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Background. Bladder cancer is the tenth most common cancer worldwide. Valuable biomarkers in the field of diagnostic bladder
cancer are urgently required.Method. Here, the gene expression matrix and clinical data were obtained from The Cancer Genome
Atlas (TCGA), GSE13507, GSE32894, and Mariathasan et al. Five prognostic genes were identified by the univariate, robust, and
multivariate Cox’s regression and were used to develop a prognosis-related model. The Kaplan–Meier survival curves and receiver
operating characteristics were used to evaluate the model’s effectiveness. The potential biological functions of the selected genes
were analyzed using CIBERSORT and ESTIMATE algorithms. Cancer Therapeutics Response Portal (CTRP) and PRISM
datasets were used to identify drugs with high sensitivity. Subsequently, using the bladder cancer (BLCA) cell lines, the role of
TNFRSF14 was determined by Western blotting, cell proliferation assay, and 5-ethynyl-20-deoxyuridine assay. Results.
GSDMB, CLEC2D, APOL2, TNFRSF14, and GBP2 were selected as prognostic genes in bladder cancer patients. The model’s
irreplaceable reliability was validated by the training and validation cohorts. CD8+ T cells were highly infiltrated in the high-
TNFRSF14-expression group, and M2 macrophages were the opposite. Higher expression of TNFRSF14 was associated with
higher expression levels of LCK, interferon, MHC-I, and MHC-II, while risk score was the opposite. Many compounds with
higher sensitivity for treating bladder cancer patients in the low-TNFRSF14-expression group were identified, with obatoclax
being a potential drug most likely to treat patients in the low-TNFRSF14-expression group. Finally, the proliferation of BLCA
cell lines was increased in the TNFRSF14-reduced group, and the differential expression was identified. TNFRSF14 plays a role
in bladder cancer progression through the Wnt/β-catenin-dependent pathway. TNFRSF14 is a potential protective biomarker
involved in cell proliferation in BLCA. Conclusion. We conducted a study to establish a 5-gene score model, providing reliable
prediction for the outcome of bladder cancer patients and therapeutic drugs to individualize therapy. Our findings provide a
signature that might help determine the optimal treatment for individual patients with bladder cancer.

1. Introduction

Bladder cancer (BLCA) is the tenth most common cancer
worldwide [1]. It is the second most common cancer in
men, affecting 13 men per 100,000 (11%), and it is more
common in men than in women [2]. Tobacco smoking is
the most common risk factor for BLCA, which increases
the risk two- to sixfold [3]. BLCA is a heterogeneous disease
divided into two types based on the degree of invasion of the

lamina propria [4, 5]. Approximately 75% of patients pres-
ent with non-muscular-invasive BLCA (NMIBC), while the
remaining 25% are diagnosed as muscle-invasive BLCA
(MIBC) [6]. The primary treatment option of NMIBC is
transurethral resection of the bladder tumor followed by
chemoradiation [7]. At present, the typical treatment for
MIBC includes radical cystectomy and neoadjuvant chemo-
therapy [8]. Nevertheless, BLCA has a poor outcome despite
improved diagnostic technologies and treatment strategies
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Figure 1: The univariate Cox regression analysis and enrichment analysis. (a) The univariable Cox regression of the top 30 genes for overall
survival. (b) The interaction network map of enriched proteins; the same color indicates the same enrichment. (c) The enriched terms
decrease from top to bottom by the significance of enrichment.
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Figure 2: Continued.
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Figure 2: Continued.
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[9, 10]. Therefore, it is essentially significant to identify
meaningful predictive methods with relatively higher accu-
racy to improve outcomes.

Advances in second-generation high-throughput gene
sequencing and construction of genome databases of cancers
such as TCGA (https://cancergenome.nih.gov/) and Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/
geo/) have provided extensive sequencing data to explore
gene function, including cancer-associated genes. There are
prognostically relevant multicohort validated models for
many cancer types, including breast cancer [11], oesophago-
gastric adenocarcinoma [12], and lung cancer [13]. Prognos-
tic models guide the treatment for BLCA patients and
provide optimal treatment decisions, thereby improving out-
comes as much as possible. In the present study, we sought
to establish a reliable predictive model for patients with
BLCA. The degrees of freedom of the prognostic model
should be limited when it is established, thereby reducing
cost. The partial likelihood of the Cox proportional hazard
regression model applied to a robust method helps select
genes and construct the best model according to the lowest
Akaike information criterion scores (AICs). Robust models
have higher clinical significance than other methods of con-
structing prognostic models, including the multivariate Cox
regression.

In this study, based on a predictive model for the out-
come of BLCA, we identified several protective factors that
improve the outcome. The prognostic score model used in
this paper is a robust risk model. This model was then veri-

fied in four cohorts and applied for different ages, sexes, and
pathological stages to help physicians individualize medical
decisions for BLCA patients.

