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Despite the advances in the treatment of hepatocellular carcinoma (HCC), the prognosis of HCC patients remains unsatisfactory
due to postsurgical recurrence and treatment resistance. Therefore, it is important to reveal the mechanisms underlying HCC and
identify potential therapeutic targets against HCC, which could facilitate the development of novel therapies. Based on 12 HCC
samples and 12 paired paracancerous normal tissues, we identified differentially expressed mRNAs and lncRNAs using the
“limma” package in R software. Moreover, we used the weighted gene coexpression network analysis (WGCNA) to analyze the
expression data and screened hub genes. Furthermore, we performed pathway enrichment analysis based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. In addition, the relative abundance of a given gene set was estimated by
single-sample Gene Set Enrichment Analysis. We identified 687 differentially expressed mRNAs and 260 differentially expressed
lncRNAs. A total of 6 modules were revealed by WGCNA, and MT1M and MT1E genes from the red module were identified as
hub genes. Moreover, pathway analysis revealed the top 10 enriched KEGG pathways of upregulated or downregulated genes.
Additionally, we also found that CD58 might act as an immune checkpoint gene in HCC via PD1/CTLA4 pathways and
regulate the levels of tumor-infiltrating immune cells in HCC tissues, which might be an immunotherapeutic target in HCC.
Our research identified key functional modules and immunomodulatory regulators for HCC, which might offer novel diagnostic
biomarkers and/or therapeutic targets for cancer immunotherapy.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors and the fourth leading cause of cancer-
related death globally, which has posed a substantial financial
and health burden [1]. In China, HCC accounts for about
90% of all cases of primary liver cancer, and 422,100 individ-
uals succumb to liver cancer annually [2]. Despite the
advances in HCC treatment (especially immunotherapy),
its mortality holds an increasing trend and the prognosis of
patients with HCC remains unsatisfactory. However, the
complex mechanisms underlying the initiation and progres-

sion of HCCmake it challenging to develop novel therapeutic
strategies.

Accumulating studies reveal the critical roles of immune
cells in the initiation, metastasis, and recurrence of HCC [3,
4]. Multiple regulatory molecules could inhibit the antitumor
activity of tumor-associated immune cells, thus resulting in
immune escape [5–7]. As a strategy to normalize the antitu-
mor immune responses against cancer cells, cancer immuno-
therapy has achieved clinical success in the last five years and
revolutionized the treatment landscape of HCC [8]. How-
ever, the limited response and significant toxicity impede
the therapeutic effect. Therefore, it is necessary to reveal the

Hindawi
Journal of Immunology Research
Volume 2021, Article ID 1801873, 21 pages
https://doi.org/10.1155/2021/1801873

https://orcid.org/0000-0001-7343-1256
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1801873


underlying mechanisms of HCC and identify potential ther-
apeutic targets, with an emphasis on immunomodulatory
regulators.

This study identified differentially expressed genes and
lncRNAs based on the expression profile of 12 HCC samples
and 12 paired paracancerous normal tissues. The weighted
gene coexpression network analysis (WGCNA) was used to
screen vital modules and hub genes correlated to HCC.
Moreover, we performed pathway enrichment analysis based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. In addition, we estimated the relative abundance
of a given gene set by single-sample Gene Set Enrichment
Analysis (ssGSEA). This study is aimed at identifying key
functional modules and immunomodulatory regulators for
HCC, which might offer novel diagnostic biomarkers and/or
therapeutic targets for cancer immunotherapy.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The expression
profile of GSE115018 was downloaded from the Gene
Expression Omnibus database. In GSE115018, Shi et al. [9]
collected 12 HCC samples and 12 paired paracancerous
normal tissues from the first affiliated hospital of Guangxi
Medical University. All the patients received the first oper-
ation on primary disease without radiochemotherapy. The
diagnosis of HCC was further confirmed using histopathol-
ogy after surgery. Within 30 minutes after isolation, the
tissues were immediately frozen in liquid nitrogen and stored
at -80°C. The Ethics Committee of the First Affiliated Hospi-
tal of Guangxi Medical University approved this study, and
informed consent for participation was acquired from all
participants and their families [9]. We matched probes with
gene symbols after removing redundant data (time, null
value, etc.). A total of 9,945 mRNAs and 5,072 lncRNAs were
analyzed.

