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In this study, a comprehensive analysis of TNF family members in colorectal cancer (CRC) was conducted and a TNF family-based
signature (TFS) was generated to predict prognosis and immunotherapy response. Using the expression data of 516 CRC patients
from The Cancer Genome Atlas (TCGA) database, TNF family members were screened to construct a TFS by using the univariate
Cox proportional hazards regression and the least absolute shrinkage and selection operator- (LASSO-) Cox proportional hazards
regression method. The TFS was then validated in a meta-Gene Expression Omnibus (GEO) cohort (n = 1162) from the GEO
database. Additionally, the tumor immune characteristics and predicted responses to immune checkpoint blockade in TFS-
based risk subgroups were analyzed. Eight genes (TNFRSF11A, TNFRSF10C, TNFRSF10B, TNFSF11, TNFRSF25, TNFRSF19,
LTBR, and NGFR) were used to construct the TFS. Compared to the high-risk patients, the low-risk patients had better overall
survival, which was verified by the GEO data. In addition, a high TFS risk score was associated with high infiltration of
regulatory T cells (Tregs), nonactivated macrophages (M0), natural killer cells, immune escape phenotypes, poor
immunotherapy response, and tumorigenic and metastasis-related pathways. Conversely, a low TFS risk score was related to
high infiltration of resting CD4 memory T cells and resting dendritic cells, few immune escape phenotypes, and high sensitivity
to immunotherapy. Thus, the eight gene-based TFS is a promising index to predict the prognosis, immune characteristics, and
immunotherapy response in CRC, and our results also provide new understanding of the role of the TNF family members in the
prognosis and treatment of CRC.

1. Introduction

Colorectal cancer (CRC) is the fourth leading cause of
cancer-related mortality worldwide, with a high incidence
rate [1]. Although great improvements have been made in
the diagnosis and treatment of CRC, the prognosis of CRC
patients remains disappointing. Radical resection is the gold
standard treatment for CRC patients. However, the recur-
rence rate of CRC within 2 years after undergoing radical

resection has been reported to be high (nearly 50%), and half
of the relapses were fatal [2]. Immunotherapy, especially
inhibitors targeting immune checkpoints, including cyto-
toxic T-lymphocyte antigen-4 (CTLA4), programmed cell
death protein 1 (PD-1), and programmed cell death 1 ligand
1 (PD-L1), has provided promising new approaches to
improve the overall survival (OS) of patients with CRC [3–
6]. In particular, recent studies have demonstrated that pem-
brolizumab (an anti-PD-1 monoclonal antibody) had
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improved efficacy and long-term clinical benefit for the sub-
group of patients with microsatellite instability-high (MSI-
H)/DNA mismatch repair-deficient (dMMR) CRC [7, 8].
However, as these immune checkpoint inhibitors have only
exhibited clinical success in a small proportion of CRC
patients [9], finding other immune checkpoint targets has
important clinical implications.

Recently, increasing evidence has indicated that therapies
related to costimulation of T cell responses by tumor necrosis
factor (TNF) family members may represent another thera-
peutic approach, in addition to blocking the abovementioned
immune checkpoints [10]. The TNF and TNF receptor
(TNFR) superfamilies (TNFSF/TNFRSF) are composed of
19 ligands and 29 receptors. The communication pathways
mediated by TNFSF/TNFRSF members orchestrate inflam-
mation and control cell survival, proliferation, and differentia-
tion [11]. TNFSF/TNFRSF members exhibit proinflammatory
properties by activating the nuclear factor- (NF-) κB pathway,
a central pathway in the processes to combat both pathogens
and cancers [12]. Inflammation also enhances tumor prolifer-
ation, metastasis, and angiogenesis in many types of cancer
[13]. Anti-TNF therapy has been reported to be associated
with a decreased risk of CRC in inflammatory bowel disease
[14]. Therefore, investigation of the control of
TNFSF/TNFRSF activities may provide new insights into
treating cancer. In fact, therapeutic approaches that target
TNFSF/TNFRSF members (including GITR, CD30, CD40,
and OX40) are currently being studied in preclinical or clinical
trials for the treatment of various cancers, including CRC [15–
19]. However, the expression profiles and clinical significance
of these members in CRC remain unclear.

In this study, the expression profiles and clinical signifi-
cance of TNF family members in 516 CRC cases from The
Cancer Genome Atlas (TCGA) database were explored. An
eight-gene prognostic signature based on the TNF family
members, designated the TNF family-based prognostic sig-
nature (TFS), was constructed using the univariate Cox pro-
portional hazards regression and the least absolute shrinkage
and selection operator- (LASSO-) Cox proportional hazards
regression method. It was validated using Gene Expression
Omnibus (GEO) datasets. Additionally, the proportions of
tumor-infiltrating immune cells and immunotherapy
responses were compared between the TFS-based high- and
low-risk groups.

2. Materials and Methods

2.1. Datasets. We collected gene expression, clinical, overall
survival (OS) rate, and somatic mutation data on 516 CRC
patients from the TCGA database (https://portal.gdc.cancer
.gov/repository), which was used as the training set. The val-
idation sets were four large GEO datasets (http://www.ncbi
.nlm.nih.gov/geo) containing gene expression, clinical, and
OS data from CRC patients, comprising 177 cases
(GSE17536), 55 cases (GSE17537), 579 cases (GSE39582),
and 351 cases (GSE87211).