2. Methods

2.1. Data Source. The gene expression matrix and clinical
data were obtained from TCGA. Data from 429 BLCA sam-
ples were used, including 18 nontumor tissue samples adja-
cent to the tumor and 411 tumor tissue samples. All BLCA
patients included in TCGA were used as the training set.
Expression levels of genes were standardized by log2ðexp +
1Þ. A total of 165 samples with overall survival time, state,
clinical stage, sex, and age were obtained from GSE13507
[14] on the GPL6102 Illumina human-6 v2.0 expression
bead chip, in addition to this cohort with GSE32894 [15]
on the GPL6947 Illumina HumanHT-12 V3.0 expression
bead chip from GEO. We also used the cohort from Mar-
iathasan et al. [16]. Expression profile data of human cancer
cell lines (CCLs) were obtained from the Broad Institute
Cancer Cell Line Encyclopedia project (https://portals
.broadinstitute.org/ccle/) [17]. Drug sensitivity data were
available in CTRP (v.2.0, released October 2015, https://
portals.broadinstitute.org/ctrp), including 481 compounds
with over 835 CCLs, and the PRISM Repurposing dataset
(19Q4, released December 2019, https://depmap.org/
portal/prism/), including 1448 compounds with over 482
CCLs.
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Figure 2: Analysis related to high- and low-TNFRSF14-expression group. (a–e) Pathways with differences. (f–g) Drugs with higher
sensitivity in the low-TNFRSF14-expression group.
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2.2. The Univariate Cox Regression. We selected differen-
tially expressed genes with median and variability of
expression levels higher than 20 percent of all genes. Then,
the degree of correlation between gene expression and
overall survival was assessed in the training set. We used
the “survival” package [18] in R software for the univariate
Cox regression analysis of the degree of correlation
between gene expression levels and overall survival. Genes
associated with the outcome with p < 0:05 were selected
using “Survdiff” commands in R language, and GraphPad
Prism 8.0 was used to draw the Kaplan–Meier survival
curves and receiver operating characteristic (ROC) curves
of 1, 3, and 5 years to assess their correlations with out-
come [19]. Expression of independent prognostic factors
was measured at the transcriptional and translational
levels [20].

2.3. Function Analysis. Gene lists and proteomic studies
from high-throughput sequencing were biologically inter-
preted using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID, v6.8), a function enrich-
ment tool, to determine the possible biological functions of
the screened genes [21]. DAVID was used to perform the
KEGG pathway [22] and enrichment analysis for Gene
Ontology [23], and the “ggplot2” package in R was used to
generate histograms [24]. Results with p < 0:05 are consid-
ered significant. Gene set enrichment analysis was used to
determine different pathways enriched in the high- and
low-TNFRSF14-expression group.

2.4. Robust Feature Selection. To create the most stable prog-
nostic model and minimize the degrees of freedom to reduce
costs, the principle of robust likelihood-based survival anal-
ysis and AICs was applied to screen the genes selected by
univariate regression analysis according to the following
parameters: iteration times = 100 and max concern genes =
20 [25, 26]. The Kaplan–Meier survival curves and ROC
curves [27] were used to represent the meaningful prognos-
tic value of these selected prognostic genes, which were sig-
nificant (p < 0:05) according to the log-rank test [28].

2.5. Robust Model Generation. A prognostic model was con-
structed with the multivariate Cox regression analysis using
the five selected robust outcome-related genes. Hazard ratios
were used to determine whether a gene is a cancer-
promoting (ratio < 1) or cancer-inhibiting factor (ratio > 1).
The risk score for each patient was calculated, and the
amounts of the five prognostic factors were determined
using the “pheatmap” package. The effects were evaluated
by drawing the Kaplan–Meier and ROC curves in the train-
ing set, test sets, and multiple subgroups.

2.6. Immune Environment Evaluation. The Estimation of
Stromal and Immune cells in Malignant Tumor tissues using
Expression data (ESTIMATE) is an algorithm used to calcu-
late the fractions of stromal and immune cells based on gene
expression levels [29]. We calculated the immune score,
stromal score, and tumor purity for each BLCA patient using
the ESTIMATE method. CIBERSORT is a tool that can cal-
culate the proportion of cells in a tissue sample gene expres-
sion profile. LM22 is a gene matrix from the CIBERSORT
website portal (https://cibersort.stanford.edu/) used to calcu-
late expression levels of 22 immune cell subtypes [30].
Expression data from LM22 and ESTIMATE were used to
analyze expression differences among risk groups. The cor-
relations between expression of prognostic genes and tumor
purity, ESTIMATE score, immune score, various inflamma-
tory factors, and others were calculated in R language using
the “heat map” package.

2.7. Statistical Analysis. All statistical analyses were per-
formed using the R package downloaded from CRAN
(https://cran.r-project.org) or BioConductor (http://www
.bioconductor.org) in the R language (R x64 4.0.3). The Wil-
coxon test was used to compare differences between two
groups, and the Kruskal–Wallis test was used to compare
differences between multiple groups. If p < 0:05, differences
were considered statistically significant; if p < 0:01, there
was a highly significant difference between the groups.