2.2. Differential Expression Analysis. We first used the
“wateRmelon” package to correct background, normalize
quantile, and summarize quantile to eliminate potential
error. Then, we used the “limma” package to analyze the dif-
ferentially expressed mRNAs and lncRNAs between HCC
and paired paracancerous normal tissues with criteria of
adjusted P value < 0.05 and ∣log2 fold − change ðFCÞ ∣ ≥1.

2.3. WGCNA and Screening of Hub Genes. Weighted gene
coexpression network analysis (WGCNA) is a systematic
biology method [10], which identifies highly correlated genes
and related modules to external sample traits. Before network
construction, we removed obvious outlier samples or sam-
ples with excessive numbers of missing entries to avoid data
deviation. Then, the step-by-step network construction and
module detection were performed [10].

According to the criterion of approximate scale-free
topology, we chose the soft-threshold power (β-value) of 7
to determine a scale-free topology index (R2) of 0.86. Then,
we calculated adjacencies using the soft-threshold power
and transformed the adjacency into the Topological Overlap
Matrix (TOM), which was an average linkage hierarchical

clustering with a dissimilarity measure to detect gene mod-
ules. The minimum module size of 30 and cut height of
0.99 were set to identify and merge gene modules with similar
expression probes.

Furthermore, we used Zsummary to evaluate the func-
tional module preservation [11]. Zsummary is comprised of
four statistics related to density and three connectivity-
related statistics, and it was created to quantitatively assess
whether the density and connectivity patterns of modules
defined in a reference dataset are preserved in a test dataset.
A Zsummary value between 2 and 10 indicates moderate
module preservation, whereas a Zsummary > 10 provides
strong support for module preservation.

Genes with the highest degree of connectivity in a module
were identified as hub genes, which could determine the
biological significance of the module. We correlated the dif-
ferent module eigengenes (MEs) and the clinical traits. The
gene significance (GS) quantifies the association of individual
genes with the clinically interesting trait, and the module
membership (MM) acts as the correlation between MEs
and the gene expression profiles. Hub genes would be chosen
if GS value was >-log10 (0.05) and the absolute value of kME
was >0.85.

2.4. Pathway Enrichment Analysis. Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a database resource for
understanding high-level functions and utilities of the bio-
logical system from molecular-level information, especially
large-scale molecular datasets generated by genome sequenc-
ing and other high-throughput experimental technologies
[12]. The logFC of DEGs obtained from differential expres-
sion analysis was applied for enrichment analysis. R packages
of “clusterProfiler” and “enrichplot” were used to perform
KEGG enrichment analysis with a threshold of P value
<0.05. Further, enriched signaling pathways were visualized
with “dotplot” and “gseaplot” packages of R software.

2.5. Network Analysis and Target Relationship Prediction.
Coexpression network analysis was conducted based on the
Pearson correlation coefficient to explore the correlations
between differentially expressed lncRNAs and mRNAs. R
was applied to the output node and edge files of the eligible
paired lncRNA-mRNA interaction, and Cytoscape 3.6.0 soft-
ware was used to visualize the lncRNA-mRNA coexpression
network.

Then, miRNA targets of lncRNAs and miRNAs were
carried out based on the miRanda database (http://www
.microrna.org/) and TargetScan 7.2 (http://www.targetscan
.org/vert_72/). The miRNAs cotargeting the certain lncRNA
and the certain mRNA were filtered using Venny 2.1.0
(http://bioinfogp.cnb.csic.es/tools/venny/).

