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Background. Acidosis in the tumor microenvironment (TME) is involved in tumor immune dysfunction and tumor progression.
We attempted to develop an acidosis-related index (ARI) signature to improve the prognostic prediction of pancreatic carcinoma
(PC). Methods. Differential gene expression analyses of two public datasets (GSE152345 and GSE62452) from the Gene
Expression Omnibus database were performed to identify the acidosis-related genes. The Cancer Genome Atlas–pancreatic
carcinoma (TCGA-PAAD) cohort in the TCGA database was set as the discovery dataset. Univariate Cox regression and the
Kaplan–Meier method were applied to screen for prognostic genes. The least absolute shrinkage and selection operator
(LASSO) Cox regression was used to establish the optimal model. The tumor immune infiltrating pattern was characterized by
the single-sample gene set enrichment analysis (ssGSEA) method, and the prediction of immunotherapy responsiveness was
conducted using the tumor immune dysfunction and exclusion (TIDE) algorithm. Results. We identified 133 acidosis-related
genes, of which 37 were identified as prognostic genes by univariate Cox analysis in combination with the Kaplan–Meier
method (p values of both methods < 0.05). An acidosis-related signature involving seven genes (ARNTL2, DKK1, CEP55,
CTSV, MYEOV, DSG2, and GBP2) was developed in TCGA-PAAD and further validated in GSE62452. Patients in the
acidosis-related high-risk group consistently showed poorer survival outcomes than those in the low-risk group. The 5-year
AUCs (areas under the curve) for survival prediction were 0.738 for TCGA-PAAD and 0.889 for GSE62452, suggesting
excellent performance. The low-risk group in TCGA-PAAD showed a higher abundance of CD8+ T cells and activated natural
killer cells and was predicted to possess an elevated proportion of immunotherapeutic responders compared with the high-risk
counterpart. Conclusions. We developed a reliable acidosis-related signature that showed excellent performance in prognostic
prediction and correlated with tumor immune infiltration, providing a new direction for prognostic evaluation and
immunotherapy management in PC.

1. Introduction

Pancreatic carcinoma (PC) is one of the most lethal and
refractory malignant diseases, with 466,003 new cancer-
associated deaths occurring in 2020 worldwide [1]. Pancre-
atic ductal adenocarcinoma is the major histopathological
type, accounting for 85% of cases [2]. Owing to lacking typ-
ical signs in the initial stage, approximately 80–85% of
patients are diagnosed with unresectable status [3]. The 5-

year overall survival probability of PC patients who have
undergone surgical operations is only approximately 20%
[4]. With the development of genome sequencing technol-
ogy, the genotype heterogeneity and molecular patterns of
PC have been further delineated. The most prevalent
mutated genes, such as KRAS, CDKN2A, SMAD4, and
TP53, participate in the carcinogenesis of pancreatic cancer
[5]. Moreover, clinical and preclinical studies are employing
advanced targeted therapy based on these altered genes [6].
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However, the clinical outcomes of patients with PC are still
unclear. A recent real-world study reported that the actual
5-year overall survival rate was lower than 5% when com-
bining all the cases of different stages [7]. Thus, it is imper-
ative to identify novel prognostic indicators to improve the
prognostic prediction for PC.

The tumor microenvironment (TME) is composed of
various elements including tumor cells, immune and stromal
cells, and extracellular components. Due to the unrestricted
expansion and abnormal vasculature, the inner parts of the
bulk tumor tissues suffer from different levels of insufficient
perfusion and hypoxia [8]. As a consequence, with the accu-
mulation of lactic acid and other acid metabolic intermedi-
ates, acidosis becomes a common characteristic of solid
tumors [9]. Peritumor and tumor invasive regions have been
shown to be acidic in mouse tumor models [10]. Acidosis is
closely connected with the invasive site at the tumor-stromal
interface in human breast cancer tissues [11] and promotes
the epithelial-to-mesenchymal transition (EMT) phenotype,
affecting the cell viability in several different types of human
cancer cells [12, 13]. Another study revealed that the knock-
down of acid-sensing ion channels suppressed the EMT of
PC cells exposed to acidity and inhibited distant metastasis
in a xenograft mouse model [14]. In addition, acidosis con-
tributed to immune cell dysfunction and immune escape in
TME and implied a novel therapeutic target [15, 16]. There-
fore, we speculate that acidosis in the TME is closely con-
nected with the overall survival outcomes of PC patients.
However, there is an absence of acidosis-related prognostic
signatures in PC.

