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Background. Hepatocellular carcinoma (HCC) remains an important cause of cancer death. The molecular mechanism of
hepatocarcinogenesis and prognostic factors of HCC have not been completely uncovered. Methods. In this study, we screened
out differentially expressed IncRNAs (DE IncRNAs), miRNAs (DE miRNAs), and mRNAs (DE mRNAs) by comparing the gene
expression of HCC and normal tissue in The Cancer Genome Atlas (TCGA) database. DE mRNAs were used to perform Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then, the miRNA and IncRNA/mRNA
modules that were most closely related to the survival time of patients with HCC were screened to construct a competitive
endogenous RNA (ceRNA) network by weighted gene coexpression network analysis (WGCNA). Moreover, univariable Cox
regression and Kaplan-Meier curve analyses of DE IncRNAs and DE mRNAs were conducted. Finally, the lasso-penalized Cox
regression analysis and nomogram model were used to establish a new risk scoring system and predict the prognosis of patients
with liver cancer. The expression of survival-related DE IncRNAs was verified by qRT-PCR. Results. A total of 1896 DEmRNAs,
330 DEIncRNAs, and 76 DEmiRNAs were identified in HCC and normal tissue samples. Then, the turquoise miRNA and
turquoise IncRNA/mRNA modules that were most closely related to the survival time of patients with HCC were screened to
construct a ceRNA network by WGCNA. In this ceRNA network, there were 566 IncRNA-miRNA-mRNA regulatory pairs,
including 30 upregulated IncRNAs, 16 downregulated miRNAs, and 75 upregulated mRNAs. Moreover, we screened out 19
IncRNAs and 14 hub mRNAs related to prognosis from this ceRNA network by univariable Cox regression and Kaplan-Meier
curve analyses. Finally, a new risk scoring system was established by selecting the optimal risk IncRNAs from the 19 prognosis-
related IncRNAs through lasso-penalized Cox regression analysis. In addition, we established a nomogram model consisting of
independent prognostic factors to predict the survival rate of HCC patients. Finally, the correlation between the risk score and
immune cell infiltration and gene set enrichment analysis were determined. Conclusions. In conclusion, the results may provide
potential biomarkers or therapeutic targets for HCC and the establishment of the new risk scoring system and nomogram
model provides the new perspective for predicting the prognosis of HCC.

1. Background

In addition to being the sixth most common cancer in the
world, liver cancer is also the fourth leading cause of cancer
death, with 841080 new cases and 781631 deaths in 2018
[1]. In the United States, there were 42030 new cases of liver

cancer and 31780 deaths in 2019 [2]. Due to the lack of spe-
cial clinical manifestations in patients with early hepatocellu-
lar carcinoma (HCC), 70%-80% of patients are in advanced
stages when they experience symptoms and have missed
the opportunity for radical resection [3]. Although the
current treatment of HCC includes surgical resection,
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transplantation, chemotherapy, radiotherapy, radiofre-
quency ablation, targeted therapy, transcatheter arterial che-
moembolization (TACE), and immunotherapy, the overall
survival rate has not changed significantly and the 5-year
recurrence rate after surgery is still up to 70% [4]. Therefore,
it is of great significance to clarify the molecular mechanisms
of the occurrence and development of HCC and to identify
new molecular markers to improve its clinical efficacy.

As a kind of noncoding RNA (ncRNA) without protein
coding ability, long noncoding RNAs (IncRNAs) are tran-
scripts more than 200 nucleotides in length [5]. Thousands
of IncRNAs have been found due to the development of
high-throughput RNA sequencing (RNA-seq). Originally,
IncRNAs were thought to be the noise of genomic transcrip-
tion, a byproduct of RNA polymerase II transcription, and
have no biological function [6]. In fact, IncRNAs play impor-
tant regulatory roles in different cellular processes, especially
in different types of tumors [7-9]. Increasing evidence has
shown that IncRNAs play a key role in the occurrence,
invasion, and distant metastasis of HCC through cell
differentiation regulation, epigenetic regulation, and cell
cycle regulation [7, 10].

MicroRNAs (miRNAs) are a kind of noncoding RNA
with a length of approximately 20-22 nucleotides. They can
bind to a target protein coding gene in its 3'-untranslated
region (3'-UTR) based on sequence complementarity, thus
affecting the stability of the mRNA or interfering with pro-
tein translation [11, 12]. It was found that miRNAs are
abnormally expressed and dysfunctional in a variety of
tumors and play an important role in the occurrence and
development of tumors, including gastric cancer [13],
colorectal cancer [14], ovarian cancer [15], breast cancer
[16], and HCC [17].

Weighted gene coexpression network —analysis
(WGCNA) is a systematic biological approach that describes
intergene correlation patterns through RNA sequencing or
microarray data [18]. It usually constructs a scale-free gene
coexpression network to explore the correlation between
the gene set and clinical characteristics, and it can recognize
highly correlated genes and aggregate them into the same
module [19]. However, many studies have only focused on
the differential expression between genes, ignoring the high
correlation between genes, and WGCNA can make up for
these defects. Therefore, WGCNA plays an important role
in identifying potential biomarkers or new therapeutic
targets [20].

