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Background. Increasing evidence suggests that microRNAs (miRNAs) are involved in genome instability (GI) and drive the
occurrence of tumors. However, the role of GI-related miRNAs in gastric cancer (GC) remains largely unknown. Herein, we
developed a novel GI-related miRNA signature (GIMiSig) and further investigated its role in prognosis, the immune landscape,
and immunotherapy responses in GC patients. Methods. An analysis of somatic mutation data on 434 gastric cancer cases
from The Cancer Genome Atlas (TCGA) database was performed, thereby generating genome stability (GS) and GI groups. By
detecting differentially expressed miRNAs between the GS and GI groups that were associated with overall survival, 8 miRNAs
were identified and used to construct the GIMiSig. Results. The GIMiSig showed high accuracy in detecting GC patients. Using
GIMiSig to stratify the patients into the high- and low-risk subgroups to predict survival outperformed the use of regular
clinical features such as age, gender, or disease stage. Patients with low risk had a more favorable survival time than those with
high risk. More importantly, the high-risk patients were associated with decreased UBQLN4 expression, higher accumulation
of immune cells, lower Titin (TTN) mutation frequency, worse immunotherapy efficacy, and cancer-associated pathways.
Conversely, the low-risk patients were characterized by UBQLN4 overexpression, lower fraction of immune cells, higher TTN
mutation frequency, better response to immunotherapy, and GI-related pathways. Conclusion. In summary, we constructed a
novel GIMiSig that could stratify GC patients into distinct risk groups that have different survival outcomes and
immunotherapy efficacy. The results may provide new clues for improving GC outcomes.

1. Introduction

Gastric cancer (GC) is the second most common cause of
cancer-related mortality worldwide, causing severe eco-
nomic and social burdens [1]. Although multiple strategies
such as surgery, chemotherapy, and radiotherapy have been
used, the outcomes of GC patients remain poor, partly due
to the lack of early detection and the high frequency of
recurrence [2]. Recently, immune checkpoint inhibitors
(ICIs) targeting immune checkpoints, especially pro-
grammed cell death-1 (PD-1) and its ligand (PD-L1), have

shown encouraging results in several cancer types [3]. How-
ever, immunotherapy efficacy in GC remains poor because
of the heterogeneity among GC subtypes and the complex
interactions within the immune system [4]. Therefore, there
is a need to identify novel biomarkers for risk stratification,
immune landscape assessment, and prediction of therapeu-
tic effects.

Genomic instability (GI) is regarded as a hallmark of
malignant tumors because it results in genomic alteration
of cells, thereby facilitating cell proliferation without
restraint [5]. Unsurprisingly, GI is also a crucial step in
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Figure 1: Continued.

2 Journal of Immunology Research



driving tumorigenesis in GC patients [6]. The mechanisms
of GI in cancer remain mysterious, but it is widely accepted
that miRNAs are involved in the regulation of GI, and they
can be used to predict cancer outcomes. For instance, Wang
et al. built a risk model involving 10 GI-related miRNAs that
predicted prognosis and chemotherapy responses in ovarian
cancer [7]. In malignant glioma, miR-100 led to GI by
impairing cell responses to DNA damage [8]. In hepatocel-
lular carcinoma, miR-24, miR-103, and miR-107 are consid-
ered to be carcinogenic factors because they enhance GI in

multiple ways, such as influencing the cell cycle and reduc-
ing DNA damage repair [9, 10]. Additionally, in breast can-
cer, miR-155 overexpression provoked GI by disturbing
telomere homeostasis, contributing to an unfavorable prog-
nosis [11]. Although emerging research has shown that miR-
NAs participate in GI in various tumor types, the roles of
GI-related miRNAs in GC remain unclear.

Additionally, the tumor microenvironment (TME) has
become a research hotspot in cancer. The TME is a complex
system that consists of multiple cells, proteases, and
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Figure 1: Identification of genomic features in the GS and GI groups. (a) Clustering heatmap of GS and GI patients based on differentially
expressed miRNAs. The left part (red) represents the GI patients and the right part (green) represents the GS patients. (b) Somatic mutation
count and (c) UBQLN4 expression were significantly elevated in the GI patients compared to the GS patients. The blue dots indicate GS
patients, and the red dots indicate GI patients. (d) Heatmap of the top 40 differential miRNAs between GS and GI groups. The red
represents the GI patients, and the green represents the GS patients. (e) GO analysis of differential miRNAs.

3Journal of Immunology Research



cytokines, and it impacts tumorigenesis and immunotherapy
responses. More and more evidence has confirmed the cru-
cial roles of miRNAs in the TME. For example, Chou et al.
found that miR-29b modulated the TME to prevent the
metastasis of breast cancer [12]. Furthermore, miR-9 modu-
lates the TME by stimulating angiogenesis [13]. However,
research on the function of GI-related miRNAs in the
TME is very scarce. Thus, we aimed to investigate the inter-
action between GI-related miRNAs and the TME in GC.

Currently, some biomarkers have been found to corre-
late with the prognosis and treatment of GC. UBQLN4 con-
tributed to the occurrence of GI and was shown to inhibit
GC [14–16]. TTN gene mutation predicted a favorable prog-
nosis and affected immunotherapy efficacy in GC [17]. DNA
aneuploidy functioned as a marker associated with worse
clinical outcomes in GC patients [18]. Besides, there was evi-
dence that immune checkpoint-related genes [19], microsat-
ellite instability (MSI) [20], and TMB [21] have predictive
value for immunotherapy efficacy in GC. Therefore, we also
analyzed the correlation between GI-related miRNAs and
these established biomarkers.

In this study, we combined somatic mutation data and
miRNA sequencing data to develop a risk signature associ-
ated with GI. Our investigation of how the signature influ-
ences diagnosis, prognosis, immune landscape, and
immunotherapy responsiveness may offer insights into the
relationships between miRNAs and GC. More importantly,
our study indicates that these miRNAs may be exploited as
predictive hallmarks and even drug targets in GC.

2. Materials and Methods

2.1. Data Collection. The Cancer Genome Atlas- (TCGA-)
GC profiles in this study were retrieved from TCGA portal
(https://portal.gdc.cancer.gov/), including miRNA sequenc-
ing data (446 GC samples), mRNA sequencing data (375
GC samples), clinical data (397 GC samples), and somatic
mutation data (434 GC samples). The whole TCGA cohort
was randomly split into two subsets. The subset used to
build the risk model was designated the training set, and
the other subset, which was used to validate the performance
of the risk model, was designated the testing set. The charac-
teristics of the three sets are presented in Supplementary
Table 1. The GSE112264 (normal samples = 41 and GC
samples = 50) and GSE54129 (normal samples = 21 and

GC samples = 111) datasets used in the validation phase
were downloaded from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

2.2. Identification of GI-Related miRNAs. Integrating
miRNA sequencing data and somatic mutation data from
TCGA, GI-related miRNAs were identified using the follow-
ing steps: (i) the cumulative number of somatic mutations in
each patient was defined as the somatic mutation value
(SMV); (ii) patients were ranked by descending SMV and
clustered into two groups: the first group, with the top 25%
SMVs, was characterized by genome instability (GI) and
the second group, with the bottom 25% SMVs, was charac-
terized by genome stability (GS); (iii) miRNA expression
was compared between the GI and GS groups; and (iv) miR-
NAs that met the selection criteria (∣logfold change ∣ = 1 and
adjusted p < 0:05) were identified as the GI-related miRNAs,
which were presented in a heatmap. The R packages
“limma,” “pheatmap,” and “sparcl” were utilized to process
and visualize the data. The top 40 differential miRNAs
between the GS and GI groups were selected according to
the absolute value of fold change, which was shown in a
heatmap. Based on FunRich [22], Gene Ontology (GO)
functions were applied to identify the possible biological
functions of differentially expressed miRNAs. GO analysis
was made up of three parts: cellular component (CC),
molecular function (MF), and biological process (BP).