In our study, we attempted to identify and validate an
acidosis-related index (ARI) signature to predict the clinical
outcomes of PC patients. We further investigated the associ-
ation of the acidosis-related signature and the underlying

molecular mechanism, tumor immune infiltration, and
immunotherapy response in PC, thereby providing new
insights into the immunotherapy of patients with PC.

2. Materials and Methods

2.1. Data Collection. The sequencing data (FPKM profiles) of
patients in The Cancer Genome Atlas (TCGA)–pancreatic
carcinoma (PAAD) cohort were downloaded from the
TCGA database. We then transformed the gene expression
matrix into log2 ðTPM + 1Þ values for further investigation.
TCGA–PAAD cohort consists of 177 primary PC tumor
samples and 4 normal samples, and its corresponding clini-
cal data were publicly obtained from the cBioPortal database
[17]. We further excluded patients whose stage information
was missing and whose overall survival time was shorter
than 1 month. Finally, 168 patients with PC in the TCGA-
PAAD project were included in our study and set as the dis-
covery dataset.

The expression profiles (raw count values) of the
sequencing dataset GSE152345, including PC cancer cells
treated with or without acidosis, were obtained from the
GEO database. Another microarray dataset, GSE62452, with
69 pancreatic tumor specimens and 61 normal tissues, was
also collected from the GEO database. In particular, 60 pairs
of PC tumors and normal samples were selected for further
differential gene expression analyses, and 63 PC patients
with detailed stage records and survival times no less than
1 month were selected as the validation dataset. All the
detailed clinicopathological characteristics of patients in
the discovery and validation datasets were listed in Supple-
mental Table S1 (Table S1). The total flow chart of our
study is illustrated in Supplemental Figure S1 (Fig. S1).
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Figure 1: Identification of acidosis-related genes in PC. Volcano plots of DEGs in GSE152345 (a) and GSE62452 (b). (c) Venn plot for the
overlapping DEGs between GSE152345 and GSE62452. (d) Heatmap of the 133 acidosis-related genes in 60 pairs of PC tumor and normal
tissues in GSE62452. (e) GO functional enrichment analysis of the 133 acidosis-related genes. PC: pancreatic carcinoma; DEGs: differentially
expressed genes; GO: Gene Ontology.
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2.2. Identifying the Acidosis-Related Genes in PC. Differential
expression analyses of the sequencing dataset GSE152345
and microarray dataset GSE62452 were conducted by the
“Deseq2” package and “limma” package, respectively. We
set the criteria of differentially expressed genes (DEGs) as ∣
foldchange ∣ >1:5 and adjusted p < 0:05. Acidosis-related
genes were identified as the overlap of the DEGs in the above
two datasets.

2.3. Gene Ontology (GO) Functional Enrichment. Functional
annotation analyses of the acidosis-related genes in the GO
terms were further performed by the “clusterProfiler” pack-
age, and adjusted q value < 0.05 indicated the statistical
significance.

2.4. Construction of the Acidosis-Related Prognostic Model.
The acidosis-related signature was established using the
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Figure 2: Development of the acidosis-related signature in TCGA-PAAD. (a) Forest plot of 37 prognostic acidosis-related genes identified
by univariate Cox regression and Kaplan–Meier method. (b) The tuning parameters of the LASSO penalty Cox regression. (c) Cross-
validation of the LASSO regression model, the left vertical dashed line represents the “lambda. min” standard. TCGA: The Cancer
Genome Atlas; PAAD: pancreatic carcinoma; LASSO: least absolute shrinkage and selection operator.
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Figure 3: Continued.
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TCGA-PAAD dataset. Univariate Cox regression in combi-
nation with the Kaplan–Meier method was used to select
the significantly prognostic acidosis-related genes (p < 0:05
). Subsequently, LASSO penalty Cox regression was applied
to avoid overfitting and develop the optimal signature. The
final scoring formula is defined as
follows: risk score =∑n

k=1 exp k ∗ coefk, where exp k and
coefk denote the expression value and the LASSO coefficient
of each prognostic gene in the signature, respectively.