In recent years, studies have shown that the mutual regu-
lation between IncRNAs and miRNAs plays an important
role in the development of tumors [21]. The competitive
endogenous RNA (ceRNA) hypothesis, first proposed in
2011, suggests that IncRNAs can act as ceRNAs to bind to
miRNAs, affecting the regulation of miRNAs on target
mRNAs and thus regulating the expression of related target
genes [22]. As an open-source sequencing database, The
Cancer Genome Atlas (TCGA) platform contains clinico-
pathological information and corresponding bioinformatics
data for more than 30 types of human cancer, which is help-
ful for the comprehensive analysis of the regulatory function
of the IncRNA-miRNA-mRNA ceRNA network in the path-
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ogenesis of cancer [23]. These networks play an important
role in understanding gene interactions and identifying
potential biomarkers. However, the prognostic value of the
IncRNA-related ceRNA regulatory network in HCC is still
unclear.

In this study, we selected differentially expressed
IncRNAs (DEIncRNAs), miRNAs (DEmiRNAs), and
mRNAs (DEmRNASs) between cancer and normal tissues
by using data from the TCGA database. In addition, we also
performed cluster analysis, biological function enrichment
analysis, and pathway enrichment analysis on these DEIncR-
NAs, DEmiRNAs, and DEmRNAs. Then, we constructed a
coexpression network based on these differentially expressed
genes (DEGs) to determine the modules related to clinical
features by using the WGCNA-based systems biology
method. According to the module data, the most relevant
modules for survival and prognosis were selected to construct
the ceRNA network. In this ccRNA network, there were 566
IncRNA-miRNA-mRNA regulatory pairs, including 30
upregulated IncRNAs, 16 downregulated miRNAs and 75
upregulated mRNAs. Moreover, we screened out 19
IncRNAs, and 14 hub mRNAs related to prognosis from this
ceRNA network by univariable Cox regression and Kaplan-
Meier curve analyses. Finally, we used the 19 prognosis-
related IncRNAs to establish a new risk scoring system by
lasso-penalized Cox regression analysis. The flow chart of
the whole study was shown in supplement Figure S1. In
addition, we established a nomogram model consisting of
independent prognostic factors to predict the survival rate
of HCC patients.

2. Methods

2.1. Data Collection and Preprocessing. HCC gene sequencing
data were downloaded from the TCGA database (https://
cancergenome.nih.gov/), and then, the original data were
standardized for further analysis. First, the samples must
have the detection data of IncRNAs, miRNAs, and mRNAs.
Then, the samples that had other malignant tumors, no stage
information (including pathological stage and TNM stage),
and no age information were removed. Finally, 224 tumor
samples and 27 normal samples were used for analysis. To
identify DEGs between HCC samples and normal samples,
such as IncRNAs, miRNAs, and mRNAs, we used a random
variance model (RVM) to compare data between groups.
The screening parameters of IncRNAs and mRNAs were set
to p<0.05, false discovery rate (FDR)<0.05, and fold
change (FC)>1.5. The screening parameters of miRNAs
were set to p <0.05 and FC> 1.2. The data were obtained
from the TCGA database and did not involve ethical issues.

2.2. Cluster Analysis of the DEIncRNAs, DEmiRNAs, and
DEmRNAs. The DEIncRNAs, DEmiRNAs, and DEmRNAs
were screened out, and cluster analysis was carried out
according to the detected expression values in the samples,
which were presented in the form of a cluster gram. The
abscissa represents the sample, the ordinate represents the
DEGs, red represents the high expression value of the DEGs
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in the sample, and blue represents the low expression value of
the DEGs in the sample.

2.3. Functional Enrichment Analysis. The function of the
DEmRNAs was analyzed using the Gene Ontology (GO)
database (http://www.geneontology.org), and the signaling
pathways involved in the DEGs were analyzed using the
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (http://www.kegg.jp/). Fisher’s exact test and the multi-
ple comparison test were used to calculate the significance
level of each function and signaling pathway (p < 0.05).

2.4. Construction of the Weighted Gene Coexpression
Network. According to the DEIncRNAs, DEmiRNAs, and
DEmRNASs and their expression information in HCC sam-
ples, cluster analysis was carried out to determine whether
there were outlier samples. If they exist, the outlier samples
need to be removed before analysis. WGCNA is a freely
accessible R package [18] for performing weighted correla-
tion network analysis. First, the optimal soft-thresholding
power (f3) value was calculated based on the expression data
of the DEIncRNAs, DEmiRNAs, and DEmRNAs in the HCC
samples. Then, the coexpression matrix was constructed
according to the soft threshold and the adjacency between
genes was calculated. According to the similarity between
genes, the coefficient of dissimilarity between genes was
deduced and the cluster dendrogram of genes was obtained.
Thus, the modules of IncRNAs/mRNAs and miRNAs were
identified and the hierarchical cluster dendrogram of the
genes in the module was displayed. Finally, according to the
setting of the phenotypic information of the grouping traits,
the correlation between the gene module and the phenotype
was calculated and the trait-related module was identified.

2.5. miRNA Target Gene Prediction. The target gene mRNAs
of miRNAs were predicted by miRanda (http://www
.microrna.org/), TargetScan (http://www.targetscan.org/),
and miRWalk (http://129.206.7.150/), and the corresponding
target gene prediction results were obtained. The target gene
IncRNAs of miRNAs were predicted by using miRanda and
PITA  (https://genie.weizmann.ac.il/pubs/mir07/mir07_exe
.html), and the predicted results of the target IncRNAs that
might be regulated by miRNAs were obtained.