2.3. Construction of GI-Related miRNA Signature (GIMiSig).
Univariate and multivariate Cox regression analyses were
performed to identify GI-related miRNAs that influenced
survival. Eight miRNAs were used to establish the GIMiSig,
which was used to calculate the risk score. The method to
generate the risk score was as follows: risk score = ðmiRN
A1 × Coef 1 + miRNA2 × Coef2 + miRNA3 × Coef 3+⋯miRN
An × CoefnÞ. miRNAn represented the expression level of
miRNA, and Coefn represented the coefficient. Patients with
higher risk scores (≥mean value) and lower risk scores (<
mean value) were allocated to the high- and low-risk groups,
respectively. Subsequently, a Kaplan-Meier analysis was
used to determine the survival distributions in the high-
and low-risk GC patients, and a log-rank test was used to
compare the two groups, with p < 0:05 as the threshold.
The prediction accuracy of the GIMiSig regarding survival
time was assessed based on the area under the receiver oper-
ating characteristic (ROC) curve (AUC). Furthermore, we
performed univariate and multivariate Cox regression anal-
yses to identify whether the GIMiSig was an independent
predictor. The hazard ratios (HRs) and p values were pre-
sented in forest plots. Additionally, ROC curve analysis
was applied to determine the predictive performance of the
GIMiSig and clinical variables regarding survival time.

2.4. Minimally Invasive Diagnostic Value of the GIMiSig. The
expression levels of the eight miRNAs were compared
between the normal and tumor groups from TCGA. Next,
ROC curve analysis was performed based on the miRNA
expression data of TCGA and GSE112264, which examined
the performance of the GIMiSig for the diagnosis of GC.

Table 1: Multivariate Cox regression analyses in the training set.

id coef HR HR.95L HR.95H p value

miR-125b-5p -0.446 0.640 0.409 1.000 0.050

miR-99a-3p 0.110 1.116 1.000 1.246 0.049

miR-548v 0.082 1.085 1.008 1.168 0.030

miR-100-5p 0.338 1.402 0.934 2.105 0.103

miR-196b-3p -0.074 0.929 0.888 0.971 0.001

miR-1275 -0.061 0.940 0.900 0.982 0.006

miR-380-3p 0.043 1.044 0.995 1.096 0.080

miR-363-3p 0.109 1.116 0.969 1.285 0.129
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2.5. Relationship between the GIMiSig and Titin (TTN)
Mutation Status. Using somatic mutation data in Mutation
Annotation Format, we employed the R package “maftools”
to visualize the gene mutation landscape in the whole TCGA
set and in the high- and low-risk groups. The ratio of wild-
type to mutated TTN was compared in the high- and low-
risk groups. Furthermore, GIMiSig and TTN mutation sta-
tus were used to classify patients into four subgroups, and
the survival distributions of the four groups were analyzed.

2.6. Immune Landscape Analysis and Prediction of
Immunotherapy Response. First, the relationship between
the GIMiSig and immune cells was determined by Spear-
man’s correlation analysis, which is presented in Supple-
mentary Table 2. We merged the results of multiple
methods, such as TIMER, CIBERSORT, and XCELL, into a
bubble diagram. The R packages “ggtext,” “ggplot2,” and
“scales” were used for visualization.

Next, ESTIMATE [23] and single-sample gene set
enrichment analysis (ssGSEA) [24] methods were used to
evaluate the immune landscape within each risk group.
ESTIMATE is an effective tool for evaluating the composi-
tion of the TME, including stromal and immune cells. Four
parameters are generated by ESTIMATE: stromal score
(proportion of stromal cells), immune score (proportion of
immune cells), ESTIMATE score (sum of stromal and
immune scores), and tumor purity (proportion of tumor
cells in the tumor tissue). The analyses were completed using
the R packages “estimate,” “ggplot2,” “reshape2,” and “vio-
lin.” However, ESTIMATE cannot identify specific cell sub-
types. Therefore, ssGSEA was utilized to assess the
differential abundance of intratumor immune cells using
the R package “GSVA.” The following subtypes were
included: dendritic cells (DCs), activated DCs (aDCs),
immature DCs (iDCs), plasmacytoid DCs (pDCs), B cells,

CD8+ T cells, macrophages, mast cells, neutrophils, natural
killer (NK) cells, T helper cells, follicular helper T (Tfh) cells,
type-1 T helper (Th1) cells, type-2 T helper (Th2) cells,
tumor-infiltrating lymphocytes (TILs), and regulatory T
cells (Tregs). We used the Wilcoxon signed-rank test to
compare the immune landscape between the high- and
low-risk groups.

The immune checkpoint-related gene expression levels
(PDL1, CTLA4, PD1, LAG3, and TIM3) were extracted from
TCGA. The MSI of each patient was determined based on
somatic mutations. The aneuploidy score was retrieved from a
previous study [25]. The tumor mutation burden (TMB) value
was generated for each patient (by using the Perl language to
analyze TCGA somatic mutation data), which was log2-
transformed. The Tumor Immune Dysfunction and Exclusion
(TIDE) score was calculated online (http://tide.dfci.harvard
.edu//) [26]. Thereafter, the immune checkpoint-related gene
levels, MSI score, aneuploidy score, TMB, and TIDE score were
compared between the high- and low-risk groups.

2.7. Biological Significance of the GIMiSig. We carried out
GSEA to elucidate the GIMiSig-related functions in GC,
using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) as the reference. The R packages “plyr,” “ggplot2,”
“grid,” and “gridExtra” were used to visualize the pathways
enriched in the high- and low-risk groups.

2.8. Target Genes of the GIMiSig. The possible targets of the
8 miRNAs in the GIMiSig were predicted using three data-
bases: (i) TargetScan (http://www.targetscan.org/), (ii)
miRanda (http://mirdb.org/miRDB/), and (iii) miRTarBase
(http://miRTarBase.mbc.nctu.edu.tw/). The overlapping
results of the three platforms were regarded as putative tar-
get genes. The R package “VennDiagram” was used to gen-
erate Venn diagrams, which show the number of target
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Figure 2: Patient characteristics in the high- and low-risk groups in the training set. (a) Survival distribution of high- and low-risk patients.
(b) ROC curves predicting 1-, 3-, and 5-year survival rates. (c) Expression of the 8 miRNAs changed with increasing risk score. Comparisons
of somatic mutation count (d) and UBQLN4 expression (e) in the high- and low-risk groups.
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genes of each miRNA according to the three databases. GO
and KEGG pathway of target genes were performed using
the clusterProfiler tool [27]. Based on a confidence score ≥
0:9, target genes were selected to build a PPI network using
the STRING database (http://string-db.org/). Subsequently,
the network was inputted into Cytoscape, and the hub target
genes were selected using CytoHubba. Finally, expression
levels of the top 5 hub genes were compared between the
normal and tumor groups from TCGA and GSE54129.