2.5. Evaluating the Prognostic Model. Acidosis-related index
(ARI) risk scores of patients with PC in the discovery dataset
(TCGA-PAAD) and the independent validation dataset
(GSE62452) were estimated using the above formula. On
account of the different types of the two datasets, patients
in TCGA-PAAD (sequencing dataset) and GSE62452
(microarray dataset) were split into low- and high-risk
groups based on their respective median scores. Survival dif-
ferences were examined by the Kaplan–Meier curves and
log-rank test. The prognostic value of the ARI signature
was evaluated by time-dependent receiver operating charac-
teristic (ROC) curves.

2.6. Gene Set Enrichment Analysis (GSEA). Hallmark gene
sets (“h.all.v7.4.symbols.gmt”) and immunologic signature
gene sets (“c7.immunesigdb.v7.4.symbols.gmt”) were down-
loaded from the MSigDB database [18]. The GSEA algo-
rithm [19], which can determine the differences in
predefined gene sets between different phenotypes via
genome-wide expression profiles, was used to identify the
differentially enriched pathways (nominal p value < 0.05
and adjusted q value < 0.25) between the acidosis-related
risk groups using GSEA software.

2.7. Single-Sample GSEA. The well-defined specific gene sig-
natures of 24 immune cells (Table S2) were collected from
published literature [20]. We then used the single-sample
GSEA (ssGSEA) method [21] to estimate the abundance of
these immune cells in each PC tumor sample.

2.8. Prediction of Immunotherapy Responsiveness. The tumor
immune dysfunction and exclusion (TIDE) algorithm [22],
which has been developed to estimate the immunotherapy
response based on the genome-wide expression profiles of
pretreatment patients, was applied to calculate TIDE scores
and predict the immunotherapeutic responsiveness of the
patients with PC.

2.9. Statistical Analyses. Statistical differences of numerable
variables were examined using the Wilcoxon test or
Kruskal-Wallis test, while comparisons of category variables
were carried out using the chi-square test or Fisher exact
test. A standard of p value < 0.05 was set as statistical signif-
icance except for other specified situations. We made use of
the R software to conduct statistical analyses.

3. Results

3.1. Identifying Acidosis-Related Genes. A total of 1645 DEGs
(807 upregulated and 838 downregulated genes) between
acidosis- and nonacidosis-treated PC cells were identified
in GSE152345 (Figure 1(a)). Using the same criteria, we
acquired 1132 DEGs (720 upregulated and 412 downregu-
lated genes) between 60 pairs of PC tumor tissues and nor-
mal samples in GSE62452 (Figure 1(b)). Subsequently, 133
acidosis-related genes in PC were identified by intersecting
the above two gene lists (Figure 1(c)). Interestingly, the great
majority of these genes showed an increased expression level
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Figure 3: Evaluating the performance of the acidosis-related signature. Kaplan–Meier curves and log-rank test between the high-risk and
low-risk groups in TCGA-PAAD (a) and GSE62452 (d). Time-dependent ROC curves of 1-, 2-, 3-, and 5-year survival predictions in
TCGA-PAAD (b) and GSE62452 (e). Scatter plots for the PCA results of TCGA-PAAD (c) and GSE62452 (f) according to the acidosis-
related signature. ROC: receiver operating characteristic; PCA: principal component analysis.
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in tumor specimens compared with normal specimens
(Figure 1(d)). Functional annotation analyses revealed that
the above acidosis-related genes were significantly enriched
in the following GO terms: “epidermis development,” “regu-
lation of cell growth,” “skin development,” “extracellular
structure organization,” and “desmosome organization”
(Figure 1(e)). This suggests that these acidosis-related genes
are closely connected with cell growth and extracellular
structure.