2.6. Construction and Analysis of the ceRNA Network.
According to the predicted miRNA-target binding relation-
ship and the expression relationship in HCC samples, the
negatively correlated miRNA-mRNA and miRNA-IncRNA
pairs were screened. Combining the differentially expressed
mRNAs, miRNAs, and IncRNAs, the coexpression network
of the ceRNA (IncRNA-miRNA-mRNA) network was con-
structed. The IncRNA-miRNA-mRNA network was con-
structed and visualized with Cytoscape V3.7.

2.7. Protein-Protein Interaction (PPI) Network Analysis. The
PPI network between the encoded proteins of the DEmRNAs
was constructed by using the STRING protein interaction
database. Protein interaction data from the STRING database
were downloaded and imported into Cytoscape. Then, the

protein interaction network was constructed using Cytoscape
software.

2.8. Prognostic Gene Screening. HCC gene detection data with
survival information were selected from the TCGA database.
According to the expression of the DEGs in the sample, a
univariate Cox regression model was used to analyze the rela-
tionship between the overall survival of HCC patients and the
DEGs in the ceRNA network and p < 0.05 was considered to
be significant. Then, the selected DEGs were visualized using
the survival curve in the survival analysis.

2.9. Construction of the Risk Score System for Prognostic
Prediction. After removing samples with missing survival
time, 220 patients were randomly divided into two cohorts: a
training cohort (n = 132) and a test cohort (n = 88). Then, uni-
variate Cox proportional hazards regression was performed
on IncRNAs in the training group and IncRNAs significantly
related to OS in HCC patients were included in subsequent
analysis. Next, lasso regression was used to select the potential
risk genes and to eliminate genes that overfit the model.
Finally, we used Cox proportional hazards regression to build
a prognostic risk model. The calculation of the risk score used
the following formula: riskscore = coefficient (genel) x
expression value of (genel) + coefficient (gene2) x expression
value of (gene2) + ---+coefficient (geneN) X expression value
of (geneN). Using the median risk score of the training cohort
as a cutoff value, all HCC patients were divided into a high-
risk group and a low-risk group.

2.10. Establishment and Evaluation of the Nomogram Model
for Predicting the Survival Rate of HCC Patients. Univariate
and multivariate Cox regression analyses were used to screen
independent factors related to prognosis, and a nomogram
model was established and visualized for the obtained inde-
pendent prognostic factors. To evaluate the prediction ability
of the nomogram, we used resampling technology to carry
out statistical inspection and drew the calibration curve.
The closer the calibration curve is to the 45° line, the better
the predictive power of the model constructed by the factors.

2.11. RNA Extraction and gqRT-PCR. From January 2018 to
January 2019, 10 pairs of liver cancer tissues and adjacent
normal liver tissues were collected from 10 patients who
underwent surgical resection and pathological confirmation
in the First Affiliated Hospital of Zhengzhou University.
The Medical Research Ethics Committee of the First Affili-
ated Hospital of Zhengzhou University approved this study.
Total RNA was extracted by TRIzol reagent (TaKaRa), and
cDNA was synthesized by reverse transcription using Prime-
Script™ RT Master Mix (TaKaRa) according to the manufac-
turer’s instructions. The levels of GAPDH, CTD-2510F5.4,
and DSTNP2 were detected by qQRT-PCR using SYBR@ Pre-
mix Ex TaqTM (Roche). The results were normalized to the
expression of GAPDH. The primer sequences were synthe-
sized by Servicebio (Wuhan, China). GAPDH-F: 5'-GGAA
GCTTGTCATCAATGGAAATC-3', GAPDH-R: 5'-TGAT
GACCCTTTTGGCTCCC-3', CTD-2510F5.4-F: 5'-CACC
ATGCCTGGGTAATTTTAA-3', CTD-2510F5.4-R: 5'-
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AGTTCCCTGTTGTCACTGACCTAT-3', DSTNP2-F: 5'-
TGGGCGAAGATGACCTGTTG-3', DSTNP2-R: 5'-CTTG
ATTTCTTCTGGTGTGGAGC-3'. The relative expression
levels of CTD-2510F5.4 and DSTNP2 were quantitatively
calculated by the 2(-AACT) method.

2.12. Statistical Analysis. All statistical analyses were per-
formed using R software, and the Pearson correlation coeffi-
cient test was used to evaluate the rank correlation among the
different variables. Kaplan-Meier curves and the log-rank test
were used for survival data analysis. Univariate Cox regres-
sion analysis was used for survival factor analysis. Multivari-
ate Cox regression analysis was used to determine
independent prognostic factors, and a time-dependent
receiver operating characteristic (ROC) curve was plotted to
evaluate the accuracy of the prognostic prediction model.

3. Results

3.1. Clustering Analysis of DEIncRNAs, DEmiRNAs, and
DEmRNAs. According to the above screening criteria, 224
HCC samples and 27 normal samples were included. The
screening parameters of IncRNAs and mRNAs were set to p
<0.05, FDR < 0.05, and FC > 1.5. The screening parameters
of miRNAs were set to p < 0.05 and FC > 1.2. Finally, 1896
DEmRNAs, 330 DEIncRNAs, and 76 DEmiRNAs (Supple-
mental Tables S1-S3) were obtained. According to the
expression values of the DEIncRNAs, DEmiRNAs, and
DEmRNASs in the samples, cluster analysis was carried out
and the results are displayed in the form of a heat map
(Figures 1(a)-1(c)).