2.9. Statistical Analysis. All statistical analyses were con-
ducted using R software (version 3.6.1). Data from different
groups were compared using the Mann-Whitney-Wilcoxon
test. The log-rank test was performed to assess differences
in survival. p < 0:05 was the significance threshold.

3. Results

3.1. Different Genomic Alterations in the GS and GI Groups.
Based on the genomic profiles in the whole TCGA set, we
tried to differentiate the molecular subtypes of GC. SMV
(sum of somatic mutations), in descending order, was used
to rank the patients. Patients with the top 25% and the bot-
tom 25% SMVs were identified as GI patients (n = 108) and
GS patients (n = 110), respectively. To obtain insights into
special characteristics in patients with GI, we analyzed miR-
NAs, SMV, and UBQLN4 expression profiles in the two sub-
groups. As shown in Figure 1(a), the clustering heatmap
depicts the differentially expressed miRNAs between the GI
and GS patients. SMV was significantly higher in GI patients
than GS patients (p = 5:7e − 16) (Figure 1(b)). UBQLN4 is a
novel hallmark, contributing to the occurrence of GI [14].
Thus, we compared UBQLN4 expression between the two
groups. The boxplot shows that UBQLN4 was overexpressed

in the GI group compared to the GS group (p = 0:0089)
(Figure 1(c)). These results suggested that it was reasonable
to distinguish the GS and GI groups based on somatic muta-
tions. Subsequently, the expression level of the top 40 differ-
ential miRNAs between the GS and GI groups was shown in
the heatmap (Figure 1(d)). Furthermore, GO analysis was
performed to explore the biological function of differentially
expressed miRNAs. The results showed that these miRNAs
mainly participated in nucleus (CC), transcription factor
activity (MF), signal transduction (BP), regulation of nucleo-
base, nucleoside, nucleotide and nucleic acid metabolism
(BP), and cell communication (BP) (Figure 1(e)).

3.2. Establishment of a GI-Related miRNA Signature
(GIMiSig). To investigate the clinical significance of GI-
related miRNAs in GC, a series of bioinformatics analyses
were conducted to determine whether these miRNAs corre-
late with the prognosis of patients. A total of 389 GC
patients with clinical information were divided into the
training and test sets, and the former was used to build the
risk model. Using univariate and multivariate Cox regres-
sion analyses (Table 1), 8 GI-related miRNAs related to
overall survival (OS) were selected to build the risk model
in the training set. The expression of the 8 miRNAs in each
patient and the corresponding coefficients were used to cal-
culate a risk score for each patient as follows: Risk score = ð
−0:446Þ ×miR‐125b‐5p + 0:170 × miR‐99a‐3p + 0:0815 ×
miR‐548v + 0:338 ×miR‐100‐5p + ð−0:074Þ ×miR‐196b‐3p
+ ð−0:061Þ ×miR‐1275 + 0:043 ×miR‐380‐3p + 0:109 ×
miR‐363‐3p. After calculating the risk score, patients with
higher and lower risk scores compared to the mean risk
score within the three sets were assigned to the high- and
low-risk groups, respectively.
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score. Comparisons of somatic mutation count and UBQLN4 expression in the high- and low-risk groups in the (d, e) testing and (i, j) whole
TCGA sets.
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Figure 4: Continued.
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When the GIMiSig was applied to the training set, the
survival data suggested that high-risk patients exhibited
shorter overall survival than low-risk patients (p < 0:01)
(Figure 2(a)). AUC at 1, 3, and 5 years was 0.814, 0.746,
and 0.796, respectively (Figure 2(b)). Expression levels of
the 8 miRNAs in the high- and low-risk patients were
showed in the heatmap (Figure 2(c)). Moreover, low-risk
patients had higher SMV (p = 2:4e − 06) (Figure 2(d)). No
significant difference was observed in UBQLN4 expression
between the high- and low-risk groups in the training set
(p = 0:066) (Figure 2(e)).

To confirm the stability of the GIMiSig, we examined its
performance in the testing and whole TCGA sets. Similarly,
high-risk patients had a poorer prognosis in the testing
(p = 0:007) and whole TCGA (p < 0:001) sets (Figures 3(a)
and 3(f)). The ROC curves for the GIMiSig also indicated
good accuracy in the testing and whole TCGA sets
(Figures 3(b) and 3(g)). Distribution of miRNA expression
levels changed with increasing risk scores in the test and
whole sets (Figures 3(c) and 3(h)). As shown in the boxplot,
higher SMV (p < 0:01) and UBQLN4 overexpression
(p < 0:05) were observed in low-risk patients in the testing
and whole sets (Figures 3(d), 3(e), 3(i), and 3(j)). These
results indicated that the GIMiSig could stratify GC patients
into two groups differing in prognosis, SMV, and UBQLN4
expression.

3.3. Evaluation of Independent Prognostic Factors. The risk
score generated by the GIMiSig was identified as a prognos-

tic factor by univariate analysis (p < 0:001, HR = 1:351, 95%
CI 1.205–1.514) (Figure 4(a)) and as a factor that was inde-
pendent of the other clinical features by multivariate analysis
(p < 0:001, HR = 1:436, 95% CI 1.259–1.636) (Figure 4(b)).
More importantly, the risk score yielded the highest AUC
value (0.730) compared to other parameters, such as age
(0.529) and grade (0.549), which indicated that the GIMiSig
is an effective tool for risk assessment of GC patients
(Figure 4(c)).

3.4. Survival Analysis of GC Subgroups. We then examined
the survival time of patients in the high- and low-risk sub-
groups stratified by age, gender, stage, and grade. Low-risk
patients had better survival time than high-risk patients in
the young (age < 65 years, p < 0:001) and old (age ≥ 65 years,
p = 0:004) subgroups (Figure 5(a)), female (p < 0:001) and
male (p = 0:011) subgroups (Figure 5(b)), stage I–II
(p = 0:003) and stage III–IV (p < 0:001) (Figure 5(c)) sub-
groups, and grade 1–2 (p < 0:001) and grade 3 (p < 0:001)
subgroups (Figure 5(d)).