2.6. Expression Analysis of Hub Genes Based on TCGA.
The expression of hub genes in HCC and normal tissues
was evaluated using the UALCAN, an interactive web portal
to perform in-depth analyses of TCGA gene expression data
[13]. Meanwhile, the expression levels of hub genes were also
evaluated in patients with various tumor grades, ages,
genders, and races.
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Figure 1: Continued.
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2.7. TIMER Database Analysis.We used the TIMER database
to analyze the association between the hub gene expression
and the abundance of infiltrating immune cells, including B
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils,
and dendritic cells [14].

2.8. The Immune Cell Infiltration in Tumor Cells. We com-
prehensively estimated the infiltration level of immune cell
populations of each sample by ssGSEA, which was imple-
mented in the GSVA package [15]. As an extended gene
set enrichment analysis method, ssGSEA was designed to
compute the separate enrichment scores for a particular
gene set in each sample instead of the gene-phenotype asso-
ciation score. The gene set from a previous study [16], which
included 364 genes representing 24 microenvironment cell
types (see their Supplementary Table S1), was input into
the ssGSEA algorithm. The overall immune cell infiltrating
levels were estimated by the R estimate package [17].

3. Result

3.1. DEG Identification. After correcting background, nor-
malizing quantile, and summarizing quantile (Figures 1(a)
and 1(b)), we identified a total of 687 differentially expressed
mRNAs in HCC tissues compared with paracancerous
normal tissues. Figure 1(c) shows the volcano plot of differ-
entially expressed mRNAs. The top 10 differentially upregu-

lated genes (including SPINK1, HIST1H2AG, HIST1H3H,
CCNA2, KIF20A,MKI67,MDK, CCNE2, GPC3, and TRIM31)
and top 10 downregulated genes (including CYP2E1, MT1M,
MT1E, SLC25A47, MT1G, COLEC10, FCN3, CRHBP, DCN,
and SAA1) are shown in the heat map (Figure 1(d)).

Moreover, a total of 260 differentially expressed lncRNAs
were identified from dataset GSE115018 after preprocessing
(Figures 2(a) and 2(b)). As shown in the volcano plot
(Figure 2(c)), 102 of these lncRNAs were upregulated in the
tumor, while 158 of them were downregulated. The top 10
upregulated and downregulated lncRNAs in HCC tissues
compared with paracancerous normal tissues are shown in
the heat map (Figure 2(d)).

3.2. WGCNA and Screening of Hub Genes. To identify key
modules related to HCC, the soft-threshold power of 7
was set to ensure a scale-free network (scaleR2 = 0:86)
(Figure 3(a)). With a minModuleSize of 30 and a
CutHeight of 0.99, a total of six modules were identified
in WGCNA: blue, brown, green, red, turquoise, and yellow
module (Figure 3(b)). The heat map depicting the TOM of
genes is shown in Figure 3(c). The darker parts indicated a
higher degree of connectivity and suggested that these
genes might be highly related to HCC. The results of GS
showed that the module significance (MS) of the turquoise
and red modules was higher than that of the other mod-
ules. The module eigengene tree showed a similarity
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Figure 1: Identification of differentially expressed mRNAs. Box plots show the distribution of the relative mRNA expression in each sample
before (a) and after (b) normalization of GSE115018. Each box corresponds to one sample. The middle line corresponds to the median. (c)
Volcano plot of differentially expressed mRNAs. Differentially expressed mRNAs were screened with criteria of adjusted P value < 0.05 and
∣log2 fold − change ðFCÞ ∣ ≥1. (d) The cluster heat map of the top 10 upregulated and downregulated mRNAs.
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among different modules (Figure 3(d)). The module yellow
and module blue had high similarity, and the correlation
coefficient between these two modules was 0.75. Scatterplots
of module membership and GS showed where each gene was
in the relevant network (Figures 3(e) and 3(f)). Additionally,
we also performed enrichment analysis on the blue and yellow
modules using Gene Ontology (GO) and the KEGG data-
base. As shown in SFigure 1A, the enriched biological
processes were mainly involved in fatty acid metabolic
process, response to xenobiotic stimulus, cellular response to
xenobiotic stimulus, xenobiotic metabolic process, and drug
catabolic process. The cellular components were primarily
enriched in mitochondrial matrix and mitochondrial inner
membrane, whereas the enriched molecular functions were
mainly associated with steroid hydroxylase activity and
monooxygenase activity. KEGG pathway analysis suggested
that the metabolism of xenobiotics by cytochrome P450
was the most enriched pathway, followed by complement
and coagulation cascades, glucagon signaling pathway,
lipid and atherosclerosis, and PI3K-Akt signaling pathway
(SFigure 1B).