3.2. GO and Pathway Analysis of DEmRNAs in HCC. Com-
pared with normal liver tissue, there were 1896 DEmRNAs
in HCC tissues, including 953 upregulated DEmRNAs and
943 downregulated DEmRNAs. These upregulated and down-
regulated DEmRNAs were analyzed by using the GO database.
These genes were enriched by terms in the GO database to
determine their functions. The upregulated DEmRNAs were
mainly enriched in rRNA processing, SRP-dependent cotran-
slational protein targeting to the membrane, translational ini-
tiation, nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay, viral transcription, and translation
(Figure 1(d)), while the downregulated DEmRNAs were
mainly enriched in the oxidation-reduction process, regula-
tion of complement activation, complement activation, classi-
cal pathway, receptor-mediated endocytosis, and proteolysis
(Figure 1(e)). Then, we performed KEGG pathway enrich-
ment analysis and found that the upregulated DEmRNAs
were mainly correlated with the ribosome, metabolic path-
ways, protein processing in the endoplasmic reticulum,
spliceosome, and cell cycle (Figure 1(f)), while the downreg-
ulated DEmRNAs were mainly correlated with metabolic
pathways, complement and coagulation cascades, carbon
metabolism, valine, leucine and isoleucine degradation, and
fatty acid degradation (Figure 1(g)).

3.3. Construction and Analysis of the Weighted Coexpression
Network. According to the expression information of the
DEIncRNAs, DEmiRNAs, and DEmRNAs in the samples,
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cluster analysis was carried out and the results showed that
there were no outlier samples (Figures 2(a) and 2(b)). To
determine the relative balance between scale independence
and mean connectivity, the network topology with a soft
threshold power of 1 to 20 was analyzed. Finally, we deter-
mined that the optimal 3 value of mRNAs/IncRNAs was 7
(Figure 2(c)) and the optimal 8 value of miRNAs was 4
(Figure 2(d)) in the coexpression network analysis. Accord-
ing to the consistent topological overlap and the correspond-
ing module colors represented by the color row, a gene
dendrogram was obtained by clustering the dissimilarity.
Each colored row represents a color-coded module that con-
tains a set of highly connected genes. Finally, nine modules
were generated in the IncRNA/mRNA coexpression network
(Figure 2(e)) and five modules were generated in the miRNA
coexpression network (Figure 2(f)). Then, we calculated and
mapped the relationship between each module and the corre-
sponding clinical features. From the miRNA correlation
module (Figure 2(h)), we found that the turquoise module
had the largest negative correlation (module-trait weighted
correlation = —0.67; the number of DEmiRNA = 22) with the
tumors related to the miRNA coexpression network and had
the largest positive correlation (module-trait weighted
correlation =0.17) with survival time. Therefore, for the
miRNA module, we selected the turquoise module to con-
struct the ceRNA network. In addition, from the
IncRNA/mRNA correlation module (Figure 2(g)), we found
that the turquoise module had the largest positive correlation
(module-trait weighted correlation =0.54; the number of
DEmRNAs and the number of DEIncRNAs are 481 and 48,
respectively) with the tumor related to the IncRNA/mRNA
coexpression network and the largest negative correlation with
survival time (module-trait weighted correlation =-0.27).
Therefore, in the IncRNA/mRNA module, the turquoise mod-
ule was selected to construct the ceRNA network. Finally, the
turquoise IncRNA/mRNA module was combined with the
turquoise miRNA module to construct the ccRNA network.

3.4. Prediction of miRNA Target Genes and Construction of
the ceRNA Network. First, we performed target gene predic-
tion for the miRNAs according to the above method. In the
turquoise IncRNA/mRNA module and turquoise miRNA
module, 196 mRNAs and 41 IncRNAs were predicted as the
target genes of 33 miRNAs. Then, based on the predicted
miRNA-target binding relationship and expression relation-
ship in HCC samples, negatively correlated miRNA-mRNA
and miRNA-IncRNA pairs were screened to construct the
ceRNA (IncRNA-miRNA-mRNA) regulatory network. In the
ceRNA network composed of the turquoise IncRNA/mRNA
module and turquoise miRNA module (Figure 3(a)), there
were 566 IncRNA-miRNA-mRNA regulatory pairs, including
30 upregulated IncRNAs, 16 downregulated miRNAs, and 75
upregulated mRNAs (Supplemental Table S4).

3.5. Functional Enrichment Analysis of the DEmRNAs in the
Turquoise Module. The number of DEmRNAs in the tur-
quoise module was 481. After module selection, we further
performed functional enrichment analysis on the selected
module. GO enrichment analysis showed that the 481
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DEmRNASs in the ceRNA network (Figure 3(b)) were mainly
enriched in neutrophil degranulation, mRNA splicing via the
spliceosome, cell division, the viral process, and the mitotic
cell cycle. KEGG pathway enrichment analysis showed that
the 481 DEmRNAs in the ceRNA network (Figure 3(c)) were
mainly correlated with metabolic pathways, the cell cycle, the

spliceosome, DNA replication, and pathogenic Escherichia
coli infection.