3.5. Minimally Invasive Diagnostic Value of the GIMiSig. In
addition, we assessed the minimally invasive diagnostic
value of the GIMiSig. First, expression levels of the eight
miRNAs were compared between the normal and tumor
groups from TCGA. We found that miR-125b-5p
(p < 0:001), miR-99a-3p (p < 0:001), miR-100-5p (p < 0:001
), miR-548v (p < 0:001), and miR-363-3p (p < 0:001) were
downregulated in tumors compared with that in normal
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control. On the contrary, miR-196b-3p (p < 0:001) was
highly expressed in tumors than that in normal control.
There was no significant difference of miR-380-3p and
miR-1275 between normal and tumor (Figure 6(a)). The dif-
ferential expression of these miRNAs indicated that the
GIMiSig may have the potential for early diagnosis of GC.
Next, we evaluated whether the GIMiSig could differentiate
GC from normal control in TCGA and GSE112264. The
results revealed that the AUC of TCGA and GSE112264
cohort were 0.700 (Figure 6(b)) and 0.877 (Figure 6(c)),
indicating the GIMiSig was able to detect GC patients
accurately.

3.6. Relationship between the GIMiSig and TTN Mutation
Status. As shown in the waterfall plot (Figure 7(a)), TTN
mutation accounted for 48% of all gene variants in the whole

TCGA set. Additionally, the proportion of mutated TTN
was higher than the proportions of other gene mutations
in both the high-risk (38%) and low-risk (58%) groups (Sup-
plementary Figure 1). Thus, we next examined the
distribution of wild-type and mutated TTN in the high-
and low-risk groups. The results suggested that low-risk
patients had more frequent TTN mutation than high-risk
patients in the three sets (Figure 7(b)). In the training set,
TTN mutation was detected in 30% of high-risk patients
and 64% of low-risk patients (p < 0:001). Although there
was no significant association of TTN mutation status with
risk in the test set, there was a trend toward more frequent
TTN mutation in the low-risk patients (p = 0:051). In the
whole TCGA set, TTN mutation was more common in the
low-risk group (65%) than the high-risk group (42%)
(p < 0:001). We further assessed whether the GIMiSig
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Figure 5: Survival analysis in high- and low-risk subgroups stratified by (a) age, (b) gender, (c) grade, and (d) stage.

14 Journal of Immunology Research



TCGA

 4

 6

 8

10

12

m
iR

−1
25

b−
5p

Lo
g 2 (

RP
M

+1
)

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

Normal Tumor

0

1

2

3

4

m
iR

−9
9a

−3
p

Lo
g 2 (

RP
M

+1
)

Normal Tumor
 6

 8

10

12

14

m
iR

−1
00

−5
p

Lo
g 2 (

RP
M

+1
)

Normal Tumor

0

1

2

3
ns

m
iR

−1
27

5
Lo

g 2 (
RP

M
+1

)

Normal Tumor

0

1

2

3

4

m
iR

−3
80

−3
p

Lo
g 2 (

RP
M

+1
)

Normal Tumor
0

2

4

6

8

m
iR

−3
63

−3
p

Lo
g 2 (

RP
M

+1
)

Normal Tumor
 0

 5

10

15

m
iR

−1
96

b−
5p

Lo
g 2 (

RP
M

+1
)

Normal Tumor

0

1

2

3

4

5

m
iR

−5
48

v
Lo

g 2 (
RP

M
+1

)

Normal Tumor

ns

(a)

Specificity

Se
ns

iti
vi

ty

1.0 0.8 0.6 0.4 0.2 0.0

0.0

0.2

0.4

0.6

0.8

1.0

TCGA-GC cohort
GlMiSig AUC=0.700

(b)

Se
ns

iti
vi

ty

0.0

0.2

0.4

0.6

0.8

1.0

Specificity
1.0 0.8 0.6 0.4 0.2 0.0

GSE112265 cohort
GlMiSig AUC=0.877

(c)
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could predict survival better than TTN mutation status.
Using TTN mutation status, patients were classified into
the TTN mutation and TTN wild-type groups. There were
no significant differences in OS between TTN mutation
and wild-type TTN among the high-risk patients or
between TTN mutation and wild-type TTN among the
low-risk patients (p > 0:05) (Figure 7(c)). When the
GIMiSig was used to divide patients into the high- and
low-risk groups, we observed significant differences in OS
between the high- and low-risk groups among patients
with TTN mutation or with wild-type TTN (p < 0:001,
Figure 7(c)).

3.7. Relationship between the GIMiSig and Immune
Landscape. Accumulating evidence has shown that the
TME greatly impacts tumor occurrence and responses to
immune-targeting strategies. Multiple methods were utilized
to evaluate the association of the GIMiSig with the TME.
First, correlation analysis was conducted between the GIMi-
Sig and various intratumor cell subpopulations. The results

revealed that high-risk patients exhibited positive associa-
tions with CD8+ T cells, fibroblasts, B cells, and macro-
phages while they had negative associations with activated
CD4+ T cells, T helper cells, and Treg cells (Figure 8(a)).
Next, the ESTIMATE and ssGSEA algorithms were used to
evaluate immune characteristics in the high- and low-risk
groups. ESTIMATE was applied to calculate the stromal,
immune, and ESTIMATE scores for each GC patient. Inter-
estingly, compared to the low-risk patients, the high-risk
patients had higher stromal, immune, and ESTIMATE
scores but lower tumor purity (p < 0:001) (Figure 8(b)).
ssGSEA was performed to investigate the relationships
between GIMiSig and 14 intratumoral immune cells. The
high-risk patients had higher proportions of B cells
(p < 0:001), DCs (p < 0:01), iDCs (p < 0:05), mast cells
(p < 0:01), neutrophils (p < 0:001), pDCs (p < 0:01), T helper
cells (p < 0:01), follicular helper T (Tfh) cells (p < 0:01), TILs
(p < 0:001), and Treg cells (p < 0:05) (Figure 8(c)). In aggre-
gate, these data suggested that the GIMiSig may influence
the immune microenvironment.
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Figure 7: Relationship between the GIMiSig and TTN mutation status. (a) Overview of gene mutations in GC patients from TCGA. (b)
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patients stratified by TTN mutation status and GIMiSig.
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3.8. Prediction of Immunotherapy Responsiveness. Immune
checkpoint-related gene expression levels, MSI score, aneu-
ploidy score, TMB, and TIDE score were used to assess the
potential clinical efficacy of immunotherapy in the high-
and low-risk groups from TCGA. We found that PD-L2
(p < 0:01) and TIM3 (p < 0:05) expression was significantly
higher in the high-risk group than in the low-risk group
(Figure 9(a)). The GIMiSig had no significant influence on
other immune checkpoint-related genes, although a trend
toward elevated CTLA-4 (p > 0:05) expression was observed
in high-risk patients. Additionally, the MSI score was lower
in low-risk patients than high-risk patients (p < 0:001)
(Figure 9(b)). As for the aneuploidy score, it was higher in
low-risk patients than high-risk patients (p < 0:01)
(Figure 9(c)). Patients with high TMB are more likely to trig-
ger immune responses by presenting more neoantigens, so
they benefit more from ICI therapy. Tumor cells in patients
with high TIDE scores are more likely to escape from the
surveillance of the immune system, resulting in insensitivity
to ICI therapy. In this study, high-risk patients had lower
TMB (p = 1:62e − 08) (Figure 9(d)) and higher TIDE score
(p = 7:4e − 05) (Figure 9(e)) compared to low-risk patients,
suggesting that high-risk patients may have unfavorable
responses to immunotherapy.

