 for ubiquitination
and degradation by the proteasome and exacerbates pulmo-
nary inflammation [42]. These studies have proved that
ubiquitin-proteasome system especially E3 ligases is closely
related to the pathogenesis of lung injury.

3. TRIMs in ALI

TRIM proteins are regarded as a subfamily of the RING fin-
ger E3 ligase, which contain more than 80 distinct members
in humans [43]. TRIMs are composed by conserved three
zinc-binding domains, an N-terminal RING domain, one
or two B-boxes, and a central coiled-coiled domain (CDD)
[44]. We recently found that TRIM65 selectively targeted
vascular cell adhesion molecule 1 (VCAM-1) and promoted
its ubiquitination and degradation, by which it critically con-
trolled the duration and magnitude of pulmonary inflamma-
tion in ALI [45]. Particularly, Whitson and his colleagues
reported that TRIM72 (also known as MG53) could function
as a novel therapeutic protein to treat ALI [46]. Here, we dis-
cuss our current understanding of TRIMs as E3 ligases that
executes its effector functions in ALI (Table 1).

3.1. TRIMS8. TRIMS, as a member of TRIM family, has a
common structural feature of a typical RBCC motif as well
as a monopartite nuclear localization signal (NLS), which
allows shuttling and functioning into the nucleus [47]. It
has been reported that TRIM8 can regulate NF-«B signaling
both in the nucleus and cytoplasm: TRIMS inhibited PIAS3-
mediated negative regulation of p65 to enhance NF-xB
activity in the nucleus [48] and can also positively regulate
NF-xB pathway through ké63-linked polyubiquitination of
cytoplasmic protein TAK1 [49]. TRIMS8 is ubiquitously
expressed in human and mouse tissues, which has higher
expression levels in the central nervous system, kidney, and
lens, and lower expression level in digestive tract [44].
TRIMS plays a key role in the immune response and partic-
ipates in various fundamental biological processes such as

cell survival, apoptosis, autophagy, differentiation, inflam-
mation, and carcinogenesis [50].

Recently, studies have revealed that TRIMS is involved
in the regulation of sepsis and ALL. TRIMS8 was significantly
upregulated in LPS (lipopolysaccharide) sepsis-induced
acute hepatic injury (AHI), which was a direct target of
miR-373-3p [51]. Moreover, inhibition of TRIM8 by down-
regulation of long noncoding RNA (IncRNA) LINCO00472,
which served as a sponge for miR-373-3p and negatively reg-
ulated its expression, could reduce sepsis-induced expression
of main proinflammatory cytokines such as IL-6, IL-10, and
TNF-a [51]. Xiaoli et al. found that TRIMS8 was increased in
a time-dependent manner during LPS-induced ALI, pro-
moting inflammatory response and ROS generation via the
inactivation of p-AMPKa. In addition, suppression of
TRIMS8 markedly downregulated mRNA levels of interleu-
kin-1f8 (IL-1p), IL-6, and tumor necrosis factor-a (TNF-«a)
in lung epithelial cells mainly through blocking the NF-xB
signaling pathway and alleviated oxidative stress by regulat-
ing Nrf2 signaling and heme oxygenase-1 (HO-1) expression
[52]. Although TRIMS has been revealed to play an important
role in acute lung injury, precise regulatory mechanisms such
as whether it depends on the activity of E3 ubiquitin ligase and
its specific target proteins need to be further clarified.

3.2. TRIM14. TRIM14 was originally known as KIAA0129
[53], and its overexpression was first found in human
immunodeficiency virus- (HIV-) infected human and simian
non-Hodgkin’s [ymphoma infected with simian immunodefi-
ciency virus (SIV) [54, 55]. TRIM14 is a noncanonical mem-
ber of the TRIM family, since it lacks the N-terminal RING
domain of the typical RBCC motif which can exert an E3
ubiquitin ligase [56]. Studies have shown that TRIM14 can
perform various functions via partners with which directly
interact with its PRYSPRY domain [57]. Interestingly,
TRIM14 was reported to be an important mediator of antiviral
immunity both in DNA virus and double-stranded RNA virus
infection [58, 59]. Furthermore, several groups found that
TRIM14 may be involved in tumorigenesis [60-64].
Recently, we found that TRIM14 was overexpressed in
human vascular endothelial cells (ECs) and markedly
induced by inflammatory stimuli such as LPS [65]. TRIM 14
was a new positive regulator of endothelial activation via
activating the NF-«B signaling pathway, which can directly
bind to the promoter of TRIM14 gene and control its tran-
scription [65]. Zhou et al. revealed that TRIM14 underwent
Lys-63-linked autopolyubiquitination at Lys-365 and served
as a platform and recruited NEMO to the mitochondrial
antiviral signal (MAVS) complex, leading to the activation
of interferon regulatory factor 3 (IRF3) and NF-«B signaling
in human lung epithelial cells, which boost antiviral innate
immune response [66]. TRIM14 also can recruit USP14 to
cleave the K63-linked ubiquitin chain at lysine 332/338/341
of pl00/p52, hinder the recognition of receptor p62, and
inhibit the autophagy degradation of p100/p52, thus pro-
moting the atypical activation of NF-xB in wvivo and
in vitro [67]. Considering endothelial inflammation and dys-
function play a prominent role in development of ALI and
NF-«B is a central transcriptional factor in ALIL it is
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TaBLE 1: Role of TRIMs in acute lung inflammation.
TRIMs Models Cell types Mechanisms Ref No
TRIMS LPS-induced AHI Human liver cells LINC00472/miR-373-3p/TRIMS axis [51]
LPS-induced ALI Lung epithelial cells p-AMPKa/NF-xB/Nrf2/ROS/HO-1 axis [52]
TRIM14 LPS-induced ALI Human vascular endothelial cells ~ NEMO/TAKI1/NF-«xb/TRIM14 pathway [63]
TRIM21 LPS-induced ALI Lung microvascular endothelial cells NF-«B signaling [79]
]