3.6. Construction of the PPI Network and Identification of 14
Prognosis-Related Hub Genes in the ceRNA Network. To fur-
ther explore the relationship between the regulatory proteins



Height

5000

£ 3000
1000

[

Height

Scale indepndence

Sample clustering to detect outliers

Journal of Immunology Research

Sample clustering to detect outliers

1
[

[
o

Mean connectivity

el ou

2

I 4 4
IS o %
L ! L

Scale-free topology model fit, signed R
(=1
o

0.04:

Mean connectivity

400 4

300 -

1)

=3

S
s

100

i

S
©78910 12 1 16 18 )

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3

Height

Module colors

5 10 15 20

Soft threshold (power)

(0

Cluster dendogram

5 10 15 20
Soft threshold (power)

)
(T
L

(b)

0.8 4

2

Scale-free topology model fit, signed R

Scale indepndence

TN AmA AN

et "

Mean connectivity

0.6

0.4 4

0.2 4

Module colors

T

FiGure 2: Continued.

e s 124
10
’ z
N
5]
3
]
. s
c 64
W g
e | =
- 49
"
5
2 4
‘o
1 0 7678910 12 15 16 18 2
5 10 15 20 5 10 15 20
Soft threshold (power) Soft threshold (power)
(d)
Cluster dendogram




Journal of Immunology Research

Module-trait relationships

16 0093 011 -0019 0066 -0023 017 0046 022 006

. 06 06 o 2
MEblack (1e25) (1e25) | (001 (01) (008) (08) (03) (07) (0006) (05) (4e-04) (0.03)

0056 0077 -0091 -0016 -

. 046 046 -012 15 02 021 03 0055
MEgreen (e15) (915 (006 (04) (02 (02 (08 (08) (0001 (604) (1e06) (04)

0026 0022 0042 -018 -00069 -027 -0

MEblue 043 08 015 o1 ou .
(e12) (1212) 002 ©03) 002 ©7) ©7) (05 (0009 (©3) (05 (©04)

0061 0085 0071 003 0026 014

. 056 054 o7 002 028 0031
MEbrown Ge20) Be20) (02) (03 02 (02 06 ©7) ©0) O (606 (0.06)

0045 0034 009 027 0012

051 054 -02 . 3 001 013
MEturquoise (1e20) (1e20) ©00) O.001) Ge-0d) (05) (0.6) (©7) (e05) (08 (0002 (0.04)

0043 0026 000076 012 0028 -017 0011

049 04 009 01 o1 ~
MEred Gel6) Ge18) 01) (O 009 03 ©7) (1) (005 ©7) 00D 09

y 0023 0025 004 012 012 0012 -0005% 0092 -0009% 004 0019 0062
MEyellow ©7 07 02 ©) 00 (09 ©9 ©) ©n ©3 ©08 03

00029 00029 013 0027 -0029 -0014 -004 -0075 006 011 -00l4 004

MEpink W M 6% ©07) 07 08 03 00 085 09 ©08 ©5)

0069 0034 -007 022 -0081 018

forey 046 046 013 02 -019 017
MEgrey (9e-15) (9e-15) (0035) (0.002) (0.002) (03) (06) (03) (5e04) (02) (0.005) (0.008)

g B

El

T_stage

Pathologic
Pathologic_N_stage

(g)

MEturquoise 067 067

Module-trait relationships

MEbrown 031 031 023 0074 008 -0019 0017 012 023 0074 012 011
(3e:08) (3e-08) (26:04) (02) (02) (08) (08) (005) (e-04) (03 (005) (007)

017 016 0059 0034 014
©007) (0007) (001) (04)  (06) (003)

0029 0092 014 011 013

) 02
MEyellow 06 O (00 008 ©0) Ge0d)

0073 0075 -0.09 0023
©3) 02 ©n 07

0007 0033 017 0082 019 01
©9) (06 (0006 (02) (0.002) (0.09)

(3e:31) (3e:34) 0.5

MEblue 047 047 0011 -008 -0056 -0057 -0.003% 012 0053 0063 012 -0I5
’ (els) Gels) (09 (02) 04 ©4 (1) ©00) ©4) 03 ©05) ©O02)
-0.5

MEgrey 01 01 0065 0097 01 0026 00032 00018 0013 015 014
i ©n on 03 ©) W 08 00 ©0)

0042
©35)

Normal

Pathol
Pathologic_T_stage

Inflammation,

()

FIGURE 2: Sample clustering to detect outliers. (a) Represents IncRNAs/mRNAs; (b) represents miRNAs. Determination of the soft
thresholding power in the (c) IncRNA/mRNA or (d) miRNA WGCNA. (c1, d1) Analysis of the scale-free fit index for various soft
thresholding powers (f3). (c2, d2) Analysis of the mean connectivity for various soft thresholding powers. Clustering dendrogram of (e)
IncRNAs/mRNAs or (f) miRNAs based on a dissimilarity topological overlap matrix (TOM). Gray represents genes that are not classified
into modules. Module trait relationships of (g) IncRNAs/mRNAs or (h) miRNAs were evaluated by correlations between module
eigengenes and clinical traits. Each row corresponds to a consensus module, and each column corresponds to a trait. Each cell contains
the corresponding correlation (first line) and p value (second line). The table is color coded (red: positively correlated; green: negatively
correlated) by correlation according to the color legend. p < 0.05 represents statistical significance.

