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Hydroxysafflor yellow A (HSYA), a nutraceutical compound derived from safflower (Carthamus tinctorius), has been shown as an
effective therapeutic agent in cardiovascular diseases, cancer, and diabetes. Our previous study showed that the effect of HSYA on
high-glucose-induced podocyte injury is related to its anti-inflammatory activities via macrophage polarization. Based on the
information provided on PubMed, Scopus and Wanfang database, we currently aim to provide an updated overview of the role
of HSYA in antidiabetic research from the following points: pharmacological actions, molecular mechanisms, pharmacokinetic
progressions, and clinical applications. The pharmacokinetic research of HSYA has laid foundations for the clinical
applications of HSYA injection in diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy. The application of
HSYA as an antidiabetic oral medicament has been investigated based on its recent oral delivery system research. In vivo and
in vitro pharmacological research indicated that the antidiabetic activities of HSYA were based mainly on its antioxidant and
anti-inflammatory mechanisms via JNK/c-jun pathway, NOX4 pathway, and macrophage differentiation. Further anti-
inflammatory exploration related to NF-κB signaling, MAPK pathway, and PI3K/Akt/mTOR pathway might deserve attention
in the future. The anti-inflammatory activities of HSYA related to diabetes and diabetic complications will be a highlight in
our following research.

1. Introduction

Hydroxysafflor yellow A (HSYA) is a single chalcone
glycoside compound [1] which is derived from safflower
(Carthamus tinctorius), a traditional Chinese herb (Figure 1)
[2]. The most general and traditional method of extracting
HSYA is water immersion. However, many other extraction
systems have been developed such as smashing tissue extrac-
tion, microwave extraction, ultrasound extraction, and Soxhlet
extraction [3]. HSYA has been commonly used in China to
treat cardiovascular disease (CVD) [4]. Our recent literature
research provides a number of articles and reviews describing
novel applications of HSYA towards various diseases such as

cancer and diabetes, beyond their conventional use against
CVD (Figure 1).

According to the International Diabetes Federation, the
number of adults diagnosed with diabetes has increased
from 285 million in the year 2009 to 463 million in the year
2019, 95% of which are type 2 diabetes mellitus (T2DM)
patients [5]. Diabetes is associated with accelerated rates of
macrovascular and microvascular complications [6]. Macro-
vascular complications affect the heart, brain, and peripheral
arteries and are termed CVD, cerebrovascular disease, and
peripheral vascular disease, respectively [7]. Diabetes-
related macrovascular complications are responsible for the
impaired quality of life, disability, and premature death
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associated with diabetes [8, 9]. Microvascular complications
affect the retina which is the inner part of the eye, the
kidneys, and peripheral nerves. The resulting conditions
are known as diabetic retinopathy, diabetic nephropathy
(DN), and diabetic neuropathy, respectively [7]. In a study
involving 689 individuals with T2DM obtained at baseline,
the occurrences of microvascular complications observed
during a median follow-up of 10.5 years were as follows:
206 patients had DN, 161 patients had retinopathy, and
179 patients had neuropathy [10].

Specifically, T2DM is characterized by chronic systemic
inflammation alongside hyperglycemia and insulin resis-
tance in the body [11]. Clinical data analysis showed that
elevated C-reactive protein (CRP), tumor necrosis factor-
(TNF-) α, and interleukin- (IL-) 6 were the most common
inflammation indicators in diabetes-related angiopathies

[12]. Related research suggested that HSYA could inhibit
the apoptosis of pancreatic β-cells, and this might be the
underlying mechanisms through which HSYA regulates gly-
colipid metabolism in T2DM rats [13]. Our previous study
indicated that HSYA had direct protective effects on high
glucose- (HG-) induced podocyte injury and indirect protec-
tive effects by regulating macrophage M1/M2 polarization
[14]. These effects were related to its antioxidant and anti-
inflammatory activities in vitro [15].

In this article, we first reviewed the in vivo and in vitro
antidiabetic pharmacological actions and antidiabetic
molecular mechanisms of HSYA. Based on signal research
in the application of HSYA in the treatment of
inflammation-related diseases, possible anti-inflammatory
pathways involved in antidiabetic effects were discussed.
The clinical applications of HSYA in diabetic macrovascular
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1. Pharmacological actions: details in Table 1.
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2. Molecular mechanisms: details in Table 1 andFigure2.
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Figure 1: The source, structure, and literature research of hydroxysafflor yellow A: (a) the source and structure of hydroxysafflor yellow A;
(b) the research articles of the top ten diseases related to hydroxysafflor yellow A. Abbreviation: Wanfang: Wanfang Data.
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and microvascular complications were then summarized
based on its recent pharmacokinetic progression. Finally,
possible application of HSYA as an antidiabetic oral medica-
ment was investigated.

