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Glioblastoma (GBM) is the most common primary malignant brain tumor with a high mortality rate. The current treatment
consists of surgical resection, radiation, and chemotherapy; however, the median survival rate is only 12–18 months despite
these alternatives, highlighting the urgent need to find new strategies. The heterogeneity of GBM makes this tumor difficult to
treat, and the immunotherapies result in an attractive approach to modulate the antitumoral immune responses favoring the
tumor eradication. The immunotherapies for GMB including monoclonal antibodies, checkpoint inhibitors, vaccines, and
oncolytic viruses, among others, have shown favorable results alone or as a multimodal treatment. In this review, we
summarize and discuss promising immunotherapies for GBM currently under preclinical investigation as well as in clinical trials.

1. Introduction

Glioblastoma multiforme (GBM) stands as the most fre-
quent and aggressive form of the central nervous system
(CNS) primary neoplasms. The standard protocol for treat-
ing this malignancy recommends, if possible, maximal surgi-
cal resection of the tumor mass followed by radiotherapy
with adjuvant and concomitant temozolomide or a combi-
nation of procarbazine, lomustine, and vincristine (PCV
schedule) for recurrent glioblastoma [1]. However, the
standard of care (SOC) protocols have only prolonged from
10-12 months to 14-16 months the median of overall
survival (OS) of GBM patients and only 5-year survival in
5%; thus, GBM remains an incurable disease [2].

During the early tumor formation, immune surveillance
allows carrying out antitumor immune responses mediated

by M1 macrophages, natural killer cells (NKs), and antigen-
specific lymphocytes. However, GBM cells become able to elicit
a series of mechanisms that permit the recruitment of mono-
cytes that become tumor-associated macrophages (TAMs) as
well as the recruitment of tumor tolerogenic lymphocytes like
T regulatory cells (Tregs) with the production of anti-
inflammatory cytokines such as TGF-β, VEFG, and interleu-
kin- (IL-) 6 and 10 [3, 4], besides the expression of immune
checkpoint molecules that inhibit cytotoxic immune response,
cytotoxic T lymphocyte antigen-4 (CTLA-4), and programmed
cell death-1 (PD-1) [5, 6]. These mechanisms contribute to the
modelling of GBM microenvironment constituted of highly
infiltrated TAMs and Tregs and the presence of anergic infil-
trated cytotoxic lymphocytes, thus representing a barrier to
the GBM treatment because of the maintenance of conditions
favorable for tumor growth and immune escape [7, 8].

Hindawi
Journal of Immunology Research
Volume 2021, Article ID 3412906, 19 pages
https://doi.org/10.1155/2021/3412906

https://orcid.org/0000-0002-5824-4839
https://orcid.org/0000-0001-8262-3399
https://orcid.org/0000-0003-2095-9182
https://orcid.org/0000-0002-1455-312X
https://orcid.org/0000-0002-1451-8754
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/3412906


Considering the immunosuppressive tumor environ-
ment, new therapies are emerging focused on reactivating
the immune response against tumors as promising tools
for the increase in tumor clearance and the improving
patient survival. Immunotherapeutic strategies encompass
the use of different substances to stimulate the antitumor
immune response or the elimination of immunosuppressive
cells, as well as the use of substances produced by immune
components to combat tumor proliferation and immune
evasion. Immunotherapeutic approaches involve the pas-
sively mediated administration of monoclonal antibodies,
the use of adjuvants and cytokines, or the active-mediated
immunization by antigen vaccination or transplantation of
activated dendritic cells or trained cytotoxic lymphocytes,
exploiting the humoral and cellular components of the
immune system to directly inhibit tumor growth and abro-
gate the tumor-mediated immune suppressive mechanisms
or to activate the innate/adaptive immune response against
the tumor [9]. Some of these have been successful in treating
other neoplasms such as melanoma and leukemia. Here, we
summarize the most recent reports of immunotherapeutic
efforts against GBM.