3.9. GSEA. To elucidate the link between the GIMiSig and its
functional properties in GC, GSEA was used to detect the
GIMiSig-related pathways with the criterion of normalized

p value (norm p) < 0.05 and False Discovery Rate ðFDRÞ <
0:25. The results showed that several cancer-associated and
immune response pathways were discovered in the high-
risk patients, such as cell adhesion molecules, cytokine-
cytokine receptor interaction, and the MAPK signaling path-
way (Figure 10(a)). Additionally, several GI-related path-
ways were enriched in the low-risk patients, including cell
cycle, nucleotide excision repair, and mismatch repair
(Figure 10(b)). This might explain why higher SMV and
UBQLN4 overexpression was detected in low-risk patients.
Taken together, these results indicated potential roles of
the 8 aberrantly expressed miRNAs in the occurrence and
progression of GC: (i) contributing to tumor metastasis via
cell adhesion molecules, (ii) altering the immune microenvi-
ronment based on cytokine release, and (iii) disrupting gene
repair.

3.10. Target Genes of the GIMiSig. To ascertain the down-
stream targets of the 8 miRNAs, we predicted the target
genes using three public databases (TargetScan, miRanda,
and miRTarBase) and presented the overlapping results (tar-
get genes shared across all three databases) in Venn dia-
grams. There were 31, 12, 24, 135, 106, 2, and 59 target
genes of miR-548v, miR-100-5p, miR-380-3p, miR-363-3p,
miR-125b-5p, miR-196b-3p, and miR-1275, respectively
(Supplementary Figure 2). As there were no overlapping
target genes for miR-99a-3p, only the remaining 7
miRNAs were retained to construct the miRNA-target
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Figure 8: Immune landscape in the high- and low-risk groups. (a) Correlation analysis between the GIMiSig and various intratumor cell
subpopulations. (b) Evaluation of immune landscape in the high- and low-risk groups based on ESTIMATE. (c) Boxplots showing
distribution of immune cells in the high- and low-risk groups using the ssGSEA algorithm. Yellow indicates the high-risk group, and
blue indicates the low-risk group. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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regulatory network. After obtaining the target gene list, GO
and KEGG analyses were conducted to identify enriched
biological processes of target genes. We found that target
genes may play roles in several GI-related biological
pathways, such as DNA-binding transcription activator
activity, RNA polymerase II-specific, chromatin DNA
binding, and cell cycle (Figures 11(a) and 11(b)). Next, the
interactions among target genes were investigated using a
PPI network analysis. The network was inputted into
Cytoscape, and hub target genes were selected by
CytoHubba. Finally, based on the connectivity degree, the
top 5 hub target genes were as follows: COL1A2
(degree = 6), COL5A1 (degree = 5), COL11A1 (degree = 5),
COL27A1 (degree = 5), and COL12A1 (degree = 4)
(Figure 11(c)). Thus, our analyses showed that the 8
miRNAs in the GIMiSig may target these hub genes to
affect biological processes in GC. Besides, all the top 5 hub
genes had significantly higher expression in GC compared
with that in normal samples from TCGA (p < 0:001)
(Figure 11(d)) and GSE54129 (p < 0:001) (Figure 11(e)).

4. Discussion

To the best of our knowledge, this is the first study to estab-
lish a GIMiSig and explore its predictive value and biological
function in GC. The GIMiSig consisted of 8 GI-related miR-
NAs (miR-99a-3p, miR-548v, miR-100-5p, miR-380-3p,
miR-363-3p, miR-125b-5p, miR-196b-3p, and miR-1275).
The risk score generated by the GIMiSig was utilized to dis-
tinguish the high- and low-risk groups. The GIMiSig exhib-
ited better predictive performance than current clinical

classification methods, with the survival analysis and ROC
curves showing that the GIMiSig was an effective tool for
predicting survival. Of note, the GIMiSig was associated with
frequency of TTN mutation, but it predicted the prognosis
more accurately than TTN mutation status. Furthermore,
the GIMiSig exerted an influence on the immune landscape
and was also capable of predicting immunotherapy
responses. Finally, GSEA revealed that the GIMiSig was
closely related to cancer-associated, immune response, and
GI-related pathways.

Six miRNAs (miR-99a, miR-100-5p, miR-363-3p, miR-
1275, miR-196b-3p, and miR-125b-5p) in the GIMiSig have
previously been reported in GC. miR-99a and miR-100-5p
were regarded as tumor suppressors in GC due to their func-
tion of inhibiting cell proliferation [28, 29]. miR-363-3p
expression was downregulated in GC, and its expression
was associated with invasion and lymphatic metastasis
[30]. miR-1275 prevented metastasis and was associated
with survival time in GC [31]. Overexpression of miR-
196b-3p was discovered in GC samples and affected the
epithelial-mesenchymal transition [32]. Upregulation of
miR-125b-5p was observed in GC and led to invasion and
metastasis by two possible pathways: (i) targeting STARD13
and NEU1 mRNAs and (ii) targeting the PPP1CA-Rb axis
[33, 34]. Specifically, elevated miR-125b-5p resulted in pro-
gression of GC and poor response to trastuzumab [35].
Though the remaining 2 miRNAs (miR-548v and miR-
380-3p) in the GIMiSig have not been reported in GC, they
have been identified as potential biomarkers in multiple can-
cers, including endometrial cancer [36], lung adenocarci-
noma [37], breast cancer [38], and neuroblastoma [39].
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Figure 9: Prediction of immunotherapy responsiveness. (a) Relationships between the GIMiSig and immune checkpoint-related gene
expression levels. Comparison of (b) microsatellite instability (MSI) score, (c) aneuploidy score, (d) tumor mutation burden (TMB), and
(e) Tumor Immune Dysfunction and Exclusion (TIDE) score in the high- and low-risk groups. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Interestingly, high somatic mutation and UBQLN4
expression, which indicated high GI, were observed in
low-risk patients, who had longer survival time in our
study. In these cases, more mutations of tumor driver genes
occurred, but more neoantigens would also be presented to
trigger immune response [40]. Additionally, UBQLN4 can
suppress the progression of GC by preventing tumor cell
proliferation [15]. This may partly explain why a high
somatic mutation number and UBQLN4 expression were
detected in patients with longer survival time. TTN was
known as a gene associated with familial hypertrophic car-
diomyopathy [41]. Yang et al. found that TTN mutation
was effective for predicting prognosis, TMB, and immuno-
therapy response in GC [17]. Thus, we investigated the
relationship between the GIMiSig and TTN mutation sta-
tus. Our study suggested that the high- and low-risk groups
(based on the GIMiSig) exhibited a significant difference in
the frequency of TTN mutation, indicating that the GIMi-
Sig was able to capture the TTN mutation status. More
importantly, when the TTN gene was used to classify
patients into wild-type and mutation groups, there were
no significant differences in OS between TTN mutation
and wild-type TTN among the high-risk patients or
between TTN mutation and wild-type TTN among the
low-risk patients. Conversely, the GIMiSig was capable of
distinguishing distinct clinical prognoses among patients
with TTN mutation and among patients without TTN

mutation. This suggests that the GIMiSig is a better predic-
tor of prognosis in GC than TTN mutation status.