2. Antidiabetic Pharmacological Research and
Related Mechanisms

2.1. In Vivo Antidiabetic Research. T2DM was induced in
rats by feeding high-fat diet (HFD) for four weeks followed
by intraperitoneal injection of streptozocin (STZ). The
established models were treated with HSYA for eight weeks
while metformin was used as positive control. The results
showed that the underlying mechanisms of HSYA in
T2DM rats were related to the following activities: the direct
or indirect inhibition of pancreatic β-cell apoptosis, the
improvement of insulin resistance, and the regulation of
glycolipid metabolism [13].

Also, in the treatment of HFD- and STZ-induced T2DM
rats by HSYA, renal protective effects were observed based
on the improvement of renal functions including serum
creatinine (Scr), blood urea nitrogen (BUN), glomerular
volume, podocyte number, and cell apoptosis markers. Fur-
thermore, in the HSYA treatment group, the levels of TNF-α
and the inflammatory products, including free fatty acids
(FFA) and lactic dehydrogenase (LDH), were significantly
decreased. Regarding oxidative stress markers, the level of
superoxide dismutase (SOD)markedly increased in the HSYA
treatment group, while the level of malondialdehyde (MDA)
in the serum and kidney tissue evidently decreased [16].

In STZ-induced type 1 diabetes mellitus (T1DM) rats, a
diabetic wound model was established by full-thickness
excisional wounds that extended through the panniculus
carnosus with a biopsy punch. Topical application of HSYA
significantly enhanced the wound closure rate, and the time
taken for complete wound closure was 17 days, whereas 30
days was needed for complete wound closure with
phosphate-buffered saline (PBS) treatment [17].

2.2. In Vitro Antidiabetic Research. In vitro antidiabetic stud-
ies were conducted on seven different cell lines: rat INS-1
insulinoma cells [18], mice MPC-5 podocyte cells [14],
human umbilical vein endothelial cells (HUVECs) [17, 19],
human brain microvascular endothelial cells (HBMECs)
[20], 3T3-L1 preadipocytes and adipocytes [21], and
RAW264.7 macrophage cells [14, 17].

The loss of functional insulin-producing β-cells is a
hallmark of diabetes; therefore, understanding the cellular
biology of the pancreas is crucial. Rat insulinoma INS-1 cells
are widely used to study glucose-stimulated insulin secretion
[22]. DN is one of the microvascular complications of diabe-
tes and is a main cause of end-stage nephropathy. The most
common clinical feature of DN is progressive proteinuria
which is related to podocyte function. Podocyte plays an
important role in maintaining the integrity and function of
the glomerular filtration barrier. MPC-5 cell line is also
widely used to evaluate renal injury in vitro [23]. Related
research showed that HG-induced apoptosis of podocytes
and pancreatic β-cells was reversed by HSYA [14, 18].

In diabetic patients, hyperglycemia-induced endothelial
injury results in all kinds of vascular complications [24]. In
vitro research showed that HG increased HUVEC apoptosis,
vascular permeability, monocyte adhesion, the formation of
reactive oxygen species (ROS), and the expression of
NADPH oxidase 4 (NOX4) protein. The increased vascular
injury by HG was attenuated by HSYA [19]. Another
in vitro research showed that HSYA could inhibit
methylglyoxal-induced injury in cultured HBMEC, which
was associated with its antiglycation effect. Methylglyoxal
is mainly formed from the degradation of glucose and gly-
cated proteins [20].

For both diabetic wounds and DN progression, a central
feature is the persistence of chronic inflammation, which is
partly due to the prolonged presence of proinflammatory
macrophages [25, 26]. In HG- and lipopolysaccharide-
(LPS-) induced RAW264.7 macrophage cells, HSYA showed
its anti-inflammatory effects by decreasing TNF-α, IL-1β,
and nitric oxide (NO) levels [14, 17]. From Table 1, we could
see that the main antidiabetic mechanism of HSYA is
through its anti-inflammatory activity.