2.8. Cell Culture and Transfection. The BLCA cell lines T24
and UMUC3 were purchased from the Chinese Academy
of Sciences Cell Bank (China). T24 and UMUC3 were cul-
tured in RPMI 1640 and DMEM (high-glucose) medium
(Hyclone) containing 10% fetal bovine serum, respectively.
Both cell lines were cultured at 37°C with 5% CO2. Small
interfering RNAs (siRNA) targeting TNFRSF14 to reduce
its expression were purchased from JTSBIO Co. (China).
The si-TNFRSF14 (H) -539 (#1) sequences were as follows:
sense, CCUACAUUGCCCACCUCAATT; anti-sense,

Table 1: The result of robust gene model in TCGA - BLCA.

Seq Order Gene nloglik AIC Selected

1 0 0 854.81 1709.62

1 1 GBP2 841.69 1685.39 ∗

1 2 TNFRSF14 837.46 1678.91 ∗

1 3 APOL2 836.23 1678.46 ∗

1 4 CLEC2D 832.52 1673.03 ∗

1 5 GSDMB 830.87 1671.74 ∗

1 6 CXorf38 830.68 1673.36

1 7 OAS1 830.35 1674.71

1 8 PSMB10 830.35 1676.7

1 9 OFD1 830.33 1678.66

1 10 RNF19A 828.15 1676.3

1 11 ECHDC2 828.15 1678.3

1 12 CD96 827.61 1679.23

1 13 DOCK8 827.29 1680.59

1 14 CARD8 826.8 1681.59

1 15 ALPK1 826.8 1683.59

1 16 TMEM229B 826.54 1685.08

1 17 ANAPC4 826.52 1687.03

1 18 PCED1B 825.94 1687.88

1 19 TRIM38 825.86 1689.72

Nloglik: negative log-likelihood; AIC: Akaike information criterion score.
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UUGAGGUGGGCAAUGUAGGTT. The si-TNFRSF14 (H)
-941 (#2) sequences were as follows: sense, GCUCCACAG
UUGGCCUAAUTT; anti-sense, AUUAGGCCAACUGU
GGAGCTT.

2.9. Total RNA Extraction and Quantitative Real-Time PCR
(qRT-PCR). Total RNA was extracted using RNAiso Plus
(Takara Biotechnology, Dalian, China). After the manufac-

turer’s instruction, total RNA was reverse transcribed into
cDNA with PrimeScript RT Master Mix (Takara, Dalian).
SYBR® Premix Ex Taq™ Kit (Takara, Dalian) was used to
perform qRT-PCR. The Thermal Cycler Dice™ Real-Time
TP800 system (Takara, Kyoto) was used to perform all anal-
yses. GAPDH was used as an internal reference, and the rel-
ative expression level of a gene was calculated by the ΔΔCT
method. The primer sequences are listed as follows:
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Figure 3: Effects of the single factor on patient outcome in TCGA cohort. (a–e) The Kaplan–Meier survival curves for patients with BLCA
in TCGA, stratified according to the expression levels of APOL2, CLEC2D, GBP2, GSDMB, and TNFRSF14 (high vs. low); comparisons of
the median survival time in both groups with log-rank tests (p = 0:00051, p < 0:0001, p = 0:014, p = 0:00027, and p < 0:0001, respectively). (f–
j) ROC curve analysis of the prognostic accuracy of APOL2, CLEC2D, GBP2, GSDMB, and TNFRSF14 in TCGA. (k–o) Comparisons of the
expression levels of various genes in the robust model in TCGA for different stages.

10 Journal of Immunology Research



TNFRSF14 (forward: GTGCAGTCCAGGTTATCGTGT;
reverse: CACTTGCTTAGGCCATTGAGG) and GAPDH
(forward: GGAGCGAGATCCCTCCAAAAT; reverse:
GGCTGTTGTCATACTTCTCATGG).

2.10. Western Blotting (WB). Cells were lysed in radioimmu-
noprecipitation assay (RIPA) buffer, protein was taken, and
the concentrations were measured using a bicinchoninic
acid assay kit. The proteins were separated using 10%
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE), and the proteins were transferred to polyviny-
lidene fluoride membranes. Subsequently, the membranes
were blocked using Tris-buffered saline with 1% Tween 20
(TBS-T) with 5% nonfat milk at 37°C for 1 h. After adding
primary antibodies for β-catenin and cyclin D1, the mem-
branes were incubated at 4°C overnight. After washing three
times with TBS-T, the membranes were incubated with a
secondary antibody for 1 hour at 37°C and then washed
again. The enhanced chemiluminescence method was used
to observe the protein expression, and ImageJ software was
used to calculate the protein expression value.

2.11. Cell Proliferation Assay. T24- and UMUC3-treated
cells were seeded in 96-well plates, and the Cell Counting
Kit-8 (CCK-8) assay reagent (Dojindo Molecular Technolo-
gies, Inc.) was added to each well following the manufac-
turer’s instructions. An absorbance reader (Bio-Rad) was
used to measure the absorbance at a wavelength of 450nm.