2. Current Immunotherapy for Glioblastoma

Today, the development of immunotherapeutic tools to
combat GBM has begun to be tested in clinical trials. Until
mid-2021, 1,646 clinical trials for GBM had been registered
in the clinical trial database of the United States National
Institutes of Health, of which 22.53% use one or more
immunotherapeutic strategies alone or in combination with
SOC (Figure 1(a)).

Within immunotherapeutic strategies, monoclonal anti-
bodies are the most frequently used agents in GBM patients
(24.45% of the clinical trials; Figure 1(b)). These immuno-
globulins are targeted to disrupt tumor homeostasis by pro-
moting the activation of antitumor cytotoxic lymphocytes
and inhibition of Tregs (Figure 1(c)). However, in light of
the definition of immunotherapy, antibodies that block
angiogenic signalling or those targeting the inhibition of
growth factor receptors are not strictly considered immuno-
therapies due to the lack of evidence pointing to an
immunogenic role of these antibodies. Among these, bevaci-
zumab, a humanized antibody targeted against VEGF-A, is
the most frequently used antibody for GBM therapy; the
effectivity of bevacizumab in GBM patients has been sum-
marized in recent reviews [10, 11], while other monoclonal
antibodies tested in GBM patients are targeted against the
variant III of the epidermal growth factor receptor (EGFR-
vIII), the vascular endothelial growth factor receptor
(VEGFR), the Hepatocyte Growth Factor Receptor (HGFR),
and other receptors overexpressed on GBM malignant cells
[12–25]. Furthermore, the development of bispecific anti-
bodies with multiple targets also has been tested in GBM
clinical trials.

The transplant of autologous immune cells is another
strategy tested in GBM patients. This requires the previous
leukapheresis of the patient blood and then separation and
culturing of dendritic cells, T lymphocytes, or NK cells.

These cells are stimulated and expanded in vitro and then
transplanted back to their recipient [26]. Another variant
consists of the use of autologous dendritic cells or T lympho-
cytes genetically transformed in vitro which has also recently
been tested in GBM clinical trials.

The use of peptide vaccines based on malignant cell
lysates or specific tumor antigens that allow the activation
of antitumor immune responses represents 8% of the clinical
trial tested for GBM. In some of these trials, peptide vaccina-
tion is accompanied by adjuvants that promote innate
immunity; however, adjuvants have also been tried as the
only immunotherapeutic resource together with SOC.

T cells armed with chimeric antigen receptors (CAR-Ts)
possess an engineered surface receptor that combines the
antigen-binding region of an antibody with the intracellular
activation domains of T cell receptors thereby killing tumor
cells by recognizing unique malignant cell surface antigens
(neoantigens) [27]. CAR-Ts have evolved into a wide spec-
trum of molecules that have been tested against GBM.
Another immunotherapeutic approach involves immunotox-
ins, which are engineered proteins that contain the antigen-
binding regions of an immunoglobulin fused to cytotoxic
molecules. The antigen-binding regions of these immunotox-
ins recognize tumor epitopes and selectively deliver the toxic
molecules [28]. Similarly, there is the development of
tumor-specific bacteria or liposomes that deliver DNA plas-
mids that encode proteins that interfere with tumor prolifer-
ation or encode a lymphocyte-target surface protein [29].

Oncolytic viruses are also an immunotherapeutic
approach, which selectively infect malignant cells that pro-
mote cell lysis; furthermore, viral particles could activate
innate immune response contributing to antitumor activity
[30]. Also, recombinant cytokines such as IL-2, IL-4, IL-17,
or interferon (IFN-) α, IFN-β, or IFN-γ have been used in
GBM clinical trials. These cytokines allow the proliferation
and activation of lymphocyte antitumor responses.

All these immunotherapeutic approaches are being
tested in clinical trials and will be explained in detail in the
next sections. Additionally, Table 1 summarizes the most
relevant immunotherapies on GBM.