In our study, the two groups divided based on the GIMi-
Sig exhibited distinct immune landscapes. After extensively
reviewing the literature, we found that miR-99a, miR-100-
5p, miR-125b, and miR-363-3p in the GIMiSig were
involved in the regulation of immune status, mainly through
influencing the function of immune cells. Jaiswal et al.
showed that miR-99a downregulated TNF-α, resulting in
an increased ratio of M2/M1 macrophages [42]. Addition-
ally, miR-99a promoted Treg differentiation and decreased
cytotoxic T lymphocytes [43]. Thus, miR-99a impaired the
ability of immune cells to kill tumor cells. Similarly, miR-
100-5p expression was also associated with macrophage
polarization and Treg differentiation [44, 45]. High miR-
125b expression could disturb B cell development and sup-
press effector T cell bioactivities, while enhancing the proin-
flammatory nature of M1 macrophages [46]. Of note, due to
the crucial roles of miR-125b in the immune system, it dem-
onstrated a promising ability to predict immunotherapy
response in several tumors, such as non-small-cell lung can-
cer (NSCLC) [47], prostate cancer [48], and colorectal can-
cer [49]. As for miR-363-3p, it affected several crucial
transcription factors that regulated Th17 cell differentiation
[50]. Combining previous studies and our findings, we spec-
ulate that the GIMiSig is suitable for evaluating the immune
landscape in GC.
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Another highlight of our study is the associations of the
GIMiSig with known immunotherapy responsiveness bio-
markers (PD-L1, MSI score, aneuploidy score, TMB, and
TIDE score). Although ICIs have exhibited encouraging
clinical trial results in several tumors [49, 51], their efficacy
is not satisfactory in GC. Evidence shows that ICIs are only
beneficial for specific GC subtypes, such as those involving
deficiency mismatch repair [52]. Therefore, predictive bio-
markers are urgently needed to distinguish patients that
could benefit from immunotherapy. As PD-L1-positive
patients are more sensitive to ICIs, PD-L1 is regarded as
an index of immunotherapy efficacy [52]. High MSI is also
associated with better immunotherapy responses in GC
[53] while a high aneuploidy score correlates with reduced
response to immunotherapy [54]. TMB reflects the quantity
of somatic mutations and is associated with ICI responses in
GC, and it can serve as a biomarker for predicting immuno-
therapy efficacy [55]. Patients with high TMB tend to obtain
more clinical benefits from ICI treatment [56]. The TIDE
score is a novel algorithm based on tumor immune escape,
which provides clues for selecting patients that are suitable
for ICI treatment. In this study, there was no significant dif-
ference in PD-L1 between the high- and low-risk patients.
However, the low-risk patients had higher MSI scores, aneu-
ploidy scores, and TMB, along with lower TIDE scores.
Thus, we inferred that high-risk patients were more likely
to benefit from immunotherapy. Moreover, these findings
indicate that the GIMiSig could be exploited as a biomarker
of immunotherapy responses.

There are several limitations to our study. First, the
mechanisms underlying the associations between the GIMi-
Sig and immune landscape, TMB, and ICI responses remain
unclear. Second, the data on the cohort used in our study did
not include data on GC patients taking immunotherapy, so

the ability of the GIMiSig to predict immunotherapy efficacy
remains to be elucidated. Third, biology experiments and
clinical data are expected to testify to the performance of this
GIMiSig before clinical application.

5. Conclusions

In conclusion, we constructed a GIMiSig in GC based on GI-
related miRNAs and investigated its prognostic value and
potential function. Our study strongly suggests that the
GIMiSig not only is of significance for predicting the prog-
nosis and immune landscape of GC but also provides new
insights into future immunotherapy targets.
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Figure 11: Target genes of the GIMiSig. (a) GO and (b) KEGG analyses of target genes. (c) PPI network of hub genes. The top 10 hub genes
are indicated in red, orange, and yellow. (d) Expression of the 5 genes was compared between normal and tumor groups from TCGA and (e)
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25Journal of Immunology Research

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.researchsquare.com/article/rs-553563/v1
https://www.researchsquare.com/article/rs-553563/v1


contributed substantially to revising the manuscript. L.C.
collected the data and assisted with bioinformatics analysis.
W.H. and X.C. contributed to interpreting data.

Acknowledgments

The authors are grateful to the http://researchsquare.com/
for preprint. The authors are grateful for the support of the
National Natural Science Foundation of China (Nos.
81603670, 81873169, 81774281, and 81303098), Hunan Pro-
vincial Natural Science Foundation of China (Nos.
2017JJ3459, 2020JJ4803, and 2019JJ40509), and China
Scholarship Council (No. 202006370051). The authors also
thank Lei Liu (Wuhan, Hubei) for helpful discussions.

Supplementary Materials

Supplementary Table 1: clinical information of three sets.
Supplementary Table 2: correlation analysis between the
GIMiSig and immune cells. Supplementary Figure 1: gene
mutation landscapes of high-risk (A) and low-risk (B)
groups. Supplementary Figure 2: Venn diagrams showing
overlapping target genes according to TargetScan, MiRanda,
and miRTarBase. (Supplementary Materials)

References

[1] F. Kamangar, G. Dores, and W. F. Anderson, “Patterns of can-
cer incidence, mortality, and prevalence across five continents:
defining priorities to reduce cancer disparities in different geo-
graphic regions of the world,” Journal of Clinical Oncology,
vol. 24, no. 14, pp. 2137–2150, 2016.

[2] M. Orditura, G. Galizia, V. Sforza et al., “Treatment of gastric
cancer,” World Journal of Gastroenterology, vol. 20, no. 2,
pp. 1635–1649, 2016.

[3] A. Ribas and J. D. Wolchok, “Cancer immunotherapy using
checkpoint blockade,” Science, vol. 359, no. 6382, pp. 1350–
1355, 2018.

[4] R. Dolcetti, V. D. Re, and V. Canzonieri, “Immunotherapy for
gastric cancer: time for a personalized approach?,” Interna-
tional Journal of Molecular, vol. 19, no. 6, pp. 1602–1626, 2018.

[5] D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the
next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011.

[6] L. Ottini, M. Falchetti, R. Lupi et al., “Patterns of genomic
instability in gastric cancer: clinical implications and perspec-
tives,” Annals of Oncology, vol. 17, Supplement 7, pp. vii97–
vii102, 2006.

[7] T. Wang, G. Wang, X. Zhang et al., “The expression of miR-
NAs is associated with tumour genome instability and predicts
the outcome of ovarian cancer patients treated with platinum
agents,” Scientific Reports, vol. 7, no. 1, pp. 1–11, 2017.

[8] W. L. Ng, D. Yan, X. Zhang, Y. Y. Mo, and Y. Wang, “Over-
expression of miR-100 is responsible for the low-expression
of ATM in the human glioma cell line: M059J,” DNA Repair,
vol. 9, no. 11, pp. 1170–1175, 2010.

[9] A. Lal, F. Navarro, C. A. Maher et al., “miR-24 inhibits cell pro-
liferation by targeting E2F2, MYC, and other cell- cycle genes
via binding to "seedless" 3′UTR microRNA recognition ele-
ments,” Molecular cell, vol. 35, no. 5, pp. 610–625, 2009.