3.2. Development of Acidosis-Related Signature. The TCGA-
PAAD dataset was used as the discovery dataset to develop a
prognostic signature. First, 37 out of the above 133 acidosis-
related genes were identified as prognostic genes by univar-
iate Cox regression and the Kaplan–Meier method (all p <

0:05, Figure 2(a)). Subsequently, LASSO penalty Cox analy-
sis was applied to choose the most contributive variables
based on the “lambda. min” standard (Figures 2(b) and
2(c)). An optimal signature involving seven acidosis-related
genes (ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2,
and GBP2) was established (Table S3), and the final risk
score formula was defined as follows: ARI score = 0:10896
∗ARNTL2 expression + 0:00556 ∗DKK1 expression +
0:12051 ∗ CEP55 expression + 0:09647 ∗ CTSV expression
+ 0:08222 ∗MYEOV expression + 0:04550 ∗DSG2
expression + 0:05175 ∗GBP2 expression:

3.3. Evaluating the Performance of the Acidosis-Related
Signature. ARI risk scores for patients with PC in TCGA-
PAAD (discovery dataset) and GSE62452 (validation
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Figure 4: Acidosis-related signature risk scores in the two groups. Distribution of the risk scores and corresponding survival status of
patients in TCGA-PAAD (a, b) and GSE62452 (d, e), respectively. Heatmap of the expression levels of the seven key genes within the
acidosis-related signature in TCGA-PAAD (c) and GSE62452 (f). PAAD: pancreatic carcinoma.
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dataset) were calculated using the constructed formula.
Patients in each dataset were further assigned to a low- or
high-risk group according to their respective median scores
(Table S4 for TCGA-PAAD and Table S5 for GSE62452).
Notably, patients with high-risk scores showed poorer
overall survival outcomes than those with low-risk scores
in both TCGA-PAAD (p = 6:94e − 05, Figure 3(a)) and
GSE62452 (p = 0:012, Figure 3(d)) datasets. ROC curves
showed that AUCs (areas under the curve) of 1-, 2-, 3-, and
5-year survival prediction were 0.748, 0.724, 0.772, and 0.738
in TCGA-PAAD (Figure 3(b)), respectively. The AUCs of 1-,
2-, 3-, and 5-year survival predictions in GSE62452 were
0.574, 0.784, 0.856, and 0.889 (Figure 3(e)), respectively,
suggesting an excellent performance for the acidosis-related
signature. We further performed the principal component
analysis (PCA) for each PC patient in both TCGA-PAAD
and GSE62452 according to the expression levels of the
seven key genes in the acidosis-related signature. Results
showed that there was a distinct expression pattern between
the high- and low-risk groups in both TCGA-PAAD
(Figure 3(c)) and GSE62452 (Figure 3(f)). Moreover, with
the increase of the ARI risk scores in both TCGA-PAAD
(Figure 4(a)) and GSE62452 (Figure 4(d)), patients tended to
consistently have elevated mortality (Figures 4(b) and 4(e))
and possess relatively elevated expression levels of the seven
key genes in the acidosis-related signature (Figures 4(c) and
4(f)), respectively.

3.4. Identifying the Independent Prognostic Value of the
Acidosis-Related Signature. Univariate Cox analysis demon-
strated that ARI risk scores (HR: 5.604, 95% CI: 2.992
−10.499, p < 0:001), tumor histopathological grade (HR:
1.392, 95% CI: 1.041−1.861, p = 0:026), and age (HR: 1.027,
95% CI: 1.006−1.049, p = 0:012) were prognostic factors in
patients with PC in TCGA-PAAD (Figure 5(a)). Multivari-
ate Cox analysis further showed that ARI risk scores (HR:
5.488, 95% CI: 2.836−10.619, p < 0:001) and age (HR:
1.025, 95% CI: 1.003−1.047, p = 0:023) were independent
prognostic indicators in TCGA-PAAD (Figure 5(b)). Uni-
variate Cox analysis also indicated that ARI risk scores
(HR: 5.691, 95% CI: 1.642−19.731, p = 0:006) and tumor his-
topathological grade (HR: 1.849, 95% CI: 1.152−2.968, p =
0:011) were prognostic factors in GSE62452 (Figure 5(c)).
Multivariate Cox analysis further showed that the ARI risk
score (HR: 3.528, 95% CI: 0.840−14.814, p = 0:085) was the
most contributive variable for overall survival outcomes
compared with other clinical factors in GSE62452
(Figure 5(d)), although the prognostic value did not reach
statistical significance (p = 0:085). This result might be due
to the relatively small sample size and the lack of age records
in GSE62452. Time-dependent ROC curves further showed
that AUCs of the ARI score for 5-year survival prediction
reached 0.726 in TCGA-PAAD (Figures 5(e) and 5(f)) and
0.889 in GSE62452 (Figure 5(g)–5(h)) and were superior to
that of other clinical factors such as age, sex, AJCC stage,
and tumor grade.