2.1. Monoclonal Antibodies for GBM Therapy. Monoclonal
antibodies tested in GBM patients are targeted to block the
mechanisms elicited by malignant cells that suppress antitu-
mor immune responses (Figure 2(a)). The immune check-
point molecules, CTLA-4 and PD-1, are cell surface
proteins that negatively regulate the activation of T cells at
different stages of an immune response [31]. CTLA-4 is a
ligand for the costimulatory molecules B7-1/B7-2 or
CD80/CD86 expressed in the cell surface of activated T lym-
phocytes; thus, it is a competitive inhibitor of CD28, an
important costimulatory receptor for the activation of T
lymphocytes [32]. The blockade of CTLA-4 allows the bind-
ing of CD80/86 with CD28 molecules expressed on the
surface of T cells, activating the costimulatory signal elicited
by PI3K and AKT kinases thus promoting T cell activation
and proliferation [33, 34]. Furthermore, preclinical models
using CTLA-4 blockade have shown to reduce the number
of tumor-infiltrating Tregs, which could potentiate the
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antitumor response [35]. In the case of PD-1, this is a mol-
ecule expressed in mature lymphocytes; PD-1 ligation drives
the blockade of activation cascades in T lymphocytes by
interacting with the PD-1 ligands (PD-L1/2) that are consti-
tutively expressed in professional antigen-presenting cells
(APCs) and in a wide variety of cells in the organism [36].
Furthermore, PD-L1/2 is expressed in several tumors includ-
ing GBM, where it acts as an immunosuppressive mecha-
nism [31]; the use of antibodies against PD-1 or PD-L1/2
prevents the binding between these molecules thus avoiding
phosphatase activity associated with PD-1 and allowing the
TCR/CD3-mediated reactivation of exhausted T cells within
the tumor [34, 37]. The development of humanized mono-
clonal antibodies directed against the immune checkpoint
molecules, ipilimumab for CTLA-4 and nivolumab or
pembrolizumab for PD-1, has shown remarkable results on
OS in melanoma, lung cancer, and renal carcinoma and
currently is approved for the treatment of these neoplasms
[38–40]. The successful use of the immune checkpoint anti-
bodies against melanoma brain metastasis has opened the
door for the use of these agents in the treatment of GBM
and its evaluation in clinical trials [41].

The combination of ipilimumab with nivolumab in
untreated GBM patients has been tested in clinical trials
showing partial responses accompanied by increased

immune infiltrates in tumor tissue, but there was no
improvement in the progression-free survival (PFS) or OS
[42]. When nivolumab or ipilimumab has been used as neo-
adjuvant drugs, they showed that alone they had no clinical
efficacy, but when they were administered before and after
surgical resection, they prevented the loss of innate and
adaptive immune populations induced by radiation on pri-
mary GBM [43]. Patients with recurrent GBM refractory to
bevacizumab have shown greater PFS when they are treated
with nivolumab [44, 45]. Besides nivolumab, pembrolizu-
mab, the other anti-PD-1 antibody, there have been also
tested patients with recurrent GBM. GMB patients who
received neoadjuvant pembrolizumab with continuous adju-
vant therapy after surgery showed increased CD8+ cytotoxic
lymphocytes, low PD-1 levels, and then better OS and PFS
results compared to GBM patients who received adjuvant,
postsurgical PD-1 blockade alone [46]. Additionally, pem-
brolizumab has also shown prolonged PFS and OS rates after
surgery on recurrent GBM patients. In this clinical trial, a
slight increase in granzyme B levels was observed and no
differences were found in the number of infiltrating CD4+,
CD8+, or NK populations. However, a high infiltration of
M0- or M2-type macrophages was described, explaining
the poor antitumor immune response induced by treatment
with pembrolizumab [47]. Separately, the responsiveness to

Clinical trials on GBM
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Figure 1: Targets of clinical trials for GBM.
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these neoadjuvant treatments and the differences between
lymphocyte infiltration rates into tumor tissue have been
shown to be related to the mutational load on the PTEN
gene. GBM patients with wild-type PTEN tumor tissue reac-
tivity showed better outcome and increased lymphocyte
infiltration than those with presented PTEN mutations
[48]. On the other hand, fewer clinical studies have been
reported with ipilimumab in GBM patients; patients who
received ipilimumab in combination with bevacizumab
showed partial radiographic responses and these drugs were
well tolerated [49]. The use of ipilimumab together with

temozolomide is currently being tested in clinical trials
(ISRCTN84434175).