Zsummary of brown, green, red, turquoise, and yellow
modules were all <10 (Figure 4(a)), and we chose these five
modules to perform further analysis and identify hub genes.
With a threshold of GS > −log 10 ð0:05Þ and the absolute
value of kME > 0:85, we selected hub genes and intersected
with the top 10 upregulated or downregulated ones. Hub

genes in the five modules are shown in Figure 4(b). Impor-
tantly, MT1M and MT1E genes from the red module were
identified as hub genes. Moreover, we constructed a network
for genes from the red module, andMT1E andMT1M genes
were in the network center (Figure 4(c)).

3.3. KEGG Pathway Analysis.We performed KEGG pathway
analysis to achieve a more in-depth insight into the biological
roles of the identified DEGs. Figures 5(a) and 5(b) show the
top 10 enriched KEGG pathways of upregulated and down-
regulated genes. For the upregulated genes, complement
and coagulation cascades, retinol metabolism, and glycolysis
were the top three pathways. Moreover, DNA replication,
alcoholism, and viral carcinogenesis were the top three
enriched pathways for downregulated genes. Different genes
enriched by these pathways were shown in Figure 5(c). Nota-
bly, the retinol metabolism pathway was highly expressed in
HCC, and the coexpression network of lncRNAs and
mRNAs from the retinol metabolism pathway was shown
in Figure 5(d).

3.4. Expression Analysis of MT1E and MT1M Based on
TCGA. Figures 6(a) and 6(d) show an overview on the
MT1E and MT1M expression levels in tumors compared
with normal samples across multiple cancer types in the
TCGA database. MT1E and MT1M were significantly
downregulated in HCC tissues than in normal samples
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Figure 2: Identification of differentially expressed lncRNAs. Box plots show the distribution of the relative lncRNA expression in each sample
before (a) and after (b) normalization of GSE115018. (c) Volcano plot of differentially expressed lncRNAs. Differentially expressed lncRNAs
were screened with criteria of adjusted P value < 0.05 and ∣log2 fold − change ðFCÞ ∣ ≥1. (d) The cluster heat map of the top 10 upregulated and
downregulated lncRNAs.
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(both P value < 0.01; Figures 6(b) and 6(e)). Moreover,
Figures 6(c) and 6(f) showed that this trend was consistent
regardless of tumor grade (grades 1 to 4), age (21-40, 41-60,
61-80, and 81-100 years old), gender (male and female), and
race (Caucasian, African-American, or Asian ethnicity).

3.5. TIMER Database Analysis.We used the TIMER database
to explore the correlation between the expression level of
MT1E and MT1M and immune cell infiltration. Both
MT1E and MT1M expression were significantly correlated
with the infiltration levels of B cells, CD8+ T cells, CD4+ T
cells, macrophages, neutrophils, and dendritic cells in HCC.
Furthermore, there was a negative correlation between
MT1E expression and the infiltration of B cells, CD4+ T cells,
and macrophages, while the expression of MT1M was posi-
tively associated with the infiltration of B cells, CD8+ T cells,
macrophages, neutrophils, and dendritic cells. These results
indicated that MT1E and MT1M might play an important
role in regulating immune infiltration in HCC (Figure 6(g).