of the ceRNA network, the PPI network was analyzed by the
STRING database and the protein regulatory network was
constructed by using Cytoscape software (Figure 4(a)).
Finally, we selected the top 15 hub genes and constructed
the regulatory network (Figure 4(b)). The ranking results of
the top 15 hub genes are shown in Supplemental Table S5.
Then, we visualized the relationship between the 15 hub
genes and IncRNAs and miRNAs in the ceRNA network
through a Sankey diagram. The results showed that the 15
hub genes were regulated by 16 prognosis-related IncRNAs
(AC016747.3, AC024560.3, AC092171.4, BACEI-AS,
CIDECP, CTD-2510F5.4, DSTNP2, LINC00294, PSMD5-
AS1, RP11-147L13.13, RP11-385F5.5, SNHG3, TPM3P9,
SNHGI1, STAG3L4, and NRAV) through competitive
binding with 10 miRNAs (hsa-let-7c-5p, hsa-miR-139-5p,
hsa-miR-148a-3p, hsa-miR-152-3p, hsa-miR-22-3p, hsa-
miR-27b-3p, hsa-miR-29a-3p, hsa-miR-29¢-3p, hsa-miR-
378a-3p, and hsa-miR-455-3p) (Figure 4(c)). Moreover,
four (hsa-miR-139-5p, hsa-miR-148a-3p, hsa-miR-22-3p,
and hsa-miR-29¢-3p) of the 10 miRNAs were associated
with good prognosis (Figure S2). To determine the
relationship between these 15 hub genes and the prognosis
of patients, Kaplan-Meier survival analysis and the log-rank
test were used to evaluate the overall survival of HCC
patients. The results showed that 14 (H2AFZ, HNRNPAI,
RAN, SNRPD1, H2AFX, NASP, PPIA, CSNKID, NAPI1L1,
DARS2, FARSB, SMARCC1, TPM3, and ZCCHC17) of the
15 DEmRNAs were considered to be important prognostic
factors (Figure 4(d)) and the high expression of these genes
was associated with poor prognosis in patients with HCC.

3.7. Screening of Prognosis-Related IncRNAs. Univariate Cox
proportional hazards regression analysis was used to screen
the prognosis-related IncRNAs in the ceRNA network. The
results showed that 19 (AC016747.3, AC024560.3,
AC092171.4, BACE1-AS, CIDECP, CTD-2510F54,
DSTNP2, LINC00294, NRAV, PDIA3P1, PPIAP22, PSMD5
—AS1, RP11-147L13.13, RP11-385F5.5, RP11-546D6.3,
SNHGI1, SNHG3, STAG3L4, and TPM3P9) of the 30
DEIncRNAs were considered to be important prognostic fac-
tors (Figure 5(a)). Then, based on the 19 prognosis-related
IncRNAs, we used lasso-penalized Cox regression and multi-
variate Cox regression analyses to select IncRNAs potentially
related to prognosis and weighted their contribution accord-
ing to the relative coefficient (Figures 5(b) and 5(c)). Finally,
two optimal risk IncRNAs (CTD-2510F5.4 and DSTNP2)
were selected and incorporated into the prognostic risk
model. Furthermore, we further verified that the expression
of CTD-2510F5.4 and DSTNP2 in liver cancer tissues was
higher than that in normal liver tissues by qRT-RCR
(Figures 5(d) and 5(e)).

3.8. Construction and Verification of the Prognostic Risk
Model. To explore the significance of risk genes in predicting
the prognosis of HCC patients, the risk score of each patient
was calculated by the estimated regression coefficient and
expression level of the risk IncRNAs. The calculation for-
mula is as follows: trainingcohortrisk score = (0.1895 x
expression of CTD — 2510F5.4) + (0.1516 x expression of

DSTNP2). According to the median risk score, patients in
the training cohort were divided into a high-risk group
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and a low-risk group. We created a Kaplan-Meier curve
based on the log-rank test, which showed that the prognosis
of the high-risk group was worse than that of the low-risk
group (p <0.05) (Figure 6(a)). Then, we ranked the risk
scores of the patients in the training cohort and generated
a distribution map according to the survival status of each
patient. A heat map was used to describe the expression of
risk genes in the two prognosis groups (Figure 6(b)). Finally,
we used a time-dependent ROC curve to test the accuracy of
the model in predicting 1-, 3-, and 5-year overall survival.
The area under curve (AUC) values of the prediction model
were 0.854 at 1 year, 0.756 at 3 years, and 0.756 at 5 years
(Figure 6(c)). To verify the accuracy of the prognostic risk
model, we used it to analyze the test cohort and the whole
TCGA cohort. Kaplan-Meier survival curve analysis in the
test cohort (Figure 6(d)) and the whole TCGA cohort
(Figure 6(g)) showed that the prognosis of the high-risk
group was worse than that of the low-risk group (p < 0.05).
The distribution of risk scores, survival status, and risk gene
expression in the test cohort and the whole TCGA cohort
are shown in Figures 6(e) and 6(h) and were similar to the
results of the training cohort. The ROC analysis results
showed that the AUCs at 1 year, 3 years, and 5 years in
the test cohort were 0.736, 0.668, and 0.73 and the AUCs
at 1 year, 3 years, and 5 years in the whole TCGA cohort
were 0.798, 0.723, and 0.751, respectively (Figures 6(f) and

6(i)). These results indicate that our prognostic risk model
can accurately predict the prognosis of patients with HCC.

3.9. Analysis of Independent Prognostic Factors. Univariate
Cox regression analysis showed that vascular tumor invasion,
TNM stage, and risk score were related to the prognosis of
patients with HCC (Figure 7(a)). To further confirm inde-
pendent prognostic factors, we performed multivariate Cox
regression analysis (Figure 7(b)). The results also showed
that vascular tumor invasion, TNM stage, and risk score were
significantly related to prognosis and might be considered
independent prognostic factors.