In addition to the blockade of CTLA-4 and PD-1, other
checkpoint molecules such as the T cell immunoglobulin
and mucin domain-containing protein 3 (TIM3) and the
lymphocyte activation gene 3 (LAG-3) have been used as
targets for a monoclonal antibody in GBM clinical trials.
Clinical trials on the immune checkpoint inhibitors alone
may have not shown high therapeutic efficacies, but the
results of the immune phenotyping demonstrated that the
use of these drugs allowed initiating the reactivation of

PD-L1 PD-1 CTLA-4 CD80/86 LAG3 TIM3

EGFRvIII IL13R𝛼2 HER2

Blockade of immune
checkpoint inhibitionAnti-TIM3

antibody
Anti-CD25

antibody

Ipilimumab

Nivolumab
Pembrolizumab
Atezolizumab
Cemiplimab
Spartalizumab

Avelumab
Durvalumab

Treg
TAM

CD8+

CD4+

NK

CD25

(a)

Rindopepimut

Anti-Il13R𝛼2 TCAR

Anti-EGFRvIII TCAR

Anti-EGFRvIII
lgG/pseudomonas

endotoxin

Anti-HER2/EGFRvIII/Il13R𝛼2
multitargeted TCAR

Anti-CD133
lgY/pertussis toxin

Anti-PD-L1 TCAR

Tumor-specific
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TAM
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(b)

Figure 2: The immunotherapeutic approaches on GBM. (a) Monoclonal antibodies and their targets on the GBM microenvironment are
aimed at blocking the circuit of proliferative signals in the tumor cells or restoring antitumor immune responses by blocking immune
checkpoint signalling, inhibiting Treg populations, or stimulating cytotoxic lymphocytes. (b) CAR-Ts and immunotoxins designed for
the recognition and elimination of malignant cells based on the expression of tumor-associated antigens present on GBM cells.
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antitumor immune responses. However, more information
is needed focused on the combinatorial effect of these neoad-
juvant treatments together with the administration of the
standardized drugs against GBM.

2.2. Therapy Based on GBM-Associated Antigens and GBM
Neoantigens. Tumor-associated antigens are molecules pres-
ent in normal tissues but overexpressed in malignant cells,
while neoantigens are tumor-specific molecules derived
from mutations in the tumor cell genome [50]. The identifi-
cation of tumor neoantigens and the identification of the
abnormal expression of surface proteins in tumor cells have
led to the development of T lymphocytes armed with chime-
ric antigen receptors (CAR-Ts) and tumor-targeted vaccines
to enhance tumor-specific toxicity (Table 1).

The development and efficacy of a range of CAR-Ts
targeted against different surface molecules representative
of GBM tissue have been challenged in patients. IL-13 recep-
tor α 2 (IL13Rα2) is a poor patient survival prognostic indi-
cator, which is overexpressed by more than 50% of GBM
[51]. IL13Rα2-specific CAR-Ts have been evaluated in phase
I clinical trials showing the tolerability and safety of its intra-
cranial administration. Also, it increases the necrotic volume
and reduces IL3Rα2 expression in GBM tissue compared
with paired pretreatment samples as well as tumor partial
remission and complete tumor remission in one of the
patients enrolled in this study [51, 52]. The EGFRvIII, a
mutated form of EGFR expressed in 30% of GBM [53], is
related to the increase in glioma proliferation, invasion,
and therapeutic resistance [54–56]. EGFRvIII has been
tested for the use of CAR-Ts and to produce peptide
vaccines because it is not expressed in normal brain tissue
representing an ideal therapeutic target [57]. Meanwhile,
EGFRvIII-targeted CAR-Ts have been shown to infiltrate
and activate within tumor tissue an early response in GBM
patients. However, GBM patients have shown the overex-
pression of immunosuppressive markers such as PD-L1
and indoleamine-2,3-dioxygenase, together with an increase
in the Treg population in tumor tissue after CAR-T admin-
istration due to the primary inflammatory response elicited
by the CAR-Ts [58]. Furthermore, the engineering of
CAR-Ts targeting the human epidermal growth factor
receptor type 2 (HER2) has also shown promising results
against GBM, showing an increase in PFS and OS means
in treated patients [59].