2.3. Anti-Inflammatory Signals in Antidiabetic Research of
HSYA. So far, our review has shown that the antidiabetic
mechanisms of HSYA are related to the following signals:
c-jun NH2-terminal kinases/c-jun (JNK/c-jun) pathway
[18], NOX4 pathway [19], macrophage polarization [14],
and phosphoinositide 3-kinase/protein kinase B (PI3K/
Akt) pathway [13]. HSYA also showed its ability to cause a
decrease in oxidative stress factors such as ROS [18, 19]
and hydrogen peroxide (H2O2) [19].

Inflammation is closely linked to the pathogenesis of dia-
betes, and chronic inflammation is one of the main causes of
insulin resistance. Proinflammatory mediators can be related
to obesity and induce insulin resistance in adipose tissue.
Signaling pathways of transcription factors, particularly
nuclear factor-κB (NF-κB) signaling, are involved in insulin
sensitivity [27]. NF-κB plays a crucial role in the develop-
ment of diabetic complications because of its involvement
in the expression of genes that are responsible for the dam-
age of organs such as the brain, liver, heart, muscles, endo-
thelium, adipose tissue, and pancreas by inflammation,
apoptosis, and oxidative stress [28].

The role of NF-κB signal in the antidiabetic activities of
HSYA has not been previously reported. Figure 2 indicates
that NF-κB signal plays an important role in the use of
HSYA to treat other inflammatory diseases [29–38]. This
might provide some research points to explore anti-
inflammatory mechanisms of HSYA in the treatment of dia-
betes and diabetes complications.

2.4. Possible Anti-Inflammatory Mechanisms in Antidiabetic
Research of HSYA. In Figure 2, organ damages treated by
HSYA via the NF-κB pathway include brain damages such
as ischemia reperfusion-injury, traumatic brain injury,
ischemic stroke, and Alzheimer’s disease (AD) [29–32]; lung
injury such as fetal lung fibroblasts, chronic obstructive
pulmonary disease, and acute respiratory distress syndrome
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Table 1: Summary of pharmacological effects and mechanisms of HSYA on diabetes and diabetes complications.

Disease Species/strains
Effective dose/
concentration

Route
Positive
control

Intervention
time

Main improved
results

Mechanisms/
pathways

Reference

Diabetes
HFD- and

STZ-induced
T2DM rats

120mg/kg i.g.
Metformin as

positive
control

8 weeks

Pancreatic β-cell
apoptosis↓, FBG↓,
IR↓, TG↓, TC↓,
LDLC↓, glycogen
synthase↑, hepatic

glycogen↑

Regulation on
glycolipid

metabolism via
PI3K/Akt
pathway

[13]

Diabetes

HG-induced
rat INS-1
insulinoma

cells
(pancreatic
β-cells)

800μM

N-
Acetylcysteine
as oxidative

stress
scavenger
control

72 hours

Pancreatic β-cell
apoptosis↓, ROS↓,
MDA↓, CAT↑,
GSH-px↑, SOD↑

Antioxidative
effects via JNK/c-

jun pathway
[18]

Diabetic
nephropathy

HFD- and
STZ-induced
T2DM rats

120mg/kg i.g. 8 weeks

Scr↓, UN↓, TG↓,
TC↓, LDLC↓, FBG↓,
TNF-α↓, LDH↓,
FFA↓, MDA↓,

SOD↑

Antioxidative and
anti-

inflammation
effects

[16]

Diabetic
nephropathy

HG-induced
mice MPC-5
podocyte cells

and HG-
induced mice
RAW264.7

cells

100μM,
200μM

Kaempferol as
positive
control

24 hours

Podocyte apoptosis↓
In podocytes:

TNF-α↓, IL-1β↓
In RAW264.7 cells:
TNF-α↓, iNOS↓,
IL-1β↓ CD206↑,

Arg-1↑

Anti-
inflammation

effects directly on
podocyte cells

and indirectly via
macrophage
polarization

[14]

Diabetic
vascular
injury

HG-induced
HUVECs

10μM,
25μM, 50 μM

24, 48, and
72 hours

HUVEC
hyperpermeability↓,
HUVEC apoptosis↓,
VCAM-1↓, ICAM-
1↓, E-selectin↓,
NOX4↓, ROS↓,