3.5. Clinical Correlation Analyses of Acidosis-Related
Signature. Due to the remarkable implication in clinical out-

comes, we further comprehensively analyzed the correlation
between the acidosis-related signature and each clinical fac-
tor in the discovery dataset TCGA-PAAD (Figure 6(a)).
Interestingly, the acidosis-related high-risk group had a
higher proportion of patients with grade 3, “Residual_
Tumor (R1),” “Tumor_Status (With Tumor),” and “Prog-
ressed (Yes)” than the low-risk group (Fig. S2(A)–S2(D)).
Because the ARI risk score was attributed to numerable var-
iables and the above clinical factors were attributed to cate-
gory variables, we further performed the clinical
correlation analyses of the acidosis-related signature by
comparing the risk scores between the clinical subgroups
via the Wilcoxon test. Patients with grades 3-4, “Residual_
Tumor (R1-R2),” “Tumor_Status (With Tumor),” and
“Progressed (Yes)” also possessed higher ARI scores than
patients with grades 1-2, “Residual_Tumor (R0),” “Tumor_
Status (Tumor Free),” and “Progressed (No)”, respectively
(Figures 6(b)–6(e)). Furthermore, patients with high ARI
scores had adverse disease-free survival outcomes in com-
parison with those with low ARI scores (p = 7:01e − 04, Fig.
S2(E)). However, there is a lack of correlation between the
ARI score and clinical features as sex, age, and stage. A pre-
vious study reported that several types of human cancer cells
adapted to acidosis exposure could develop into a more
mesenchymal-like and invasive phenotype [12]. Interstitial
acidification in the tumor microenvironment is associated
with the regions of high glycolytic activity and invasiveness
[8]. Based on the above evidence, we speculate that our
acidosis-related signature may reflect the acidity of tumor
tissues and thus is strongly correlated with tumor invasion
and progression in patients with PC.

3.6. Exploring the Prognostic Value of the Seven Key Acidosis-
Related Genes. Differential gene expression analyses showed
that the seven key genes in the acidosis-related signature
(ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2, and
GBP2) all had higher expression levels in PC tumor speci-
mens than in corresponding normal tissues in GSE62452
(Fig. S3(A)–S3(G)). We further investigated the prognostic
value of these seven genes in the TCGA-PAAD dataset.
Patients were separated into a high-expression or low-
expression group based on the median expression values of
ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2, and
GBP2, respectively. Notably, patients with a higher expres-
sion level of each of these genes had significantly poorer clin-
ical outcomes than those in the corresponding low-
expression group (Fig. S4(A)–S4(G)), suggesting that these
seven genes contribute to the progression of PC.

3.7. Distinct Molecular Patterns between Acidosis-Related
Risk Groups. To elucidate the underlying molecular mecha-
nism, the GSEA algorithm was applied to compare the dif-
ferentially enriched pathways. The acidosis-related high-
risk group was significantly enriched in the “GLYCOLYSIS,”
“HYPOXIA,” “P53_PATHWAY,” and “G2M_CHECK-
POINT” pathways which are tightly linked to tumor aggres-
sion and proliferation (Figures 7(a)–7(d)). Acidosis is a
common consequence of both glycolysis and hypoxia [9].
On the other side, acidosis in TME can enhance the genome
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Figure 5: Identifying the acidosis-related signature as an independent prognostic indicator. (a) Univariate Cox analysis and (b) multivariate
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Figure 6: Continued.
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instability such as TP53 mutation and induce the P53 path-
way [8, 23]. This most probably explains why these path-
ways are upregulated in the high ARI score group.