3.6. The Association between Functional Modules and the
Immunomodulatory Regulators in HCC. To further explore
the biological roles of the functional modules, we con-

ducted a correlation analysis between the functional mod-
ules and immunomodulatory regulators in the TCGA liver
cancer cohort, which had a larger sample size. The relative
expression abundances of the functional modules were
estimated by ssGSEA (Figure 7(a)). Specifically, we observed
that the green module was positively correlated with
TNFSF13B, CD86, CD226, TNFSF8, CD274, and PDCD1LG2.
Particularly, CD86, CD274, and PDCD1LG2 were well-
recognized immune checkpoint genes involved in PD1/
CTLA4 pathways. In contrast, the blue module was nega-
tively correlated with TNFRSF18 (correlation coefficient =
−0:47), TNFSF15 (correlation coefficient = −0:49), or CD58
(correlation coefficient = −0:4), whereas yellow was nega-
tively correlated with TNFSF15 with a correlation coefficient
of -0.43 (all P value < 0.05).

Among these immunomodulatory regulators, CD58 was
highly expressed in HCC tissues with high infiltrating levels
of immune cells (Figure 7(b), Wilcoxon-rank sum test, P <
0:001). Furthermore, high CD58 expression was associated
with shorter disease-free survival (P value = 0.0086) and
overall survival (P value= 0.0078), suggesting that CD58
was closely associated with HCC prognosis (Figures 7(c)
and 7(d)).
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Figure 3: Construction of weighted coexpression network and module analysis. (a) Soft-threshold selection. A soft-threshold power of 7 with
an R2 of 0.87 was selected. (b) Cluster dendrogram. Each color indicates one specific coexpression module, and each vertical line indicated an
individual gene. Six modules were identified in WGCNA, including blue, brown, green, red, turquoise, and yellow module. (c) Network heat
map plot of all genes suggesting the interaction of coexpression genes via TOM dissimilarity. The axe colors indicate the respective modules.
The color intensity represents the degree of overlap, where a darker yellow suggests a higher degree of connectivity. (d) Barplot of mean gene
significance associated with HCC. A higher value shows a more significant relationship. (e) Relation between different module eigengenes. (f)
Scatterplots of genes in the six modules. Module membership is set as the x-axis, whereas the y-axis is gene significance.
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Figure 4: The Zsummary statistics of the module preservation and hub gene screening. (a) Zsummary score analysis of different modules.
The dashed blue and green lines suggested the thresholds of 2 and 10, respectively. A Zsummary value between 2 and 10 indicates
moderate module preservation, whereas a Zsummary > 10 provides strong support for module preservation. (b) Hub genes in different
modules. The red solid points present the hub genes in each module. (c) Network of genes in the red module.
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4. Discussion

This study identified 687 differentially expressed mRNAs
and 260 differentially expressed lncRNAs based on 12 HCC
samples and 12 paired paracancerous normal tissues.
WGCNA revealed a total of 6 modules associated with
HCC, andMT1M andMT1E from the red module were iden-
tified as hub genes. Then, the pathway enrichment analysis
revealed the top 10 enriched KEGG pathways, and we created
a coexpression network of lncRNAs and mRNAs from the
retinol metabolism pathway. Interestingly, our research indi-
cated that CD58 might act as an immune checkpoint gene in
HCC and regulate the levels of tumor-infiltrating immune
cells in HCC tissues, which might be an immunotherapeutic
target in HCC.

Despite the remarkable advances in the treatment strate-
gies [18], HCC is still the fourth leading cause of cancer-
related death globally, and it has posed a substantial health
burden [19]. Bioinformatics technology provides a novel
method to reveal the mechanisms underlying HCC and iden-
tify potential therapeutic targets, which contributes to the
development of novel agents against HCC.