The transplant of engineeredCAR-Ts has shown promising
results in the treatment of GBM; however, current treatments
only have focused on the administration of single-targeted cells
limiting these tools by ignoring those malignant cells which do
not express the target molecule of CAR-Ts.

2.2.1. Immune Checkpoint Molecules as Targets for
Engineered Lymphocytes. In addition to blocking antibodies
against the immune checkpoint molecules, PD-1 has been
recently exploited as a tool target of chimeric switch
receptor-engineered lymphocytes. Cytotoxic lymphocytes
armed with this receptor can recognize PD-1 expressed on
the surface of tumor cells and can eliminate them due to
the transmembrane and cytosolic domains of this receptor,

corresponding to the activation domains of the protein
CD28 [91]. A phase I clinical trial in recurrent and refractory
GBM patients using these engineered lymphocytes showed
the safety of the intravenous or intracranial administration
of these cells, with increased levels of interferon-γ and IL-
6, a signature of the activation of the engineered lympho-
cytes [92]. These results are promising; however, further
clinical studies will determine the true efficacy of these cells
as a treatment against GBM (Figure 2(b)).

2.2.2. Preclinical Studies on Next-Generation CAR-T Cells.
Multitargeted CAR-Ts for treating GBM have been started
to be used in preclinical models, but evidence in clinical tri-
als is further needed to determine their therapeutic efficacy.
The development of third-generation CAR-Ts has allowed
more accurate responses by modifying CAR-Ts for evasion
of checkpoint inhibition as well as the expression of costim-
ulatory molecules that allow better antitumor responses.
Those have been tested against GBM, showing promising
results in preclinical models. Specifically, anti-EGFRvIII
CAR-Ts with a deleted expression of PD-1 have shown
better antiglioma activity and longer survival in mice than
in those CAR-Ts with wild-type PD-1 expression [78]. In
the same line, EGFRvIII CAR-Ts expressing costimulatory
molecules like CD28 or OX-40 have been shown to improve
survival in an intracranial xenogenic human glioblastoma
model [77]. As was mentioned above, a limitation of the
use of single-targeted CAR-Ts is the elimination of just a
single type of tumor cell ignoring the variability present on
heterogeneous tumors such as GBM. To solve this question,
the development of multiple-targeted CAR-Ts has come to
be explored taking into consideration that the target should
be a tumor-specific antigen to prevent off-tumor toxicities.
The development of trivalent CAR-Ts specific to IL13Rα2,
the human epidermal growth factor receptor (HER-2) and
EGFRvIII, was made possible by analysing interpatient
variability of multiple GBM samples, showing tumor cell-
specific cytotoxicity and tumor remission in vitro and
in vivo models [79].

2.3. GBM-Associated Antigen-Targeted and Neoantigen-
Targeted Drugs. The combination of different elements by
genetic engineering has provided the development of several
immunotherapeutic tools that have been tested against
GBM. The production of immunotoxins, the antigen-
binding region of immunoglobulins fused with cytotoxic
agents, has shown preclinical efficacy in the treatment of
GBM. The immunotoxins’ utility and specificity are dictated
by the targeted tumor antigen, and in recent years, many
targets have been explored for GBM, mainly focused on
the receptor for transferrin, transforming growth factor
alpha (TGF-α), IL-13, IL-4, and EGFRvIII. The common
toxins used to produce immunotoxins are the Pseudomonas
exotoxin A and diphtheria toxin (revised review [93, 94]).