3.8. Relationship between Acidosis-Related Signature and
Immune Infiltrating Pattern. It is already well known that
acidosis at the tumor site can negatively influence T cell
function and alter the quality of the immune cells infiltrate
[15, 24]. Thus, we further explored the association of the
acidosis-related signature and tumor immune infiltrating
pattern. GSEA results for the immunologic signature gene
sets demonstrated that the acidosis-related high-risk group
was enriched in the “NAIVE_VS_24H_IN_VITRO_STIM_
CD8_TCELL_DN,” “NAIVE_VS_24H_IN_VITRO_STIM_
INFAB_CD8_TCELL_DN,” “NAIVE_VS_72H_IN_
VITRO_STIM_CD8_TCELL_DN,” and “NAIVE_VS_72H_
IN_VITRO_STIM_IFNAB_CD8_TCELL_DN” pathways
(Fig. S5(A)–S5(D)), implying dysfunction of CD8 T cells in
the acidosis-related high-risk group. Furthermore, the

ssGSEA results of TCGA-PAAD further indicated that the
low-risk group possessed a higher abundance of “CD8
T.cells,” “T.cells.gamma.delta,” “NK.cells.activated,” “Den-
dritic.cells.activated,” “Monocytes,” “Macrophages.M1,”
and “Macrophages.M2” than the high-risk group
(Figure 8(a)), confirming different immune infiltrating pat-
terns between the acidosis-related risk groups.

3.9. Association of Acidosis-Related Signature with
Immunotherapy Response. We also assessed the predictive
capability of the acidosis-related signature in the immuno-
therapy response using the TIDE algorithm. Patients in the
acidosis-related high-risk group possessed significantly
higher TIDE scores than those in the low-risk counterpart
for both TCGA-PAAD (p = 0:028, Figure 8(b), Table S6)
and GSE62452 (p = 0:043, Figure 8(c), Table S7) datasets,
indicating more tumor immune dysfunction in the
acidosis-related high-risk group. Thus, the high-risk group
was predicted to possess a relatively lower proportion of
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immunotherapeutic responders compared with the low-risk
group in both TCGA-PAAD (32% versus 48%, Figure 8(d))
and GSE62452 (38% versus 55%, Figure 8(e)) datasets.
Pearson’s correlation analyses further indicated that the
ARI risk scores consistently had a significantly positive
correlation with the TIDE scores in both TCGA-PAAD
(r = 0:2 and p = 0:011, Fig. S6(A)) and GSE62452 (r = 0:27
and p = 0:03, Fig. S6(B)), confirming a close association
between the acidosis-related signature and immunotherapy
responsiveness. We speculate that the lower responsiveness
to immunotherapies in the high-risk group may be due to
the poor quality and dysfunction of the tumor-infiltrating
lymphocytes in the acidosis condition [15, 16].

4. Discussion

PC is one of the most lethal malignant diseases [1] and the
actual 5-year overall survival probability is lower than 5%
[7]. Thus, it is urgent to develop a novel effective prognostic
model in patients with PC. TME is composed of tumor cells,
nontumor cells, and diverse extracellular components and
contributes substantially to the metastasis process of PC
[25, 26]. Hypoxia and acidosis are representative hallmarks
of solid tumors and are key regulators of tumor progression
[9]. Kandimalla et al. [27] constructed a prognostic signature
based on immune, stromal, and proliferation genes to
improve the overall survival prediction in patients with PC.
Another study also established a hypoxia-related signature
associated with decreased abundance of cytotoxic T cells
and adverse survival outcomes in PC [28]. However, there
is no constructed acidosis-related prognostic signature in
patients with PC. Therefore, for the first time, we con-

structed and validated a reliable acidosis-related signature
in two independent PC datasets. Our acidosis-related signa-
ture exhibited excellent predictive performance in both
TCGA-PAAD and GSE62452 datasets. ROC curves showed
that the prognostic signature was superior to other determi-
nants such as age, AJCC stage, and tumor histological grade,
suggesting that the acidosis-related signature indeed
improves the overall survival prediction in patients with PC.