3.10. Establishment and Evaluation of a Nomogram Model for
Predicting the Survival Rate of HCC Patients. The three inde-
pendent prognostic factors (vascular tumor invasion, TNM
stage, and risk score) obtained above were further used to
build a nomogram for predicting the 1-, 3- and 5-year sur-
vival rates of HCC patients (Figure 7(c)). From this nomo-
gram, the 1-, 3-, and 5-year survival rates can be predicted
according to vascular tumor invasion, TNM stage, and risk
score. The calibration curve of the nomogram model showed
that the predicted 1-, 3-, and 5-year overall survival rates
were in good agreement with the actual survival rates, indi-
cating that the nomogram model had good prediction ability
(Figures 7(d)-7(f)). Moreover, we further evaluated the
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correlation between risk score and TNM and found that the
higher the TNM staging, the higher the risk score (Figure S3).

3.11. Correlation between Risk Score and Immune Cell
Infiltration, Gene Set Enrichment Analysis (GSEA), and 27
Immune Checkpoint Members. To explore whether our
model can reflect the state of the tumor immune microenvi-
ronment, we analyzed the correlation between the risk score
and immune cell infiltration in the whole TCGA cohort. The
results showed that as the risk score increased, the content of
immune cells (B cells, CD8+ T cells, dendritic cells, macro-
phages, and neutrophils) in HCC tissues also increased
(p <0.05) (Figures 8(a)-8(f)). Next, we explored the poten-
tial mechanism of the impact of the risk score on the progno-
sis of HCC patients through GSEA. The results show that the
high-risk group is mainly enriched in complement and coag-
ulation cascades, drug metabolism cytochrome P450, pri-
mary bile acid biosynthesis, fatty acid metabolism, and the
PPAR signaling pathway; and the low-risk group is mainly
enriched in DNA replication, base excision repair, the cell
cycle, RNA degradation, and the P53 signaling pathway
(Figure 8(g)). Finally, we evaluated the correlation between
the risk score and 27 immune checkpoint members, includ-
ing the B7-CD28 family (PD-L1, PD-L2, PD-1, CTLA4,
CD276, HHLA2, ICOS, ICOSLG, TMIGD2, and VTCNI1)
[24], the TNF superfamily (BTLA, CD27, CD40, CD40LG,
CD70, TNFRSF18, TNFRSF4, TNFRSF9, and TNFSF14)
[25], and several other molecules (ENTPDI1, FGLI,
HAVCR2, IDO1, LAG3, NCR3, NT5E, and SIGLEC15) [26,
27]. The results showed that the risk score was positively cor-
related with the expression of PDCD1LG2 (PD-L2), CD274
(PD-L1), PDCD1 (PD-1), CTLA4, CD70, HAVCR2,
CD276, LAG3, ICOS, ENTPDI1, IDOI1, HHLA2, CD27,
TNFRSF9, TNFRSF18, and negatively correlated with the
expression of FGL1 (Figure S4 and Supplemental Table S6).

4. Discussion

As the most common pathological type of liver cancer, the
early symptoms of HCC are not obvious. Most patients are
not diagnosed until they are in advanced stages; their prog-
nosis is poor, and the treatment process can be a very painful
experience. Therefore, it is very important to identify effec-
tive prognostic biomarkers and explore potential regulatory
networks. The ceRNA hypothesis has been considered to be
a new method of gene regulation through the competitive
binding of miRNAs in HCC [28].

To further explore the regulatory network of prognosis-
related molecules of HCC, we first used the TCGA database
to identify the DEIncRNAs, DEmiRNAs, and DEmRNAs in
HCC and normal liver tissues. Then, GO and KEGG pathway
enrichment analyses were carried out to further explore the
main biological processes and regulatory pathways involved
in these DEmRNAs. Next, we used WGCNA to identify the
modules and selected the turquoise IncRNA/mRNA module
and turquoise miRNA module, which were most closely
related to the occurrence of HCC and the survival time of
patients with HCC. Finally, based on the miRNA prediction
website and the DEIncRNAs, DEmiRNAs, and DEmRNAs
in the above two modules, negatively correlated miRNA-
IncRNA and miRNA-mRNA relationship pairs were con-
structed and a ceRNA network was generated by Cytoscape
software. GO enrichment analysis revealed that the DEmR-
NAs in the ceRNA network were mainly related to mRNA
splicing via the spliceosome, cell division, the viral process,
and the mitotic cell cycle, and KEGG enrichment analysis
showed that the DEmRNAs were mainly related to metabolic
pathways, the cell cycle, the spliceosome, and DNA replica-
tion. Abnormal regulation of cell division and the mitotic cell
cycle are key to the occurrence of cancer [29]. Moreover,
many studies have shown that metabolic pathways play an
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FIGURE 7: (a) Univariate Cox regression analysis and (b) multivariate Cox regression analysis for clinical factors. (c) Nomogram model
consisting of the Vascular_tumor_invasion, TNM_stage and risk score factors for 1-, 3-, and 5-year OS prediction. (d-f) Calibration
curves for the nomogram model of predicting 1-, 3-, and 5-year OS probabilities and the actual 1-, 3-, and 5-year OS probabilities.