Herein, we describe the recent advances in immunotox-
ins against GBM in the last years. One of the targets in GBM
is the cancer stem cells (CSC), which are a small population
of slow-dividing and self-renewing glioma cells. The glioma
stem cells express the antigen CD133, which has been related

12 Journal of Immunology Research



to tumor resistance to chemotherapy [95]. Recently, an IgY
immunotoxin was produced against the CD133+ subpopula-
tion of GBM CSC. This avian anti-CD133 IgY was fused
with the A chain of the abrin toxin with the purpose to inac-
tivate the ribosome. The anti-CD133-IgY-abrine showed to
reduce cell viability of C6 CSC in vitro and decreased tumor
volume after implantation of malignant glioma stem cells
in vivo, representing a low-cost tool for the treatment of
GBM [86]. Another target expressed in glioma stem cells is
the Eph receptors, which are part of the receptor tyrosine
kinase family. The ephrinA5 (eA5), a ligand that binds with
EphA3, EphA2, and EphB2 receptors, was conjugated to Pseu-
domonas exotoxin A showing to kill glioblastoma cells in vitro
[25]. The calcitonin receptor has been recently considered a
target for GBM since it is expressed in a high percentage of
GBM human biopsies [96]. The anti-calcitonin receptor anti-
body conjugated to the plant toxins dianthin-30 or gelonin
showed cytotoxicity in several high-grade glioma cell lines,
demonstrating that this receptor could be an effective target
[97]. Other immunotoxins studied in GBM are directed to
the surface proteins overexpressed in GBM cells such as
EFGRvIII, VEGF, or ephrin receptors [25, 87–89], and their
use in combination with other immunotherapeutic tools such
as the blockade of checkpoint molecules, PD-1 or CTLA-4,
demonstrated tumor clearance in immunocompetent animals
[89]. Furthermore, the development of multiple-targeted
immunotoxins also has shown promising results for their
use against GBM [98]. As with multitargeted CAR-Ts, the
use of multidirected immunotoxins represents an advantage
over the single-targeted tools designed, due to their capacity
to recognize a wider subset of malignant cells, while the
combination of different immunotherapeutic strategies also
represents an advantage because of the presence of antitumor
toxins, besides the fact that the blockade of immune check-
point inhibition provides a microenvironmental change favor-
able to the tumor elimination.

2.4. Therapeutic Vaccination against GBM. Vaccination is a
type of immunotherapy focused on the tumor-associated
antigens. Antigens for cancer vaccines should be expressed
only by malignant cells to kill specifically tumor cells. In
GBM, the EGFRvIII-targeted vaccine Rindopepimut, a selec-
tive tumor-specific antigen peptide vaccine targeting the
EGFRvIII mutation, has demonstrated antitumor immune
activation in GBM patients as well as longer OS than that
of temozolomide-treated patients [99]. However, this
vaccine showed no differences in OS compared with
standard treatments in phase III clinical trials [100]. Addi-
tionally, Rindopepimut has been shown to eliminate specifi-
cally cells expressing EGFRvIII, and when it is administrated
with the adjuvant granulocyte-macrophage colony-
stimulating factor and treated with the standard temozolo-
mide, dosing maintenance therapy increases median PFS
and OS [101]. A recent phase II study conducted in
bevacizumab-naïve patients with recurrent EGFRvIII-
positive GBM showed that the addition of Rindopepimut
improves OS and induced robust de novo anti-EGFRvIII anti-
body titers; however, additional studies should be carried out
to confirm these results due the small sample size [81].

ICT-107 is another vaccine tested for GBM that consists
in an autologous dendritic cell pulsed ex vivo with tumor
and CSC antigens (AIM-2, HLA-A2, HER2, TRP-2, gp100,
and IL13Rα2). A clinical study using ICT-107 following con-
ventional treatment showed a nonsignificant trend toward
increased PFS. Also, the use of ICT-107 vaccine showed a
reduction in CD133 expression in some GBM patients [82].

On the other hand, a preclinical study was focused on
the immunogenic damage induced by radiation producing
damage-associated molecular patterns (DAMPs), which
activate the innate immune system and latterly the adaptive
immune response. In this line, recently it was demonstrated
that the administration of microvesicles released after C6
cells were irradiated reduced more than 50% tumor volume,
increased the infiltrating T lymphocytes, and promoted the
apoptosis of glioma cells compared with the group that
was not immunized with these microvesicles [102]. The
use of microvesicles derived from irradiated tumor cells
could be a new approach to glioblastoma treatment.