The acidosis-related signature is composed of seven key
genes (ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2,
and GBP2), all of which have elevated expression levels in
PC tumor tissues compared with normal tissues and are all
related to adverse clinical outcomes in patients with PC.
ARNTL2 has been reported to promote the mobility and
invasive phenotype of PC cells by mediating the TGF-β
pathway [29]. The expression level of DKK1 is increased in
the tumor tissues and serum samples of PC patients, and
its detection facilitates the diagnosis of early-stage PC [30].
CEP55 enhances the migration and invasion of PC cells via
the NF-κB pathway [31]. Studies have also shown that an
elevated stromal expression level of CTSV [32] or a higher
expression level of MYEOV [33] is associated with an unfa-
vorable prognosis in PC patients. A previously published
study reported that a higher mRNA expression level of
DSG2 predicted a significantly poorer prognosis in TCGA-
PAAD, whereas DSG2 protein expression in PC tumor tis-
sues detected by immunohistochemical staining in the in-
house cohort showed no significant prognostic value [34].
This contradiction may be due to the different detection
methods used in the two PC cohorts. Additionally, a higher
protein level of GBP2 was found to be positively correlated
with poor clinical outcomes in patients with PC [35]. These
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Figure 8: Immune infiltration patterns and the prediction of immunotherapy response in TCGA-PAAD. (a) Comparisons of the infiltrating
scores of the 24 immune cells obtained by ssGSEA between the ARI high-risk and low-risk groups in TCGA-PAAD. Comparisons of the
TIDE scores (b) and the proportion of the predicted immunotherapeutic responders (d) between the two groups in TCGA-PAAD.
Comparisons of the TIDE scores (c) and the proportion of the predicted immunotherapeutic responders (e) between the two groups in
GSE62452. ssGSEA: single-sample gene set enrichment analysis; ARI: acidosis-related index; TIDE: tumor immune dysfunction and
exclusion.
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results are in line with our conclusion and support that these
seven key genes probably act as oncogenes in the progres-
sion of PC.

Acidosis in the TME can promote the EMT process and
affect cell viability in several types of human cancer cells [12,
13]. Knockdown of acid-sensing ion channels inhibited the
distant metastasis of PC cell lines in a xenograft mouse
model [14]. In the current study, we also revealed that
patients with high acidosis-related scores were predisposed
to “Residual_Tumor (R1),” “Tumor_Status (With Tumor),”
and “Progressed (Yes)” states, confirming an intensive corre-
lation between the acidosis-related signature and tumor pro-
gression in PC patients. Additionally, studies have reported
that breast cancer cells exposed to a harsh tumor microenvi-
ronment such as hypoxia in combination with acidosis can
acquire a more aerobic glycolysis phenotype and possess
an enhanced aggressive capability than the controls [36].
The glycolytic activity also modulates the EMT and metasta-
sis cascade in PC [37]. In line with the above evidence, we
revealed that the acidosis-related high-risk group was signif-
icantly enriched in the “HALLMARK_GLYCOLYSIS” and
“HALLMARK_HYPOXIA” pathways, demonstrating that
our acidosis-related signature could reflect the acidosis expo-
sure level in PC tumor tissues.

The tumor microenvironment of PC consists of abun-
dant stromal components, and the crosstalk between the
numerical stromal cells, immune cells, and cytokines tends
to cause immunosuppressive effects [38]. Tumor immune-
infiltrating characteristics substantially influence antitumor
immunity. The infiltration abundance of T cells varies
remarkably in patients with PC [39]. CD8+ cytotoxic T cells
are associated with favorable survival outcomes in patients
with PC [40, 41]. Natural killer cells play a critical role in
the antitumor response of the innate immune system [42].
Enhanced activity of natural killer cells dampens tumor
metastasis and is connected with improved recurrence-free
survival outcomes in PC patients undergoing surgical resec-
tion [43]. Another study revealed that PC patients with a
lower proliferated abundance of natural killer cells experi-
enced adverse disease-free and overall survival outcomes
[44]. In our study, the acidosis-related high-risk group with
an unfavorable prognosis had a lower fraction of CD8 T cells
and natural killer cells than the low-risk group, supporting
the theory of tumor immunosuppression under acidosis
conditions in PC.