important role in HCC [30, 31]. In this ceRNA network, we
found that 30 IncRNAs may regulate the expression of 75
mRNAs by competitively binding 16 miRNAs. Then, the
interaction among proteins was presented through the PPI
network. Finally, the survival analysis of these 15 hub
mRNAs showed that the high expression of 14 hub mRNAs
(H2AFZ, HNRNPA1, RAN, SNRPD1, H2AFX, NASP, PPIA,
CSNK1D, NAP1L1, DARS2, FARSB, SMARCCI, TPM3, and
ZCCHC17) was related to the poor prognosis of patients with
HCC. Before this, Bai et al. [32] found that PPIA may be a
potential marker of gastric cancer, while Sun et al. [33] con-
firmed that the increased expression of DSNI1 is related to
the poor survival of patients with HCC. However, their
mechanism of action has not been elucidated. Our study
found that the regulatory axis of IncRNA SNHG3/mir-139-
5p/DSN1 and IncRNA SNHG3/let-7¢-5p/DSN1 may provide
direction for the study of their mechanism of action. More-
over, some studies have shown that miRNA-2 promoted car-
cinogenic activity by upregulating the expression of RAN in
HCC cells [34]; the high expression of HNRNPA1 promoted
the invasion of gastric cancer cells [35]; IncRNA CDKN2B-

AS1 promoted the growth of HCC by regulating the let-7c-
5p/NAPI1L1 axis [36]. Therefore, these results may also be
the reason why the high expression of these hub genes is
associated with poor prognosis in patients with HCC. Uni-
variable Cox regression analysis of the DEIncRNAs in the
ceRNA network revealed that 19 IncRNAs (AC016747.3,
AC024560.3, AC092171.4, BACE1-AS, CIDECP, CTD
—2510F5.4, DSTNP2, LINC00294, NRAV, PDIA3P1, PPIA
P22, PSMD5-AS1, RP11-147113.13, RP11-385F5.5, RP11
-546D6.3, SNHG1, SNHG3, STAG3L4, and TPM3P9) are
related to the prognosis of patients with HCC. In recent
years, the role of IncRNAs in a variety of cancers has been
widely reported. Many experimental studies have shown that
IncRNAs play an important role in many biological pro-
cesses, such as cell cycle regulation, DNA damage, signal
transduction, and epigenetic regulation [37]. Moreover,
IncRNAs play a role through the competitive binding of miR-
NAs to regulate their target mRNAs [38]. For example,
IncRNA SNHG3 can promote the progression of breast can-
cer [39], gastric cancer [40], lung cancer [41], laryngeal carci-
noma [42], renal cell carcinoma [43], and liver cancer [44].
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TCGA dataset.

Zhang et al. [45] found that IncRNA SNHG3 induced EMT
in HCC cells via miR128/CD151 cascade activation and that
high expression of SNHG3 was associated with poor survival
outcomes in HCC patients. Our research results also pre-
dicted that the high expression of IncRNA SNHG3 can be
used as a biomarker of poor prognosis in patients with
HCC and that SNHG3 may competitively bind multiple
miRNAs to affect mRNA expression. Wang and Qin [46]

found that IncRNA CTD-2510F5.4 may be involved in the
pathogenesis of gastric cancer and has potential as a bio-
marker for the diagnosis and prognosis of gastric cancer.
Similarly, we also found that the high expression of CTD-
2510F5.4 was related to the poor prognosis of patients with
HCC and has the potential to be a biomarker of HCC.

To identify the impact of these IncRNAs on survival
prognosis, we constructed a risk prediction model. First,



18

based on 19 prognosis-related IncRNAs, we used lasso-
penalized Cox regression and multivariate Cox regression
analyses to select two optimal risk IncRNAs (CTD
—2510F5.4 and DSTNP2) and included them in the prognos-
tic risk model. Then, the risk score of each patient was calcu-
lated by the estimated regression coefficient and expression
level of the risk IncRNAs. According to the median risk score,
the patients were divided into a high-risk group and a low-
risk group. Kaplan-Meier curve analysis showed that the
prognosis of the high-risk group was worse than that of the
low-risk group. Miao et al. [47] also used IncRNAs to estab-
lish a risk model to predict the prognosis of elderly patients
with non-small cell lung cancer. However, compared with
their study, we used WGCNA to screen out the prognosis-
related module and lasso-penalized Cox regression to further
screen the optimal risk genes, which makes our risk model
more reliable. Moreover, our model can reflect the state of
the tumor immune microenvironment. With the increase in
the risk score, the immune cells (B cells, CD8+ T cells, den-
dritic cells, macrophages, and neutrophils) in HCC tissue
also increased. Finally, to better predict the prognosis of
HCC patients at 1 year, 3 years, and 5 years after surgery,
we constructed a nomogram based on the independent prog-
nostic factors and the calibration curve showed that the
nomogram model had good prediction ability. Of course,
our research also has some shortcomings. First, we used data
from a public database and the results still need to be further
validated by prospective clinical trials. In addition, the mech-
anism of the prognosis-related DEGs affecting HCC progres-
sion needs further in vivo and in vitro experimental study.

5. Conclusions

In summary, we screened prognosis-related modules and
constructed a ceRNA network through WGCNA. Then, we
screened out 19 highly expressed DEIncRNAs associated
with poor prognosis in patients with HCC. Finally, a new risk
scoring system was established by selecting the optimal risk
IncRNAs from the 19 prognosis-related IncRNAs through
lasso-penalized Cox regression analysis. In addition, we
established a nomogram model consisting of independent
prognostic factors to predict the survival rate of HCC
patients. In conclusion, the results may provide potential bio-
markers or therapeutic targets for HCC and the establish-
ment of a new risk scoring system and nomogram model
provides the new perspective for predicting the prognosis of
HCC.
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