2.5. Oncolytic Viruses as Activators of Tumor Elimination. In
recent years, the use of oncolytic viruses has gained impor-
tance as a tool for the treatment of various solid tumors
due to their tropism and selective replication in tumor cells.
Evidence shows that oncolytic viruses are useful by reducing
tumor bulk but also in the immune reactivation of antitumor
responses [103]. The efficacy of oncolytic virus against
tumors is dependent on their ability to infect and kill tumor
cells specifically as well as to activate the antitumor immune
response (innate and adaptive). The oncolytic viruses
activate the innate immune responses through tumor-
associated antigens (TAAs), damage-associated molecular
patterns (DAMPs), and pathogen-associated molecular
patterns produced by immunogenic cell death (PAMPs).
Both DAMPs and PAMPs activate the pattern recognition
receptors (PRRs) expressed in the innate immune cells, such
as toll-like receptors, enhancing their phagocytic and anti-
gen presentation activities, promoting their activation and
maturation, and inducing the shift towards M1 phenotypes,
which contribute to a robust antitumor immune response
[104–106]. Preclinical studies have evidenced the efficacy
of oncolytic viruses like measles virus, herpes simplex virus,
parvovirus, adenovirus, and Zika virus against GBM
[107–111]. In 2018, it was reported that a live-attenuated
Zika virus vaccine killed human glioma stem cells in vitro,
which was also related to both a reduction in the intracere-
bral tumor growth and prolongation of animal survival,
but it was observed that this vaccine activates the antitumor
immunity [112]. Recently, it was described that Zika virus
increases the CD8+ T cell infiltration in the tumor microen-
vironment and the beneficial effects on survival and tumor
volume induced by Zika virus, which are enhanced by its
combination with anti-PD-1 treatment [113]. Moreover, it
was described that the oncolytic type I herpes simplex virus
administration in a mouse GBM model led to the infiltration
of both tumor antigen-specific and viral antigen-specific
CD8+ T cells, which correlated with tumor reduction [104].

In the case of clinical trials, the administration of intra-
tumorally attenuated parvovirus resulted in a slight increase
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in the median OS; however, there is an increased number of
infiltrating lymphocytes and IFN-γ levels [114]. The use of
the adenoviral vector aglatimagene besadenovec has shown
successful results prolonging the median OS of GBM
patients to 25 months [85]. However, more clinical trials
are needed to investigate the safety and efficacy of the onco-
lytic virus as a therapy for GBM.

2.6. Tryptophan Catabolism as a Target for Antitumor
Immune Activation. In addition to the use of anti-PD-
1/PD-L1 or anti-CTLA-4 antibodies, the search of immune
inhibitory blockade mechanisms has led to the study of
metabolic pathways used by malignant cells to shape tumor
microenvironment and to induce immune modulation. One
of these routes that become to receive attention is the catab-
olism of tryptophan through the kynurenine pathway (KP).
Evidence shows that one of the limiting enzymes of the
KP, the indoleamine-2,3-dioxygenase (IDO), is overex-
pressed in different neoplasms including GBM, and its
expression levels correlate with increased tumor-infiltrated
TAM and Treg and with patient poor prognosis [115–118].
The use of pharmacological inhibitors of IDO has shown
promising results in preclinical models when combined with
temozolomide or anti-PD-L1 antibodies [119–121]. In this
line, it has been observed that the modulation of IDO by
its inhibitor 1-methyl-l-tryptophan or knocking down IDO
cells, results in a reduction of tumor growth and a longer
survival period. These effects were synergistic with the use
of temozolomide [120]. Recently, it was shown that dinaci-
clib (cyclin-dependent kinase inhibitor) downregulates KP-
related genes such as IDO1, TDO2, KYAT1-4, and KMO
in patient-derived GBM cell lines [122].