Metallothionein (MT) family members are reported to be
associated with the cellular metabolism of metal ions and
cancer development. For example, MT family members were
reported to take part in the malignant transformation of
hepatocytes [20]. They could also protect cells from antican-
cer agents and irradiation-induced damage [21]. MT1 is one
of the MT family members, which is expressed in all eukary-
otes. It was reported that MT1 was downregulated in HCC,
and the silence of MT1 could promote the proliferation of
liver cancer [22]. Moreover, MT1M was demonstrated as a
tumor suppressor gene downregulated in HCC, which
would contribute to liver tumorigenesis by increasing cellu-
lar NF-κB activity [23, 24]. Consistent with previous
researches, our analysis discovered that MT1M and MT1E
were downregulated in HCC tissue and identified them as
hub genes in HCC. However, the role of MT1E in liver can-
cer is seldom studied. Our analysis disclosed that MT1E was
downregulated in liver cancer and may serve a similar func-
tion as MT1M.

KEGG pathway analysis suggested that multiple path-
ways (including complement and coagulation cascades, reti-
nol metabolism, glycolysis pathways, and so forth) were
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Figure 5: KEGG pathway analysis and coexpression network. (a) Dot plot of the top 10 enriched KEGG pathways of upregulated or
downregulated genes. The logFC of DEGs obtained from differential expression analysis was applied for enrichment analysis. (b) The
mountain range of the top 10 enriched KEGG pathways of upregulated or downregulated genes. (c) Cnetplot of the correlation between
metabolism pathways and differentially expressed mRNAs. (d) Coexpression of lncRNA and mRNA network from the retinol metabolism
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significantly enriched. Among them, the complement system
and coagulation cascade are classic immunomodulatory
regulators for both innate and adaptive immune responses
[25]. Moreover, retinol (vitamin A) lies at metabolic cross-
roads of multiple biochemical reactions, which serve as a
necessary precursor for retinoid and retinoic acid [26].
Immunomodulatory effects of retinoids have been revealed
in various human cellular lineages, including thymocyte,
lung fibroblast, Langerhans’ cell, natural killer cell, peripheral
blood mononuclear cell, and tumoral cell [27]. For example,
retinoic acid significantly improves the expansion of Foxp3+

inducible regulatory T cell and inhibits the differentiation of
T helper 17 cell, which contributes to maintaining immune
homeostasis [28, 29]. In contrast, retinol deficiency increases
proinflammatory cytokines and elevates T helper type 1
response [30]. The immunomodulatory roles of retinoids
have been summarized in several reviews [31, 32]. The close
connection between retinoids and liver diseases has also long
been recognized [33, 34], and several experimental studies
indicated the beneficial effects of retinoids on blocking
HCC development [35–37]. Additionally, accumulating evi-
dence suggests the immunomodulatory role of butyrate,
which could affect the epigenetic status of immune cells via
downregulating the enzymatic function of histone deacety-
lase [38–40].

In further network analysis on the retinoid metabolism
pathway, CYP1A2, CYP2A13, CYP2A7, CYP2B6, CYP2C19,
CYP4A11, ADH1B, ADH1C, ADH4, ADH6, and RDH5 were
in the center of the network. High expression of CYP1A2 was
reported to serve as a biomarker to predict recurrence-free
survival of HCC [41]. Moreover, the CYP2A13, CYP2A7,