TRIM65 ALI

Ischaemia-reperfusion and
overventilation-induced ALI
TRIM72 Influenza virus -induced ALI

Hemorrhagic shock/contusive ALI

Human vascular endothelial cells
Lung epithelial cells

Macrophage
Lung tissue

Human bronchial epithelial cells

VACM-1 ubiquitination and degradation ~ [45

Cell membrane repair [97]
NF-«B signaling
Inhibition of pyroptosis (98, 106]
Cell membrane repair [46]

suggested that TRIM14 may be involved in the pathological
process of ALIL, which needs further study.

3.3. TRIM21. TRIM21, also known as Ro52, has a typical
RBCC motif and E3 ligase activity [68]. It is broadly
expressed in most human tissues and cells and predomi-
nantly expressed in hematopoietic cells and endothelial
and epithelial cells [69]. TRIM21 was identified as a major
autoantigen in autoimmune diseases including Sjogren’s
syndrome, systemic lupus erythematosus (SLE), and rheu-
matoid arthritis [70-72]. Later studies revealed that TRIM21
is a highly conserved IgG receptor with high cytoplasmic
affinity and specificity [73, 74], which can be induced by
interferon to exert antiviral effect [75]. TRIM21 serves as a
multifaceted regulator in viral immunity and can not only
promote the production of type I interferon [76] and triggers
an innate immune response via RIG-1 and cGAS sensing
[77] but also negatively regulate innate immunity by target-
ing and degrading the viral DNA sensor DEAD (Asp-Glu-
Ala-Asp) box polypeptide 41 (DDX41) [78]. The biological
function and application of TRIM21 in antiviral immunity
are described in detail in other reviews [79].

Using TRIM21-deficient mice, Yoshimi and colleagues
found that TRIM21 is a negative regulator of NF-xB-depen-
dent proinflammatory cytokine production induction in
fibroblasts after TLR ligands (poly(I:C), CpG, and LPS)
stimulation [80]. In addition, TRIM21 deletion can lead
enhanced production of proinflammatory cytokines and sys-
temic autoimmunity though the IL-23-Th17 pathway [81].
Recently, Li et al. reported that TRIM21 exhibited an anti-
inflammatory property against LPS-induced lung endothe-
lial dysfunction and monocytes adhesion to endothelial cells
[82]. TRIM21 can be monoubiquitylated and lysosomal
degraded in response to LPS and may contribute to the path-
ogenesis of ALI [52]. TRIM21 can be used as a therapeutic
target for endothelial dysfunction induced by sepsis, such
as acute lung injury [83]. However, whether ubiquitination
of TRIM21 is dependent on its phosphorylation and the
specific phosphorylation or ubiquitination sites needs to be
further clarified.

3.4. TRIM65. Human TRIMS65 is a 517-amino acid protein,
containing a N-terminal RING domain, a B-box, a coiled-
coil domain, and a SPRY domain, is first known as a gene

associated with white matter lesions [84, 85]. Using a sys-
tematic discovery-type proteomic analysis, Li et al. found
that TRIM65 can negatively regulate miRNA-mediated
mRNA translation inhibition through ubiquitination and
subsequent degradation of trinucleotide repeat containing
six (TNRC6) [86, 87]. Like other TRIMs, TRIM65 also par-
ticipates in the antiviral innate immune response by ubiqui-
tination of MDAS5 [88, 89]. Over the years, several reports
suggest that TRIM65 acts as a ubiquitin E3 ligase, targeting
p53, ANXA2, Axinl, and ARHGAP35 to regulate carcino-
genesis [90-93]. Most recently, Liu et al. published a review
to introduce TRIM65 in white matter lesions, innate immu-
nity and tumor [94].