[10] J.-W. Huang, Y. Wang, K. K. Dhillon et al., “Systematic screen
identifies miRNAs that target RAD51 and RAD51D to

enhance chemosensitivity,” Molecular Cancer Research,
vol. 11, no. 12, pp. 1564–1573, 2013.

[11] R. Dinami, C. Ercolani, E. Petti et al., “miR-155 drives telomere
fragility in human breast cancer by targeting TRF1,” Cancer
Research, vol. 74, no. 15, pp. 4145–4156, 2014.

[12] J. Chou, J. H. Lin, A. Brenot, J. W. Kim, S. Provot, and Z.Werb,
“GATA3 suppresses metastasis and modulates the tumour
microenvironment by regulating _microRNA-29b_ expres-
sion,” Nature Cell Biology, vol. 15, no. 2, pp. 201–213, 2013.

[13] L. Ma, J. Young, H. Prabhala et al., “miR-9, a MYC/MYCN-
activated microRNA, regulates E-cadherin and cancer metas-
tasis,” Nature Cell Biology, vol. 12, no. 3, pp. 247–256, 2010.

[14] R. D. Jachimowicz, F. Beleggia, J. Isensee et al., “UBQLN4
represses homologous recombination and is overexpressed
in aggressive tumors,” Cell, vol. 176, no. 3, pp. 505–
519.e22, 2019.

[15] S. Huang, Y. Li, X. Yuan et al., “The UbL-UBAUbiquilin4 pro-
tein functions as a tumor suppressor in gastric cancer by p53-
dependent and p53-independent regulation of p21,” Cell
Death & Differentiation, vol. 26, no. 3, pp. 516–530, 2019.

[16] S. Huang, X. Dong, J. Wang et al., “Overexpression of the
Ubiquilin-4 (UBQLN4) is associated with cell cycle arrest
and apoptosis in human normal gastric epithelial cell lines
GES-1 Cells by activation of the ERK signaling pathway,”Med-
ical Science Monitor: international medical journal of experi-
mental and clinical research, vol. 24, pp. 3564–3570, 2018.

[17] Y. Yang, J. Zhang, Y. Chen, R. Xu, Q. Zhao, and W. Guo,
“MUC4, MUC16, and TTN genes mutation correlated with
prognosis, and predicted tumor mutation burden and immu-
notherapy efficacy in gastric cancer and pan-cancer,” Clinical
and Translational Medicine, vol. 10, no. 4, article e155, 2020.

[18] J. Xu, R. Zhu, L. Fan et al., “Prognostic value of DNA aneu-
ploidy in gastric cancer: a meta-analysis of 3449 cases,” BMC
Cancer, vol. 19, no. 1, pp. 1–8, 2019.

[19] P. N. Tran, S. Sarkissian, J. Chao, and S. J. Klempner, “PD-1
and PD-L1 as emerging therapeutic targets in gastric cancer:
current evidence,” Gastrointestinal Cancer: targets and ther-
apy, vol. Volume 7, pp. 1–11, 2017.

[20] W. L. Fang, S. C. Chang, Y. T. Lan et al., “Microsatellite insta-
bility is associated with a better prognosis for gastric cancer
patients after curative surgery,” World Journal of Surgery,
vol. 36, no. 9, pp. 2131–2138, 2012.

[21] R. W. Lentz, T. Friedrich, J. Hu et al., “Tissue tumor muta-
tional burden (TMB) as a biomarker of efficacy with immune
checkpoint inhibitors (ICI) in metastatic gastrointestinal
(mGI) cancers,” Journal of Clinical Oncology, vol. 39, article
e14559, 15_suppl, 2021.

[22] P. Fonseka, M. Pathan, and S. V. Chitti, “FunRich enables
enrichment analysis of OMICs datasets,” Journal of Molecular
Biology, vol. 433, no. 11, article 166747, 2020.

[23] K. Yoshihara, M. Shahmoradgoli, E. Martínez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
pp. 1–11, 2013.

[24] G. Bindea, B. Mlecnik, M. Tosolini et al., “Spatiotemporal
dynamics of intratumoral immune cells reveal the immune
landscape in human cancer,” Immunity, vol. 39, no. 4,
pp. 782–795, 2013.

[25] A. M. Taylor, J. Shih, G. Ha et al., “Genomic and functional
approaches to understanding cancer aneuploidy,” Cancer Cell,
vol. 33, no. 4, pp. 676–689, 2013.

26 Journal of Immunology Research

http://researchsquare.com/
https://downloads.hindawi.com/journals/jir/2021/2048833.f1.docx


[26] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, no. 10, pp. 1550–1558, 2018.

[27] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” Omics: a journal of integrative biology, vol. 16, no. 5,
pp. 284–287, 2012.

[28] Z. Wang, Z. Zhao, Y. Yang et al., “miR-99b-5p and miR-203a-
3p function as tumor suppressors by targeting IGF-1R in gas-
tric cancer,” Scientific Reports, vol. 8, no. 1, pp. 1–12, 2018.

[29] J.-F. Chen, P. Wu, R. Xia et al., “STAT3-induced lncRNA
HAGLROS overexpression contributes to the malignant pro-
gression of gastric cancer cells via mTOR signal-mediated
inhibition of autophagy,” Molecular Cancer, vol. 17, no. 1,
pp. 1–16, 2018.

[30] C.-Y. Li, G.-Y. Liang, W.-Z. Yao et al., “Identification and
functional characterization of microRNAs reveal a potential
role in gastric cancer progression,” Clinical and Translational
Oncology, vol. 19, no. 2, pp. 162–172, 2017.

[31] J.-W. Mei, Z.-Y. Yang, H.-G. Xiang et al., “MicroRNA-1275
inhibits cell migration and invasion in gastric cancer by regu-
lating vimentin and E-cadherin via JAZF1,” BMC Cancer,
vol. 19, no. 1, pp. 1–12, 2019.

[32] N. Pant, S. Rakshit, S. Paul, and I. Saha, “Genome-wide analy-
sis of multi-view data of miRNA-seq to identify miRNA bio-
markers for stomach cancer,” Journal of Biomedical
Informatics, vol. 97, p. 103254, 2019.

[33] S. Chang, S. He, G. Qiu et al., “MicroRNA-125b promotes
invasion and metastasis of gastric cancer by targeting
STARD13 and NEU1,” Tumor Biology, vol. 37, no. 9,
pp. 12141–12151, 2016.

[34] J.-G. Wu, J.-J. Wang, X. Jiang et al., “miR-125b promotes cell
migration and invasion by targeting PPP1CA-Rb signal path-
ways in gastric cancer, resulting in a poor prognosis,” Gastric
Cancer, vol. 18, no. 4, pp. 729–739, 2015.

[35] M. Sui, A. Jiao, H. Zhai et al., “Upregulation of miR-125b is
associated with poor prognosis and trastuzumab resistance in
HER2-positive gastric cancer,” Experimental and Therapeutic
Medicine, vol. 14, no. 1, pp. 657–663, 2017.