2.12. Ethynyl-20-Deoxyuridine Assay (EdU). The prolifera-
tion ability of the cells was detected with the 5-ethynyl-20-
deoxyuridine (EdU) assay kit (RiboBio, Guangzhou, China).
A total of 2000 cells were added to each well in a 96-well
plate after transfection. After 18 h, 500μl medium contain-
ing 50μM EdU was added to each well for 3 hours. After
aspirating the culture medium, 4% paraformaldehyde was
added to each well to fix the cells at room temperature for
15min. Subsequently, 0.3% Triton X-100 in phosphate-
buffered saline was added to each well at room temperature
for 15min, and then the cells were incubated for 30min with
click reaction solution. Finally, Hoechst 33342 diluted in
phosphate-buffered saline (1 : 1000) was added to each well

at room temperature for 10min. The proportion of EdU-
positive cells was observed with a fluorescence microscope
(Olympus Corporation, Japan) and photographed. The per-
centage of EdU-positive cells was calculated using the Ima-
geJ software (NIH Image, Bethesda, MD, USA).

3. Results

3.1. Data Source. The expression levels and clinical data of
429 BLCA samples were acquired from TCGA, including
410 tumor samples and 19 nontumor samples. GSE13507
(n = 165) and GSE32894 (n = 224) were used. These patient
samples included RNA expression, overall survival time, sur-
vival status, clinical stage, gender, and age. We also used the
cohort from Mariathasan et al. (n = 195).

3.2. The Univariate Cox Regression. Using all BLCA samples
from TCGA as a training set, a total of 829 outcome-related
genes with p < 0:05 were identified using the univariate Cox
regression analysis. The top 30 genes are shown in
Figure 1(a). Hazard ratios were used to identify risk factors
or protective factors: HR > 1 suggests that a gene is a risk
factor, while genes with HR < 1 are protective factors. Of
the top 30 genes, 27 were risk factors, and the remaining
genes were protective factors.

3.3. Function Analysis. Pathway and biological process
enrichment analyses of these selected genes were performed
to explore further their possible biological functions
(Figures 1(b) and 1(c)). The enrichment terms from top to
bottom are arranged from high to low according to the sig-
nificance of the enrichment. Analysis of pathways enriched
in high- and low-TNFRSF14-expression groups was per-
formed to explore the pathways involved in TNFRSF14
(Figures 2(a)–2(e)).

3.4. Robust Feature Selection. In the first step, the training set
(N = 429 samples) was randomly divided into a subtraining
set with N ∗ ð1 − pÞ samples and a subvalidation set with
N ∗ p samples (p = ð1/3Þ). A gene was fitted to the subtrain-
ing set of samples, and the parameter estimate was obtained.
Then, log-likelihood with the parameter estimate and the
subvalidation set were evaluated. This evaluation was per-
formed for each gene.

In the second step, the procedure was repeated over 100
times. In this manner, 100 times log-likelihood for each gene
were obtained. The best genes with the smallest mean nega-
tive log-likelihood (or the largest mean log-likelihood) were
selected. The best genes were the ones most closely associ-
ated with survival selected by the robust likelihood-based
approach.

In the third step, Gene A was regarded as the best-
selected gene in the previous step. We found the next best
gene (B) by repeating the previous two steps.

In the fourth step, this selection was continued until
there were no more samples, resulting in a series of K
models M1 = A, M2 = A + B, and MK = A + B +⋯+K .

In the final step, the best genes that were marked as (∗)
were selected in the model with the smallest AIC, which was
considered the most stable and sound model with the least

Table 2: Variables in the equation.

B SE Wald Df Sig Exp(B)
95% CI of
Exp(B)

GSDMB -0.113 0.062 3.265 1 0.071 0.893
0.790-
1.010

CLEC2D -0.167 0.090 3.400 1 0.065 0.846
0.709-
1.011

APOL2 -0.029 0.091 0.100 1 0.751 0.972
0.813-
1.162

TNFRSF14 -0.088 0.099 0.786 1 0.375 0.916
0.754-
1.112

GBP2 -0.176 0.079 5.004 1 0.025 0.838
0.718-
0.978

Df: degree of freedom; Sig: significance.
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Figure 4: Effects of the robust model on patient outcome in TCGA cohort. (a) The risk score analysis is from top to bottom: patient’s risk
distribution, gene expression profile, and survival status map. (b) The Kaplan–Meier survival curves for patients with bladder cancer in
TCGA, stratified according to risk scores (high vs. low); comparisons of the median survival time in both groups with log-rank tests
(p < 0:0001). (c) ROC curve analysis of the prognostic accuracy of the model in TCGA. (d–i) The subgroups’ Kaplan–Meier’s analysis of
risk score.
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number of degrees of freedom (i.e., GBP2, TNFRSF14,
APOL2, CLEC2D, and GSDMB), as shown in Table 1. The
Kaplan–Meier analysis and ROC curves indicated that all
five factors were protective (Figures 3(a)–3(j)). The correla-
tion between the expression of the five genes and the clinical
stage is shown in Figures 3(k)–3(o). Afterward, the indepen-
dent prognostic value of the five selected genes was verified
in three external GEO cohorts (Supplementary Figures 1–3).

3.5. Robust Model Generation. Using the multivariable Cox
regression analysis, a risk score model was established with
the five selected robust genes to calculate the correlation
between the comprehensive expression levels of the five
genes and patients’ outcomes (Table 2). The risk score for-
mula was as follows: −0:113 ∗GSDMB − 0:167 ∗ CLEC2D
− 0:029 ∗APOL2 − 0:088 ∗ TNFRSF14 − 0:176 ∗GBP2.