CYP2B6, and CYP2C19 genes belong to the CYP2 family
[42]. CYP2A13 is a human cytochrome P450 (P450) enzyme,
which is widely expressed in the liver [43, 44]. Moreover, it is
responsible for the metabolism of nicotine, coumarin, and
tobacco-specific nitrosamine [45]. Recently, the interaction
between CYP2A13 and ABCB1was reported to be closely
associated with lung cancer, and CYP2A13 was identified as
a potential critical metabolic enzyme gene in the carcinogen-
esis of lung cancer [46, 47]. Additionally, the CYP2A7 pseu-
dogene transcript was demonstrated to affect the expression
of CYP2A6 in the liver as a decoy for miR-126, but the role
of CYP2A7 in HCC remains vague [48]. CYP2B6 and
CYP2C19 were previously reported as unfavorable prognosis
markers in breast cancer [49, 50]. In the analysis of circulat-
ing DNA from patients with advanced hepatocellular carci-
noma, CYP2B6, BAX, and HNF1A genes showed the
highest mutation frequency and a significant association with
the clinicopathological characteristics of HCC, which sug-
gested potential roles as driver genes in a specific clinical
setting [51]. CYP2C19 belongs to cytochrome P2C subfamily
members, which are known to be involved in clinical drug
metabolism. The expression levels of CYP2C8, CYP2C9,
and CYP2C19 genes were identified as potential prognostic
markers of HCC following hepatectomy [42]. Also, the
downregulation of the CYP2C19 gene is associated with
aggressive tumor potential and poorer recurrence-free sur-
vival of HCC [52, 53]. In our analysis, CYP2B6 and CYP2C19
were discovered to be upregulated in HCC, and the roles in
the process of liver cancer are required to be further verified.

ADH4 is an important member of the ADH family,
which was involved in metabolizing a large variety of

10

5

0
0.25

LI
H

C

M
T1

E 
ex

pr
es

sio
n 

le
ve

l (
lo

g2
 T

PM
)

0.50

Purity

0.75 1.00 0.1 0.2

B cell CD8 + T cell CD4 + T cell Macophage Neutrophil Dendritic cell

0.3 0.4 0.2 0.4 0.6 0.0 0.1 0.2
Infiltration level

0.3 0.4 0.0 0.1 0.2 0.3 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00

10

5

0

0.25

LI
H

C

M
T1

E 
ex

pr
es

sio
n 

le
ve

l (
lo

g2
 T

PM
)

0.50

Purity

0.75 1.00 0.1 0.2

B cell CD8 + T cell CD4 + T cell Macophage Neutrophil Dendritic cell

0.3 0.4 0.2 0.4 0.6 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.0 0.1 0.2 0.3 0.05 0.10 0.15 0.20 0.25 0.50 0.75 1.00

cor = −0.224
p = 2.55e−05

Partial cor = −0.112
p = 3.86e−02

Partial cor = −0.081
p = 1.35e−01

Partial cor = −0.144
p = 7.57e−03

Partial cor = −0.027
p = 6.25e−01

Partial cor = −0.008
p = 8.82e−01

Partial cor = −0.005
p = 9.28e−01

Partial cor = −0.005
p = 9.28e−02

Partial cor = 0.175
p = 1.16e−03

Partial cor = 0.071
p = 1.89e−01

Partial cor = 0.039
p = 4.73e−01

Partial cor = 0.074
p = 1.71e−01

Partial cor = 0.14
p = 9.86e−03

cor = −0.3
p = 1.21e−08

(g)

Figure 6:MT1E andMT1M expression levels in HCC based on UALCAN portal analysis and their association with immune cell infiltration.
(a) Boxplot showing the overall comparison of MT1E expression between tumor and normal samples across multiple cancer types in the
TCGA database. (b) The expression of MT1E in normal tissues compared with HCC tissues. (c) The comparison of MT1E expression in
normal tissues compared with HCC tissues from different tumor grade (grades 1 to 4), age (21-40, 41-60, 61-80, and 81-100 years old),
gender (male and female), and race (Caucasian, African-American, or Asian ethnicity). (d) Boxplot showing the overall comparison of
MT1M expression between tumor and normal samples across multiple cancer types in the TCGA database. (e) The expression of MT1M
in normal tissues compared with HCC tissues. (f) The comparison of MT1M expression in normal tissues compared with HCC tissues
from different tumor grade (grades 1 to 4), age (21-40, 41-60, 61-80, and 81-100 years old), gender (male and female), and race
(Caucasian, African-American, or Asian ethnicity). (g) Correlation of MT1E and MT1M expression with immune infiltration level in HCC
via the TIMER database. Both MT1E and MT1M expression were significantly correlated with the infiltration levels of B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in HCC.
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substrates such as ethanol and retinol. ADH4 mRNA and
protein expression levels were markedly reduced in HCC
tissues and were reported to be recognized as potential
prognostic biomarkers for HCC patients. HCC patients
with lower ADH4 showed a worse overall survival rate
compared with those with high expression (P < 0:001),
and the expression of ADH4 was an independent predictor