We recently found that TRIM65 may control the magni-
tude and duration of LPS-induced lung inflammation and
injury [45]. TRIM65-deficient (TRIM65 /") mice are more
sensitive to LPS-induced death due to sustained and severe
pulmonary inflammation. Further studies showed that
monocytes/macrophages were higher in the BAL from
TRIM65 '~ mice, by which TRIM65 selectively targets
vascular cell adhesion molecule 1 (VCAM-1) and directly
induces its ubiquitination degradation in endothelial cells.
It is worth noting that TRIM65 does not affect the MAPK
and NF-«B signaling pathways in ALI, although some
studies have revealed that TRIM65 can activate the Erk1/2
pathway [95, 96], which suggests that TRIM65 has diverse
functions in different cells and under distinct pathological
conditions. Furthermore, TRIM65 is enriched in endothelial
cells and declined at the early stage during endothelial
activation; the mechanisms that precisely regulate TRIM65
levels in endothelial inflammation remain unknown. Further
studies are necessary to understand the regulatory mecha-
nisms that control TRIM65 expression.

3.5. TRIM72. TRIM72 (also known as MG53) is composed
of a typical TRIM family protein RBCC structure and a
PRY-SPRY subdomain which is mainly expressed in cardiac
and skeletal muscle, as well as in renal and alveolar epithelial
cells, monocyte, and macrophages with detectable amount
level [97-100]. Cai et al. first revealed that TRIM72 acted
as a key component of the sarcolemma cell plasma
membrane repair machinery [101]. Upon the membrane
injurious stimuli, TRIM72 oligomerized by oxidizing the
thiol group of cysteine at position 242 and a leucine zipper
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motif to induce the intracellular vesicles coated with
TRIM?72 to nucleate at the injured site, resulting in resealing
the damaged membrane [102, 103]. At the membrane,
TRIM?72 protein binds to phosphatidyl serine to mediate the
recruitment of vesicles at the injured site [104]. Interestingly,
TRIM72 can be secreted and circulate throughout the entire
body to reach all tissues and organs, allowing the recombinant
TRIM72 protein to have therapeutic benefit in treatment of
injuries to multiple tissues, such as the heart, kidney, lung,
brain, liver, skin, skeletal muscle, and cornea [105].

Ablation of the TRIM72 gene leads to increased suscep-
tibility to ischemia-reperfusion and overventilation-induced
ALI in mice [97]. Recently, Sermersheim and his colleagues
found that knockdown of TRIM72 in macrophages results
in activation of NF-«B signaling and increased inflammatory
factor interleukin-18 upon influenza virus infection, and
knockout of TRIM72 promotes CD45" cells infiltration
and IFN elevation in the lung [98]. Kenney et al. found that
exogenous injection of recombinant human TRIM72 protein
could protect ALI caused by lethal influenza virus infection
[106]. Recombinant TRIM72 protein significantly decreased
the level of inflammatory cytokines of IFNJ3, IL-6, and IL-13
and infiltrating CD11b" lymphocytes in lung tissues [106]. It
is reported that intravenous (IV) delivery or inhalation of
recombinant human TRIM72 protein reduces symptoms in
rodent models of ALI and emphysema [97]. The extracellu-
lar recombinant protein protects cultured lung epithelial
cells against anoxia/reoxygenation-induced injuries [97].
Most recently, Whitson et al. had evaluated the therapeutic
benefits of recombinant human TRIM72 protein in porcine
models of ALI and found that recombinant TRIM72 protein
can mitigate lung injury in the porcine model of combined
hemorrhagic shock/contusive lung injury and reduce warm
ischemia-induced injury to the isolated porcine lung
through ex vivo lung perfusion administration [46]. These
findings revealed that TRIM72 plays a critical role in ALIL,
and exogenous-recombinant TRIM72 protein may be a shelf
stable therapeutic agent with the potential to restore lung
function and lessen the impact of ALL

4. Conclusions

TRIMs are a wide and well-conserved family of proteins
defined as a subfamily of the RING-type E3 Ub ligases,
which have been implicated in a broad range of biological
processes including antiviral immunity, cell differentiation,
development, and carcinogenesis. Accumulating evidence
has shown that several TRIM members have unique and
vital roles in ALI using distinct mechanisms (Table 1). Par-
ticularly, the regulation of ALI by targeting cell membrane
repair has been a focus of intense research in the last few
years. Interestingly, systemically administered recombinant
human TRIM?72 proteins could recognize injury to both epi-
thelial and endothelial layers in the lung, which can effec-
tively preserve lung structure and function in ALIL. TRIM72
will be one of the most promising therapeutic agents with
the potential to restore lung function and lessen the impact
of ALIL Further work is needed to understand full contribu-
tion of TRIMs including discovered and undiscovered mem-

bers to ALIL Identification of TRIM proteins with the
potential to serve as therapeutic targets of ALI may help to
novel drug development of ALI treatment.
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