The risk score formula was applied to calculate the risk
value of each sample in the test set and the obtained value
of the risk score. The survival status and the expression
levels of the five selected genes for each sample are shown
in Figure 4(a). The Kaplan–Meier analysis revealed that out-
comes in the high-risk group were significantly worse than
those of patients in the low-risk group with p < 0:0001
(Figure 4(b),HR = 2:72). An ROC curve was drawn to deter-
mine the constructed model’s reliability, and the relationship
between risk scores and disease types was queried. Area
under the curve (AUC) values at various periods are shown
in Figure 4(c) (1/3/5 year = 0:71/0:70/0:71).

3.6. Subgroup Analysis. The samples in the training set were
divided into subgroups to assess the reliability of the con-
structed model, including age, clinical stage, and sex. The
survival curves indicated that the model was significant in

each subgroup (p < 0:05) (Figures 4(d)–4(i)). Meanwhile,
the prognostic significance of the above five-gene risk signa-
ture in the different subgroups of GSE13507 is significant
(Supplementary Figure 4).

3.7. Signature Verification. Three external cohorts
(GSE13507, GSE32894, and the Mariathasan cohort) were
used for validation to validate the model’s reliability further.
The survival curves indicated that the model was significant
in all three cohorts, i.e., patients in the high-risk group had
worse outcomes than those in the low-risk group. p values
in the three cohorts were 0.011, <0.0001, and 0.015, respec-
tively (Figures 5(a)–5(c)). The ROC curves of the four
cohorts are shown in Figures 5(d)–5(f). The 1-, 3-, and 5-
year AUCs of the three cohorts were 0.66/0.71/0.74,
0.77/0.84/0.84, and 0.53/0.56/0.52, respectively.

The risk score formula was also applied to calculate the
risk value of each sample in the four cohorts and the
obtained value of the risk score. The survival status and
the expression levels of the five selected genes for each sam-
ple are shown in Figures 5(g)–5(i).

3.8. Immune Environment Evaluation. CIBERSORT was
used to calculate the expression of 22 immune cells from
all BLCA samples in TCGA. All samples were divided into
high- and low-TNFRSF14-expression and high- and low-
APOL2-expression groups, respectively. The differences in
expression levels of 22 immune cells between high- and
low-expression groups were displayed in box plots. The
results showed that CD8+ T cells were highly infiltrated in
the high-TNFRSF14-expression group, and M2 macro-
phages were less highly expressed in the high-TNFRSF14-
expression group. This was also the case in the high- and
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Figure 5: Effects of the robust model on patient outcome in external cohorts. (a–c) The Kaplan–Meier survival curves for patients with
BLCA in GSE13507, GSE32894, and Mariathasan S’s cohort, stratified according to risk scores (high vs. low); comparisons of the median
survival time in both groups with log-rank tests (p = 0:011, p < 0:0001, and p = 0:015, respectively). (d–f) Receiver operating characteristic
curve analysis of the prognostic accuracy of the model. (g–i) The risk score analysis is from top to bottom: patient’s risk distribution,
gene expression profile, and survival status map.
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low-APOL2-expression groups (Figures 6(a) and 6(b)). The
heat map showed that higher expression of TNFRSF14 was
associated with better survival status; lower tumor stage,
tumor purity, ESTIMATE score, immune score, and stromal
score; and higher expression levels of various inflammatory
factors, including IgG, hemopoietic cell kinase (HCK),
MHC-2, and others (Figure 6(c)). An opposite trend was
observed for the heat map of the risk score (Figure 6(d)).
Immune microenvironment analysis of other factors had
been added to Supplementary Figure 5.

3.9. Identification of Potential Therapeutic Agents for Low-
TNFRSF14-Expression BLCAs. There are gene expression
and drug response data from hundreds of cell lines for CCLs
in the CTRP and PRISM datasets, which can be used as a test
set for drug response. Both datasets had a total of 1770 com-
pounds, and we excluded samples and cell lines with more

than 20% NA in hematopoietic and lymphoid tissues. K
-nearest neighbor (k-NN) imputation was used to fill in
the missing AUC values. Finally, 354 compounds in the
CTRP dataset and 1285 PRISM datasets were used for subse-
quent analysis. Subsequently, the pRRophetic package was
applied to predict the effect of candidate drugs applied to
clinical patients, and the corresponding estimated AUC
values were obtained. AUC values are negatively related to
the sensitivity of the drug.