[36] Widodo, M. S. Djati, andM. Rifa'i, “Role of MicroRNAs in car-
cinogenesis that potential for biomarker of endometrial can-
cer,” Annals of Medicine and Surgery, vol. 7, pp. 9–13, 2016.

[37] K. Lin, T. Xu, B.-S. He et al., “MicroRNA expression profiles
predict progression and clinical outcome in lung adenocarci-
noma,” Oncotargets and Therapy, vol. 9, pp. 5679–5692, 2016.

[38] H. Zhu, M. Dai, X. Chen, X. Chen, S. Qin, and S. Dai, “Inte-
grated analysis of the potential roles of miRNA-mRNA net-
works in triple negative breast cancer,” Molecular Medicine
Reports, vol. 16, no. 2, pp. 1139–1146, 2017.

[39] A. Swarbrick, S. L. Woods, A. Shaw et al., “miR-380-5p
represses p53 to control cellular survival and is associated with
poor outcome in MYCN -amplified neuroblastoma,” Nature
Medicine, vol. 16, no. 10, pp. 1134–1140, 2010.

[40] S. M. Vareki, “High and low mutational burden tumors versus
immunologically hot and cold tumors and response to
immune checkpoint inhibitors,” Journal for Immunotherapy
of Cancer, vol. 6, no. 1, pp. 1–5, 2018.

[41] B. Gerull, M. Gramlich, J. Atherton et al., “Mutations of TTN,
encoding the giant muscle filament titin, cause familial dilated
cardiomyopathy,” Nature Genetics, vol. 30, no. 2, pp. 201–204,
2002.

[42] A. Jaiswal, S. S. Reddy, M. Maurya, P. Maurya, and M. K.
Barthwal, “MicroRNA-99a mimics inhibit M1 macrophage
phenotype and adipose tissue inflammation by targeting
TNFα,” Cellular & Molecular Immunology, vol. 16, no. 5,
pp. 495–507, 2019.

[43] S. C. Warth, K. P. Hoefig, A. Hiekel et al., “Induced miR-99a
expression represses Mtor cooperatively with miR-150 to pro-
mote regulatory T-cell differentiation,” The EMBO Journal,
vol. 34, no. 9, pp. 1195–1213, 2015.

[44] W. Wang, Y. Liu, J. Guo et al., “miR-100 maintains phenotype
of tumor-associated macrophages by targeting mTOR to pro-
mote tumor metastasis via Stat5a/IL-1ra pathway in mouse
breast cancer,” Oncogene, vol. 7, no. 12, pp. 1–17, 2018.

[45] J. Eniafe and S. Jiang, “MicroRNA-99 family in cancer and
immunity,” Wiley Interdisciplinary Reviews: RNA, vol. 12,
no. 3, article e1635, 2021.

[46] J. Wang, Z. Wang, and G. Li, “MicroRNA-125 in immunity
and cancer,” Cancer Letters, vol. 454, pp. 134–145, 2019.

[47] X.-X. Peng, R.-Y. Yu, X. Wu et al., “Correlation of plasma exo-
somal microRNAs with the efficacy of immunotherapy inEG-
FR/ALKwild-type advanced non-small cell lung cancer,”
Journal for Immunotherapy of Cancer, vol. 8, no. 1, article
e000376, 2020.

[48] P. L. Triozzi, S. Achberger, W. Aldrich, P. Elson, J. Garcia, and
R. Dreicer, “Differential immunologic and microRNA effects
of 2 dosing regimens of recombinant human granulocyte/ma-
crophage colony stimulating factor,” Journal of Immunother-
apy, vol. 35, no. 7, pp. 587–594, 2012.

[49] H. Tanaka, S. Hazama, M. Iida et al., “miR-125b-1 and miR-
378a are predictive biomarkers for the efficacy of vaccine treat-
ment against colorectal cancer,” Cancer Science, vol. 108,
no. 11, pp. 2229–2238, 2017.

[50] M. Kästle, S. Bartel, K. Geillinger-Kästle et al., “MicroRNA
cluster 106a~363 is involved in T helper 17 cell differentia-
tion,” Immunology, vol. 152, no. 3, pp. 402–413, 2017.

[51] T. E. Stinchcombe, “Unmet needs in squamous cell carcinoma
of the lung: potential role for immunotherapy,” Medical
Oncology, vol. 31, no. 5, p. 960, 2014.

[52] C. S. Fuchs, T. Doi, R. W. Jang et al., “Safety and efficacy of
pembrolizumab monotherapy in patients with previously
treated advanced gastric and gastroesophageal junction can-
cer: phase 2 clinical KEYNOTE-059 trial,” JAMA Oncology,
vol. 4, no. 5, article e180013, 2018.

[53] S. T. Kim, R. Cristescu, A. J. Bass et al., “Comprehensive
molecular characterization of clinical responses to PD-1 inhi-
bition in metastatic gastric cancer,” Nature Medicine, vol. 24,
no. 9, pp. 1449–1458, 2018.

[54] T. Davoli, H. Uno, E. C. Wooten, and S. J. Elledge, “Tumor
aneuploidy correlates with markers of immune evasion and
with reduced response to immunotherapy,” Science, vol. 355,
no. 6322, 2017.

[55] R. M. Samstein, C.-H. Lee, A. N. Shoushtari et al., “Tumor
mutational load predicts survival after immunotherapy across
multiple cancer types,”Nature Genetics, vol. 51, no. 2, pp. 202–
206, 2019.

[56] F. Wang, X. Wei, F. Wang et al., “Safety, efficacy and tumor
mutational burden as a biomarker of overall survival benefit
in chemo-refractory gastric cancer treated with toripalimab,
a PD-1 antibody in phase Ib/II clinical trial NCT02915432,”
Annals of Oncology, vol. 30, no. 9, pp. 1479–1486, 2019.

27Journal of Immunology Research


	Genome Instability-Related miRNAs Predict Survival, Immune Landscape, and Immunotherapy Responses in Gastric Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Data Collection
	2.2. Identification of GI-Related miRNAs
	2.3. Construction of GI-Related miRNA Signature (GIMiSig)
	2.4. Minimally Invasive Diagnostic Value of the GIMiSig
	2.5. Relationship between the GIMiSig and Titin (TTN) Mutation Status
	2.6. Immune Landscape Analysis and Prediction of Immunotherapy Response
	2.7. Biological Significance of the GIMiSig
	2.8. Target Genes of the GIMiSig
	2.9. Statistical Analysis

	3. Results
	3.1. Different Genomic Alterations in the GS and GI Groups
	3.2. Establishment of a GI-Related miRNA Signature (GIMiSig)
	3.3. Evaluation of Independent Prognostic Factors
	3.4. Survival Analysis of GC Subgroups
	3.5. Minimally Invasive Diagnostic Value of the GIMiSig
	3.6. Relationship between the GIMiSig and TTN Mutation Status
	3.7. Relationship between the GIMiSig and Immune Landscape
	3.8. Prediction of Immunotherapy Responsiveness
	3.9. GSEA
	3.10. Target Genes of the GIMiSig

	4. Discussion
	5. Conclusions
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