of overall survival (HR, 0.154; 95% CI, 0.044-0.543; P =
0:004).

To further explore the biological roles of the functional
modules, we also conducted a correlation analysis between
the functional modules and immunomodulatory regulators.
We found that green, blue, and yellow modules were closely
associated with some immune checkpoint genes involved in
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Figure 7: The association between functional modules and the immunomodulatory regulators in HCC. (a) The relative expression
abundances of the functional modules estimated by ssGSEA. (b) The CD58 RNA expression level in tumor tissues. CD58 was highly
expressed in HCC tissues with high infiltrating levels of immune cells (P value < 0.001) (c) The disease-free survival and (d) the overall
survival for patients with low (below median CD58 expression value, n = 91) or high (above median CD58 expression value, n = 91)
expression level. Kaplan-Meier survival curves were generated based on TCGA data using the GEPIA2 tool.
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PD1/CTLA4 pathways. The immune adhesion molecule
CD58, also termed lymphocyte function-associated antigen-
3 (LFA-3), is a costimulatory receptor extensively expressed
on human cells [54, 55]. The interaction between CD58 and
its natural ligand (CD2) promotes optimal T/nature killer cell
activation and triggers a series of intracellular signaling.
Accumulating evidence has demonstrated the central role
of CD2-CD58 interaction in modulating antiviral responses,
inflammatory responses, and immune evasion of solid cancer
cells [55, 56]. In gastric cancer, elevated expression of CD58
was associated with deteriorated tumor cell invasion, reduced
survival time, and cancer recurrence [57]. Consistently, our
study showed that CD58might be an unfavorable prognostic
gene, a higher expression of which was significantly corre-
lated with shorter disease-free and overall survival. We found
that CD58 was highly expressed in tumor tissues with high
infiltrating levels of immune cells, suggesting that the acti-
vated infiltrating immune cells in tumor tissues might also
be suppressed by CD58. Interestingly, CD58 loss was
observed to induce immune evasion in multiple melanoma
cell and tumor-infiltrating lymphocyte coculture models,
and the expression of CD58 was downregulated in melanoma
patients receiving immune checkpoint inhibitors [56]. Also,
PD-L1 was upregulated in CD58-knockout melanoma cells.
Their results suggested that CD58 downregulation (or loss)
might contribute to immune evasion via multiple distinct
mechanisms (e.g., increased expression of coinhibitory PD-
L1) [56]. Additional studies are necessary to investigate the
role of CD58 in HCC and CD58-PD-L1 balance.

Furthermore, large amounts of lncRNAs have been dem-
onstrated to be abnormally expressed in HCC, and they play
essential roles in cancer development, proliferation, and
differentiation [58–60]. LncRNAs could regulate the expres-
sion of mRNA in various ways both in cis, and trans [61],
and lncRNA can also act as sponges of mRNA or work with
protein to regulate the expression of mRNA [62, 63]. Our
results shed light on the interaction of mRNA and lncRNA
and indicated the important roles of lncRNAs in HCC. Still,
the lack of confirmatory experiments is a significant limita-
tion, and more studies are required to validate the results
further.

5. Conclusion

Our research identified key functional modules and immu-
nomodulatory regulators for HCC, which might offer novel
diagnostic biomarkers and/or therapeutic targets for cancer
immunotherapy.
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