H2O2↓

Anti-
inflammation
effects via the
NOX4 pathway

[19]

Diabetic
vascular
injury

Methylglyoxal-
induced
HBMECs

10, 50, and
100μM

24 hours
HBMEC apoptosis↓,
caspase-3↓, AGEs↓

Antiglycation
effects

[20]

Diabetic
wound

STZ-induced
T1DM rats

2mg/mL vs ext
Hydrogel as
positive
control

30 days

Wound closure↑,
granulation tissue

formation↑, collagen
disposition↑,

secretion of VEGF↑,
TGF-β1↑

[17]

Diabetic
wound

HUVECs and
LPS-induced
RAW264.7

cells

0.4, 0.8, and
1.6mM

60 and 96
hours

NO production↓,
HEK migration↑,
HUVEC tube
formation↑

Anti-
inflammation

effects
[17]

Diabetic
obesity

3T3-L1
preadipocytes
and adipocytes

100mg/L 24 hours
PPARγ2 promoter

activities↑,
PPARγ2↑

Increasing the
expression of

insulin signaling
pathway-related

genes

[21]

Abbreviations: T1DM: type 1 diabetes mellitus; T2DM: type 2 diabetes mellitus; HFD: high-fat diet; STZ: streptozotocin; FBG: fasting blood glucose; IR:
insulin resistance; TG: triglyceride; TC: total cholesterol; LDLC: low-density lipoprotein cholesterol; DN: diabetic nephropathy; ROS: reactive oxygen
species; SOD: superoxide dismutase; CAT: catalase; GSH-px: glutathione peroxidase; MDA: malondialdehyde; Scr: serum creatinine; UN: urea nitrogen;
LDH: lactate dehydrogenase; FFA: free fatty acids; NOX4: NADPH oxidase 4; H2O2: hydrogen peroxide; HG: high glucose; HBMECs: human brain
microvascular endothelial cells; HUVECs: human umbilical vein endothelial cells; VCAM-1: vascular cell adhesion molecule-1; ICAM-1: intercellular
adhesion molecule-1; iNOS: inducible nitric oxide synthase; TNF-α: tumor necrosis factor-α; CD206: mannose receptor; Arg-1: arginase-1; IL-1β:
interleukin-1β; LPS: lipopolysaccharide; AGEs: advanced glycation end-products; VEGF: vascular growth factors; TGF-β1: transforming growth factor-β1;
NO: nitric oxide; HEKs: human epithelial keratinocytes; PPARγ2: peroxisome proliferator-activated receptor-γ2.
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[33–35]; cardiac dysfunction [36]; liver ischemia reperfusion-
injury [37]; and endometrial inflammation [38].

It is reported that AD and T2DM share many common
features including inflammation, oxidative stress, and
neuronal degeneration [39]. β-Amyloid- (Aβ-) mediated
inflammation plays a critical role in the initiation and pro-
gression of AD. HSYA protects Aβ-induced AD model by
inhibiting inflammatory response, which may involve
inhibiting the activation of the NF-κB pathway [32]. The
NF-κB signaling pathway will be the first research point for
our team in future studies on the antidiabetic mechanisms
of HSYA.

Mitogen-activated protein kinase (MAPK) pathway and
phosphoinositide 3-kinase/protein kinase B/mammalian tar-
get of rapamycin (PI3K/Akt/mTOR) pathway are two other
important signals indicating the intervention of HSYA in the
treatment of Parkinson’s disease (PD) [40], asthma [41],
non-small-cell lung cancer [42], and brain microvascular
endothelial injury [43]. It is reported that activated MAPK
may be associated with both inflammation and energy
metabolism in mice, rats, and humans fed with HFD for a
short or long term [44]. A case-control study including 248
cases of T2DM and 101 controls showed that genetic varia-
tions in the PI3K/Akt/mTOR signaling pathway may be
associated with increasing risk of obesity and diabetes [45].
Our previous discussion showed that HSYA could promote
the activation of PI3K/Akt and inhibit the apoptosis of pan-
creatic β-cells in HFD- and STZ-induced T2DM rats [13].
Further research on the relationship between HSYA and

PI3K/Akt/mTOR signal in diabetic complications should
be conducted.