Two methods were applied for cross-analysis to identify
candidate drugs with higher drug sensitivity for patients
with low TNFRSF14 expression based on CTRP and
PRISM-derived drug response. First, differential analysis of
drug response was performed in the high- (top decile) and
low-TNFRSF14- (bottom decile) expression groups to iden-
tify compounds with lower estimated AUC values in the
low-TNFRSF14-expression group (log2FC<−0:10). Next,
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Figure 6: Tumor microenvironment analysis. (a, b) The difference of 22 kinds of immune cells between the high-expression group and the
low-expression group according to the expression levels of TNFRSF14 and APOL2 was analyzed and shown by box plots. p < 0:05 was
marked as ∗; p < 0:01 was marked as ∗∗; p < 0:001 was marked as ∗∗∗; p < 0:0001 was marked as ∗∗∗∗. (c, d) The correlation of the
immunoproteasome of TNFRSF14 and risk score to survival status, TumorPurity, and inflammatory and immune responses. These
responses were induced by immunoglobulin G (IgG), HCK, major histocompatibility complex class II (MHC-II), lymphocyte-specific
kinase (LCK), major histocompatibility complex class I (MHC-I), activator of transcription 1 (STAT1), interferon, B7-CD28, and TNF.
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the AUC values and TNFRSF14 expression were subjected to
Spearman’s correlation analysis to select compounds with
positive correlation (Spearman’s r > 0:20 for CTRP or 0.30

for PRISM). Finally, 12 compounds in CTRP (including
BI-2536, GSK461364, KX2-391, leptomycin B, obatoclax,
paclitaxel, panobinostat, PI-103, rigosertib, SB-743921,
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Figure 7: Experiment of TNFRSF14. (a) Relative RNA level of TNFRSF14 in T24 and UMUC3 cells following TNFRSF14 knockdown.
GAPDH served as loading control. (b) Relative protein level of β-catenin and cyclin D1 in T24 and UMUC3 cells following TNFRSF14
knockdown. β-Tubulin served as loading control. (c) The effects of TNFRSF14 on the proliferation of T24 and UMUC3 cells were
analyzed by CCK-8 assays. The results are presented as the mean optical density (OD) at 450 nm for triplicate wells. The results are
presented as the mean ± SD of three independent experiments (∗p < 0:05; ∗∗p < 0:01). (d) EdU incorporation assays were used to
determine the effects of TNFRSF14 on T24 and UMUC3 cell proliferation. The ratio of EdU-positive cells (green) per field to the
number of Hoechst 33342-positive cells (blue) in the same field was calculated in three random fields.
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vincristine, and YM-155) and 14 compounds in PRISM
(including AC-264613, atorvastatin, combretastatin-A-4,
docetaxel, epothilone-b, GZD824, ispinesib, litronesib,
mitoxantrone, NVP-AUY922, obatoclax, quizartinib, teni-
poside, and volasertib) were screened out. All these com-
pounds had lower estimated AUC values in the TNFRSF14
low-expression group and a positive correlation with
TNFRSF14 expression (Figures 2(f) and 2(g)).

3.10. Knockdown of TNFRSF14 Significantly Inhibited the
Wnt Pathway and BLCA Cell Proliferation. TNFRSF14 is
poorly expressed in BLCA and is associated with a good out-
come. In BLCA cell lines, the role of TNFRSF14 was vali-
dated by in vitro experiments. The expression of
TNFRSF14 in two cell lines, T24 and UMUC3, is knocked
down with siRNA-TNFRSF14, and the expression levels of
TNFRSF14 after knockdown are shown in Figure 7(a). Pro-
tein expression of both β-catenin and cyclin D1 were
increased after the knockdown of TNFRSF14 (Figure 7(b)).
The CCK-8 assay was used to determine the effect of
TNFRSF14 on the proliferation ability of T24 and UMUC3
cell lines. TNFRSF14 inhibited the proliferation ability of
BLCA cells (Figure 7(c)). The proliferation ability of
TNFRSF14 for BLCA cells was then also determined again
using the EdU assay, and the result was consistent with the
CCK-8 assay (Figure 7(d)).

4. Discussion

BLCA is one of the most common urinary tumors, with high
incidence, recurrence, and variable outcomes [31–33]. There
is no reliable predictive method for predicting prognosis and
guiding individualized treatment. In this study, we estab-
lished a robust prognostic score model for BLCA. All sam-
ples were divided into subgroups, including stage, age, and
gender, and our model was analyzed in each subgroup.
The model was built using RNA-seq data from all BLCA
samples in TCGA and was validated using three external test
sets. The prognostic score model contains five protective fac-
tors (GSDMB, CLEC2D, APOL2, TNFRSF14, and GBP2).
The potential biological functions of these five genes were
analyzed. We found that CD8+ T cells and M2 macrophages
were closely related to TNFRSF14 and APOL2, and the
expression of TNFRSF14 and risk score were strongly asso-
ciated with tumor purity, immune score, various inflamma-
tory factors, and others. These findings hold implications for
future clinical and biological research.

With the rapid development of bioinformatics analysis,
there have been many studies predicting risk models for
BLCA. These models have included too many factors that
increase costs and burdens on patients. Furthermore, the
reliability of each factor in these models alone was insuffi-
ciently strong, suggesting that these factors are not the most
appropriate predictive markers.

Cancer stem cells (CSCs) can affect tumor progression,
recurrence, metastasis, and resistance to therapy [34, 35],
and there are many CSC markers, including OCT4 [36]
and CD133 [37]. Chan et al. suggested that CSCs can pro-
mote the progression of BLCA [38]. Sedaghat et al. suggested

that OCT4/CD133 can be efficiently used for early diagnosis
and for determining the prognosis of patients with BLCA,
but OCT4 and CD133 cannot be used as independent prog-
nostic factors for BLCA [39]. In the present study, GSDMB,
CLEC2D, APOL2, TNFRSF14, and GBP2 in our constructed
model can be considered as independent prognostic factors
in BLCA.