Additionally, L-kynurenine, the product of Trp degrada-
tion by IDO or TDO, has been involved in the GBM pathol-
ogy since the kynurenine-AhR pathway can contribute to
increasing the growth and motility of tumor cells and
suppresses the immune response. Furthermore, the KP-
derived metabolites have been implied with the generation
of Tregs and the induction of apoptosis in lymphocyte sub-
sets [123]; thus, the accumulation of these molecules could
be contributing to the immunosuppressive environment
within the tumor; however, the dynamics of the production
of these metabolites and the expression of other KP enzymes
remain less studied. In this context, our group recently
found a kynurenine monooxygenase (KMO) expression
and activity in human glioblastoma cell culture as well as
in the GBM patient’s samples. This novel finding suggests
a possible KMO participation in the immunosuppressive
environment since KMO is not normally expressed in astro-
cytes (manuscript in preparation). This information could
be useful for the development of new immunotherapeutic
strategies employed against GBM.

2.7. Success of Immunotherapies: What Does It Depend on?
As mentioned above, GBM remains as an incurable disease
and the low impact of current protocols for the treatment
of GBM has been associated with the high prevalence of
tumor recurrence mainly due to the development of drug
resistance, intratumoral heterogeneity, and the given pheno-

typic plasticity by CSC able to change their metabolic activ-
ity under stress conditions [124–129]. All these differences
are a consequence of genetic alterations that occur in malig-
nant cells that make GBM genetically diverse within a single
tumor and between different tumors [3, 130, 131]. The
genomic profiling of GBM has led to the identification of
common mutations and neoantigens and to the proposal
of the classification of GBM into four subtypes [3, 130,
132]. In GBM, the most common genetic alterations are
the mutation of the enzyme isocitrate dehydrogenase
(IDH) of which IDHmut tumors present a better prognosis;
with the unmethylation of the 8-methylguanosine methyl-
transferase (MGMT) promoter, GBM with methylated
MGMT show a better prognosis than that with unmethy-
lated MGMT and EGFR amplification [130].

In the case of the different immunotherapeutic
approaches reviewed here that are on clinical trials, it is
noteworthy that some of them report differences in the clin-
ical outcomes based on genotypic and phenotypic character-
istics of the patients. It was demonstrated that patients who
showed a long-term follow-up after treatment with antibod-
ies targeted to immune checkpoint molecules had methyla-
tion of the MGMT promoter, a marker of good prognosis
of GBM [43, 45]. IDHwt patients who showed a good
response to these antibodies also showed enrichment for
MAPK mutations, while nonresponsive patients showed
enrichment of PTEN mutations [48].

The use of CAR-Ts and peptide vaccines against tumor-
specific antigens and neoantigens has demonstrated clear-
ance of tumor cells that carry such targets [51, 59, 81];
however, these immune strategies could act as a selective
pressure by not eliminating the portion of malignant cells
that do not carry the antigenic target [133]. Therefore, the
ideal would be to perform more in-depth molecular screen-
ings or the use of multiple-target strategies.

Finally, the genetic profiling of patient-derived tumors
could show useful information on which therapeutic strate-
gies would be optimal for an individual but also to monitor
how different tumors respond to a certain treatment.

3. Conclusions

Herein, the immunotherapeutic strategies that are currently
accepted for GBM treatment and those which are in the first
stages of the clinical study with promising results were
discussed. Until now, preclinical studies have led to the
expansion of the knowledge of the immunological landscape
occurring in GBM, allowing the development of more accu-
rate tools that stimulate an antitumor response. On the other
hand, the immunotherapeutic strategies tested in GBM
patients have not shown the efficient results expected in
terms of OS; however, evidence of antitumor immune acti-
vation and increase in tumor progression-free survival are
promising traits for further development of different immu-
nological strategies to combat GBM. Furthermore, the use of
combined immunotherapy strategies to combat malignant
neoplasms shows encouraging results in preclinical models
that lay the foundation for the beginning of its study in clin-
ical protocols. A combination of schemes that override
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tumor-induced immunosuppressive mechanisms, together
with those strategies that potentiate the activation of antitu-
mor immune response, is worthy of attention. Deeper
research of the immune behavior of GBM could lead to the
development of more efficient tools for the treatment of this
disease and therefore to the clinical acceptance of these strat-
egies for a generalized treatment program to combat GBM.
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