Other inflammation signals, including toll-like receptor
9 (TLR9) signal and cyclic adenosine monophosphate/pro-
tein kinase A (cAMP/PKA) signal, were observed in ischae-
mic cortex after cerebral ischaemia and reperfusion and
acute lung injury [46, 47]. TLRs are a family of pattern rec-
ognition receptors that play a critical role in innate immune
response. Recently, studies have reported the important role
of TLR4 pathway in insulin resistance [27]. TLRs can be
proposed as new targets in the intervention of HSYA in
diabetes. The important roles of cAMP/PKA signal in the
cognitive impairment of diabetic rats may suggest its
involvement in the antidiabetic mechanism of HSYA.

3. Pharmacokinetic Progressions

3.1. Pharmacokinetics of Intravenous Administration

3.1.1. In Healthy Humans. 36 healthy volunteers were recruited
in a single-center, open-label, single-dose, and multiple-dose
study. It was found that the area under the curve (AUC) of
plasma concentration at different time points and time to peak
plasma concentration (Cmax) were linearly related to the dose
ranging from 25 to 75mg in a single administration of HSYA
and the elimination half-life was about 3.91–4.18h. When
HSYA was administered for 7d (50mg/d) continuously, Cmax
and AUC decreased significantly and the elimination half-life
was prolonged from 3.91h to 4.41h [48].
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Figure 2: The molecular mechanisms of hydroxysafflor yellow A in the treatment of inflammation-related diseases. Abbreviations: GSK3β:
glycogen synthase kinase-3β; NF-κB: nuclear factor-κB; TLR9: toll-like receptor 9; TLR4: toll-like receptor 4; TLR2: toll-like receptor 2;
MAPK: mitogen-activated protein kinase; JAK2: Janus kinase 2; STAT3: signal transducers and activators of transcription 3; PI3K:
phosphatidylinositol 3-kinase; Akt: protein kinase B; mTOR: mammalian target of rapamycin; cAMP: cyclic adenosine monophosphate;
PKA: protein kinase A; ERK: extracellular signal-regulated kinase; TNF-α: tumor necrosis factor-α.
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Pharmacokinetic studies in healthy humans have shown
that the metabolic process in the body after intravenous
administration of HSYA conforms to the two-compartment
model, indicating that HSYA can be quickly distributed in
many organs including the heart, liver, spleen, lungs, brain,
intestines, and kidneys [49]. The distribution of HSYA in the
kidneys is more than that of the other organs [3]. The excre-
tion of HSYA is mainly from the kidneys, and the cumulative
excretion rate of HSYA in urine 24h after intravenous admin-
istration is up to 88.6% [3, 49]. According to the above charac-
teristics, the pharmacokinetic indexes of HSYA in DN patients
are different from those of the healthy volunteers.

3.1.2. In Renal Insufficient Patients. It was found that the
Cmax and AUC of HSYA in the diabetic impaired renal
function group increased and the apparent volume of distri-
bution and clearance rate reduced significantly after a single
administration. The results showed that impaired renal
function affected pharmacokinetic indicators [50].

Relevant studies have shown that after administering
HSYA intravenously for 1 h, the average blood concentra-
tion of HSYA in renal insufficient patients was equivalent
to 2.64 times that of patients with normal renal functions
[51]. It is suggested that the dosage and frequency of admin-
istration should be adjusted according to the blood concen-
tration when HSYA is used in DN patients.

3.1.3. In Patients with Traumatic Brain Injury. A sensitive,
rapid, and reliable liquid chromatography-tandem mass
spectrometry method was applied to investigate the pharma-
cokinetics of HSYA in patients with traumatic brain injury
(TBI). The results demonstrated that some HSYA crossed
the blood-brain barrier after administration. This study pro-
vides evidence to better understand the pharmacokinetics
and potential clinical guidance for TBI treatment [52].

3.1.4. Clinical Antidiabetic Applications. Safflower yellow
injection (SYI) containing 90% HSYA (45mg HSYA per

50mg SYI) has been widely used clinically [53]. In line with
clinical guidelines and expert consensus [54], the use of SYI
is becoming more and more standardized. Randomized con-
trolled trials (RCTs) of SYI in the treatment of diabetes com-
plications are summarized in Table 2 [55–61].