Pyroptosis is a novel programmed cell death mechanism
discovered in recent years [40]. Zhou et al. suggested that the
expression of GSDMB promotes pyroptosis in 293T cells;
the higher expression of GSDMB is correlated with better
outcomes in bladder carcinoma and cutaneous melanoma
[41]. The GSDMB protein promotes pyroptosis through its
N-domain in HEK293T cells [42]. The expression of
GSDMB in BLCA tissues is lower than that in normal tis-
sues, and the high expression of GSDMB is significantly cor-
related with the good prognosis of BLCA [41].

Inflammation is an essential process in the tumor micro-
environment mediated by a mixture of cytokines secreted by
tumors and immune cells [43, 44]. In the interaction
between the tumor and the immune system, cytokines exert
biological functions in the tumor microenvironment by acti-
vating immune cells and stimulating inflammation [45].
Inflammatory reactions recognize and eliminate specific
antigens from tumor cells (a process called immune moni-
toring) and prevent cancer [46]. Del Fresno and Sancho sug-
gested that CLEC2D mediates cytokine-driven
inflammation, and the CLEC2D pathway can enhance other
inflammatory responses and the antitumor process [47].
Mathew et al. suggested that CLEC2D might allow prostate
cancer cells to evade the immune system by inhibiting natu-
ral killer cells [48]. Tang et al. suggested that CLEC2D can
enhance prostate cancer resistance to docetaxel [49].

Apolipoprotein L2 (APOL2) belongs to the L family of
lipid-binding proteins [50–52]. The APOL gene family is
involved in programmed cell death and initiates apoptosis
or autophagic death [53]. Gupta et al. suggested that APOL2
was a proinflammatory gene [54]. APOL2 might be antia-
poptotic to inhibit progression and is a prognostic factor
for BLCA [50–52].

Tumor necrosis factor receptor superfamily 14
(TNFRSF14), a protein encoded by this gene which is also
called HVEM, encodes members of the tumor necrosis fac-
tor (TNF) receptor superfamily and activates proinflamma-
tory pathways [55]. TNFRSF14 mediates apoptosis and
inhibits tumor cells from undergoing immune escape [56,
57]. TNFRSF14 can inhibit the proliferation of BLCA by
promoting apoptosis and is a prognostic marker for
BLCA [58].

Guanylate-binding protein 2 (GBP2) is a member of the
GBP family. When GBP2 is absent in macrophages, there are
blunted immunological responses, suggesting that it plays an
essential role in the inflammatory process [59, 60]. The
upregulation of GBP2 gene expression is positively corre-
lated with outcomes in cutaneous melanoma [61]. Wang
et al. suggested that GBP2 inhibits the proliferation and
invasion of colorectal cancer cells [62]. Zhang et al. sug-
gested that GBP2 inhibits breast cancer cell invasion [63].
Godoy et al. found that GBP2 is a protective factor in breast
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cancer [64]. Messmer-Blust et al. found that upregulation of
GBP2 inhibits cell spreading [65]. GBP2 might be a target
for improving BCG efficacy and is a prognostic protective
factor for BLCA [66].

Measurement of the degree of 22 immune cell infiltra-
tion suggested that the expression of TNFRSF14 and APOL2
is strongly correlated with CD8+ T cells and M2 macro-
phages. Jansen et al. suggested that BLCA patients with a
high degree of infiltration of CD8+ T cells had good out-
comes and strong responses to immunotherapy [67]. In
BLCA, tumor-associated macrophages are associated with
the M2 phenotype [68], and M2 macrophages are associated
with poor outcomes [69]. Our present findings are consis-
tent with these conclusions.

Enhancement of antitumor activity requires tumor
neoantigen-specific CD8+ T cells to inhibit tumors via major
histocompatibility complex- (MHC-) I [70] and enhanced
immunotherapy by activating CD4+ T cells via MHC-II
[71]. The antitumor ability of MHC-II-restricted CD4+ T
cells is particularly strong [72]. Upregulation of MHC-II
expression enhances antigen presentation and prevents
tumor immune escape [73, 74] regarding adaptive immune
responses, in which the Src-family tyrosine kinase LCK
[75] activates T cell receptors and enhances immune
responses [76].

Interferon signaling is involved in the immune surveil-
lance mechanism of tumors [77]. Interferon-γ, secreted by
CD8+ cytotoxic T lymphocytes, inhibits tumors, an essential
part of antitumor immune responses [78]. IFN-α expands
CD8+ T cells on a large scale and blocks the cycle of cancer
cells, thereby improving outcomes [79]. In our study, the
expression of TNFRSF14 is positively correlated with the
expression levels of MHC-I, MHC-II, LCK, and interferon,
while the risk score was the opposite. This result also indi-
cated that the higher expression of TNFRSF14 is correlated
with lower tumor purity, while the risk score was the
opposite.