Immunotherapy such as immune checkpoint inhibitors
has brought promising treatment benefits only in microsat-
ellite instability-high patients with PC but failed to induce
a satisfactory response in general PC patients [45]. Thus,
there is no “one-fits-all” immunotherapy strategy for PC.
Fortunately, tumor extracellular acidosis has been reported
to induce immune cell dysfunction and is a novel therapeu-
tic target [15]. Accordingly, we further investigated the rela-
tionship between acidosis-related signatures and potential
immunotherapy response. Patients in the acidosis-related
high-risk group were shown to have higher TIDE scores rep-
resenting more tumor immune dysfunction and fewer
immunotherapeutic responders than those in the low-risk
group. Analogously, studies have revealed that exposure to

acidosis transforms CD8+ T cells into an anergic state and
results in impaired cytolytic activity, whereas neutralizing
the acidity to a physiological state can restore the immune
function of CD8+ T cells [24]. Neutralization of the tumor
extracellular acidity by bicarbonate therapy attenuated the
growth of melanoma and PC cell lines and further improved
the immunotherapy response in xenografted mouse models
[46]. Macrophages also substantially influence the antitumor
immunity and the efficacy of cancer immunotherapy [47].
M1 macrophages enhance the tumor phagocytosis, whereas
M2 macrophages promote the growth and invasion of tumor
cells. However, the exact relationship between macrophage
dysfunction and extracellular acidosis in tumor tissues is
scarcely reported. Our study showed that both the two sub-
populations of macrophages had a relatively elevated level in
the low-risk group in comparison with the high-risk group,
suggesting the important role of macrophages in tumor
immune dysregulation. Additionally, the dendritic cell is
the key player that presents the antigen to the cytotoxic T
cells and thus is closely involved in the responsiveness to
immunotherapy [48]. Activation of dendritic cells
strengthens the function of CD8+ T cells and inhibits tumor
growth in the PC model [49]. Furthermore, lactic acid pro-
duced by tumor tissues can modulate the activity of den-
dritic cells and impair the differentiation of T cells in a
concentration-dependent manner [50]. Analogously, the
acidosis-related high-risk group in our study was found to
have a decreased fraction of dendritic cells and be less
responsive to immunotherapy compared with the low-risk
group, confirming the critical role of dendritic cells in anti-
tumor immunity. Collectively, the above evidence suggests
that acidity in the tumor microenvironment may serve as a
novel target to improve immunotherapy response, and our
acidosis-related signature has the potential to discriminate
those patients who have less acidosis in TME and might be
more responsive to immunotherapy.

However, our study had some limitations. PC tumor
specimens in TCGA-PAAD and GSE62452 were collected
after surgical resection, and most of these patients were diag-
nosed with AJCC stage 2 when they were first diagnosed
with PC. Owing to the small number of patients with stage
3 or stage 4 disease, our study showed that the AJCC stage
was not a significant prognostic factor. Thus, well-designed
studies with larger sample sizes and more harmonious prop-
erties are needed to further verify the performance of the
acidosis-related signature. Furthermore, the seven key genes
in the prognostic signature are all risk factors in patients
with PC, and their downstream molecular mechanisms need
further examination by functional experiments to explore
new therapeutic targets. Overall, our acidosis-related signa-
ture presents good potential to predict the immunotherapy
response, but this notion needs to be tested in rigorously
designed clinical trials in the future.

5. Conclusions

We developed a reliable acidosis-related signature that
showed excellent performance in prognostic prediction and
correlated with tumor immune infiltration, providing a
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new direction for prognostic evaluation and immunotherapy
management in PC.
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