It can be observed from Table 2 that HSYA has effects on
microvascular complications as well as macrovascular com-
plications. Among these complications, HSYA was mostly
used in the early stage of DN, and the mechanism research
showed that HSYA had anti-inflammatory activity by
decreasing TNF-α levels in DN patients [62]. There is no
clinical anti-inflammatory research about HSYA on diabetic
retinopathy, diabetic neuropathy, etc. The development of
further clinical applications of HSYA may need to be carried
out alongside its clinical anti-inflammatory effects.

It is said that the age of natural antioxidant compounds
in the treatment of diabetic complications is coming [63].
HSYA injection has made some progress in the treatment
of different diabetic complications. But from the perspective
of patients, it is obvious that an oral drug is more convenient
than an injection.

3.2. Pharmacokinetics of Oral Administration

3.2.1. In Healthy Humans. The pharmacokinetics of HSYA
in 12 healthy volunteers after a single oral administration
of HSYA was investigated. The plasma pharmacokinetics
of HSYA after oral administration in the 12 healthy subjects
showed that the component was absorbed quickly, with a
peak time of 1 h and a short elimination half-life of approx-
imately 2.6–3.5 h [64]. HSYA is relatively polar and easily
catabolized and metabolized in the gastrointestinal tract
and liver, leading to its rapid elimination, short half-life,
and low bioavailability under oral or intragastric administra-
tion conditions [49]. The clinical use of HSYA as an oral
preparation is being hindered by its low bioavailability,
and hence, there is the need for an improvement of its
oral bioavailability.

Table 2: The RCT research of SYI (90% HSYA) in the treatment of diabetes and diabetes complications.

Diseases RCT research Main improved clinical indicators Mechanism research Reference

Microvascular
complications

Diabetic
nephropathy

Early stage: n = 535
(control: n = 532) Serum creatinine

SOD, MDA, TNF-α,
IL-6, and IL-10

[55]

End stage: n = 50
(control: n = 50) 24 h proteinuria, urea nitrogen [56]

Diabetic
retinopathy

n = 92 (control: n = 76) Serum vascular endothelial growth
factor and endostatin

[57]

Diabetic
neuropathy

n = 41 (control: n = 41) Tendon reflexes and EMG nerve
conduction velocity

[58]

Macrovascular
complications

Cardiovascular
disease

Unstable angina pectoris:
n = 42 (control: n = 42)

Number and duration of angina
pectoris

[59]

Cerebrovascular
disease

Acute cerebral infarction:
n = 40 (control: n = 40) NIHSS score [60]

Peripheral
vascular disease

Diabetic foot ulcers: n = 20
(control: n = 20) Wagner classification [61]

Abbreviations: RCT: randomized controlled trial; SYI: safflower yellow injection; HSYA: hydroxysafflor yellow A; SOD: superoxide dismutase; MDA:
malondialdehyde; TNF-α: tumor necrosis factor-α; IL-6: interleukin-6; IL-10: interleukin-10; EMG: electromyogram; NIHSS: National Institute of Health
Stroke Scale.
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3.2.2. Oral Delivery System Research. Fortunately, research
on the delivery system of HSYA made it possible to develop
it into an oral medicament. Some oral delivery systems of
HSYA are shown in Figure 3. They are water-in-oil microe-
mulsion [65], self-double-emulsifying [66], hydrophobic
nanoparticles [67], chitosan complex [68], solid lipid nano-
particles [69], and natural deep eutectic solvents [70].

Related research suggested that shell nanoparticles are a
highly effective delivery system for resveratrol, another nat-
ural compound, due to their significant effects in increasing
the bioavailability and anti-inflammation activity [71]. We
look forward to a suitable delivery system for HSYA, which
will improve not only its bioavailability but also its anti-
inflammatory activity in the near future.

4. Conclusion

HSYA, a major active component from safflower plant, has
drawn more interest in recent years for its multiple pharma-
cological actions. We aim to provide an updated overview of
HSYA in diabetes and diabetic complications from these
four points: pharmacological actions, molecular mecha-
nisms, pharmacokinetic progressions, and clinical applica-
tions. Anti-inflammation mechanism plays an important
role in the antidiabetic pharmacological actions of HSYA.
Further anti-inflammation research should pay attention to
more inflammation signals such as NF-κB pathway and
MAPK pathway. The pharmacokinetic properties of HSYA
enhanced its wide clinical use as an injection to treat diabetic
complications. Based on the development of drug delivery sys-
tems, HSYA could be expected as an oral drug with improved
bioavailability and improved anti-inflammatory activity.
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