The Wnt signaling pathways were divided into canonical
pathways, Wnt/β-catenin-dependent pathways, and nonca-
nonical Wnt pathways [80]. The proliferation ability of blad-
der cancer cells can be improved by activating the Wnt
pathway [81]. Cyclin D1 is a downstream target of the
Wnt/β-catenin-dependent pathway [82], and cyclin D1 can
also promote the proliferation of BLCA cells [83].

Obatoclax can be used to reduce the resistance of BLCA
cells to paclitaxel [84], and paclitaxel (PTX) is a widely used
drug in clinical practice and can be used to treat BLCA [85].

Although the five-gene robust model established in this
study predicted outcomes in BLCA, there remain some lim-
itations of the present study. Previous investigators provided
the patient data. There were also few cohorts for external
validation. Furthermore, the reliability of the robust model
was only analyzed at the sequencing level and was not clin-
ically validated. Panobinostat (PAN) can increase the sensi-
tivity of muscle-invasive BLCA cells to radiation [86].
Treatment with docetaxel can reduce the size of bladder
tumors [87]. Obatoclax was identified in both CTRP and
PRISM as a more sensitive compound in the low-
TNFRTF14-expression group, so it may be a potential drug

most likely to treat patients in the low-TNFRSF14-
expression group.

5. Conclusion

In conclusion, a reliable risk score model was established to
predict outcomes in patients with BLCA and identify the
screened genes’ possible biological functions. CD8+ T cells
and M2 macrophages were related to the expression of the
selected genes. Expression levels of MHC-I, MHC-II, LCK,
and interferon were associated with the expression of
THFRSF14 and the risk score. Tumor purity is correlated
with the expression of THFRSF14 and the risk score. Obato-
clax may be a potential drug most likely used to treat
patients in the low-TNFRSF14-expression group. Neverthe-
less, further studies are needed to validate the stability of
the predictions of the established model and evaluate its
practical value in clinical applications.
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Supplementary Materials

Supplementary Figure 1: effects of the single factor on
patient outcome in GSE13507. (A–E) The Kaplan–Meier
survival curves for patients with bladder cancer in
GSE13507, stratified according to the expression levels of
APOL2, CLEC2D, GBP2, GSDMB, and TNFRSF14 (high
vs. low); comparisons of the median survival time in both
groups with log-rank tests (p = 0:049, p = 0:0056, p =
0:0018, p = 0:049, and p = 0:027, respectively). (F–J) ROC
curve analysis of the prognostic accuracy of APOL2,
CLEC2D, GBP2, GSDMB, and TNFRSF14 in GSE13507.
Supplementary Figure 2: effects of the single factor on
patient outcome in GSE32894. (A–E) The Kaplan–Meier
survival curves for patients with BLCA in GSE32894, strati-
fied according to the expression levels of APOL2, CLEC2D,
GBP2, GSDMB, and TNFRSF14 (high vs. low); comparisons
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of the median survival time in both groups with log-rank
tests (p < 0:0001, p = 0:00021, p = 0:00049, p = 0:00053, and
p = 0:037, respectively). (F–J) ROC curve analysis of the
prognostic accuracy of APOL2, CLEC2D, GBP2, GSDMB,
and TNFRSF14 in GSE32894. Supplementary Figure 3:
effects of the single factor on patient outcome in Mariatha-
san S’s cohort. (A–E) The Kaplan–Meier survival curves
for patients with BLCA in Mariathasan S’s cohort, stratified
according to the expression levels of APOL2, CLEC2D,
GBP2, GSDMB, and TNFRSF14 (high vs. low); comparisons
of the median survival time in both groups with log-rank
tests (p = 0:018, p = 0:0018, p = 0:03, p = 0:0064, and p =
0:22, respectively). (F–J) ROC curve analysis of the prognos-
tic accuracy of APOL2, CLEC2D, GBP2, GSDMB, and
TNFRSF14 in Mariathasan S’s cohort. Supplementary Figure
4: effects of the robust model on patient outcome in
GSE13507. (A–F) The subgroups’ Kaplan–Meier analysis of
risk score. Supplementary Figure 5: tumor microenviron-
ment analysis. (A–C) The difference of 22 kinds of immune
cells between the high-expression group and the low-
expression group according to the expression levels of
CLEC2D and GBP2 and the low-risk and high-risk groups
were analyzed and shown by box plots. p < 0:05 was marked
as ∗; p < 0:01 was marked as ∗∗; p < 0:001 was marked as
∗∗∗; p < 0:0001 was marked as ∗∗∗∗. (D–F) The correla-
tion of the immunoproteasomes of CLEC2D, GBP2, and
APOL2 to survival status, TumorPurity, and inflammatory
and immune responses. These responses were induced by
immunoglobulin G (IgG), hematopoietic cell kinase
(HCK), major histocompatibility complex class II (MHC-
II), lymphocyte-specific kinase (LCK), major histocompati-
bility complex class I (MHC-I), activator of transcription 1
(STAT1), interferon, B7-CD28, and tumor necrosis factor
(TNF). Supplementary Material 6: source codes.
(Supplementary Materials)
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