2.2. TFS Construction and Validation. The univariate Cox
regression analysis was used to identify the TNF family genes

that have predictive ability in CRC. Genes with P < 0:1 were
then subjected to a LASSO-Cox regression analysis to iden-
tify the most valuable prognostic genes. Finally, a TFS was
established in the 516 patients with CRC in the TCGA
cohort. Each CRC patient’s TFS risk score was calculated
based on the coefficients from the LASSO regression analysis
and their corresponding gene expression data. The optimal
cutoff for dividing the CRC patients into low- and high-risk
groups was determined using the “survival” package in R.
Finally, the Kaplan–Meier survival curve analysis with the
log-rank test was conducted to evaluate the prognostic value
of the TFS.

To comprehensively evaluate the prognostic value of the
TFS in an external cohort, we evaluated the prognostic value
in a meta-GEO cohort (based on integrating all four GEO
datasets), which involved 1162 CRC cases with survival data,
and in the four GEO datasets individually.

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Enrichment Analyses. The
differentially expressed genes (DEGs) between the high-
and low-risk patients were identified based on the following
criteria: absolute value of log2 ðfold change ðFCÞÞ ≥ 1 and
false discovery rate ðFDRÞ < 0:05. The main GO terms (bio-
logical processes, molecular functions, and cell components)
and KEGG pathways associated with the DEGs were evalu-
ated using GO and KEGG pathway enrichment analyses.
The analyses were performed using the “clusterProfiler”
package in R software.

2.4. Immune Cell Infiltration and the Tumor
Microenvironment (TME) in the TFS-Based Risk Subgroups.
Estimation of Stromal and Immune cells in Malignant
Tumors using Expression data (ESTIMATE) was used to
compute the tumor purity, stromal score, immune score,
and ESTIMATE score for the CRC cases. CIBERSORT anal-
ysis (involving the LM22 immune cell gene signature file) was
used to assess the proportions of 22 tumor-infiltrating
immune cell types in patients with CRC in the TCGA cohort.
CIBERSORT is a novel tool that quantifies the abundance of
22 immune cells in a complex tissue according to gene
expression profiles [20].

2.5. Tumor Immune Dysfunction and Exclusion (TIDE)
Analysis. The TIDE algorithm was used to predict clinical
responses to immune checkpoint blockade (ICB). Patients
with low TIDE prediction scores tend to have a good
response to immunotherapy, while patients with a high TIDE
prediction score are predicted to be nonresponders [21].

2.6. TFS-Based Nomogram for Predicting OS. Traditional
clinically important factors and the TFS were subjected to
univariate regression analysis to select the factors with signif-
icant prognostic value. The significant factors were then used
in a multivariate regression analysis. Finally, a nomogram
was constructed based on the independent prognostic factors
in the multivariate analysis. Calibration curves were used to
evaluate whether the nomogram-predicted survival was con-
sistent with the actual survival.
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2.7. Statistical Analysis. The Kaplan–Meier method was used
to assess the OS in the high- and low-risk groups, with a log-
rank test being used to assess the significance of the difference
in OS between the two groups. Independent prognostic fac-
tors were determined by the Cox proportional hazards
regression. P < 0:05 indicated significance in all statistical
analyses.

3. Results

3.1. Identification of the Prognostic TNF Family Genes in
CRC. The 47 well-defined TNF family genes were evaluated,
comprising 18 TNFSF members and 29 TNFRSF members.
First, a univariate Cox proportional hazards regression anal-
ysis was performed on the TNF family gene expression data
in the 516 CRC cases in the TCGA cohort. The clinical char-
acteristics of these CRC patients are listed in Table 1. Nine
genes were identified as being significantly associated with
OS (P < 0:1) (Table 2). Among these nine genes, four
(TNFRSF25, TNFRSF19, LTBR, and NGFR) with a hazard
ratio > 1 were identified as risk factors, while the other five
(TNFRSF11A, TNFRSF10C, TNFRSF10B, TNFSF11, and
FAS) with a hazard ratio < 1 were identified as protective
factors.

3.2. Establishing a TFS Using the CRC Patients in the TCGA
Cohort. To build the optimum TFS (risk model), the nine
genes were subjected to a LASSO-Cox regression analysis
(Figure 1), which led to the establishment of the following
formula involving eight TNF family members: TFS risk score
= ð−0:1344 × TNFRSF10B expressionÞ + ð0:2647 × LTBR
expressionÞ + ð−0:1953 × TNFRSF10C expressionÞ + ð0:1843
× TNFSF11 expressionÞ + ð0:1764 × TNFRSF19 expressionÞ
+ ð0:0916 × NGFR expressionÞ + ð−0:1395 × TNFRSF11A
expressionÞ + ð0:1387 × TNFRSF25 expressionÞ (Figure 1).
Thereafter, the TFS risk score of each patient was calculated
based on the above formula. The optimal cutoff (1.72) was

computed and subsequently used to divide the patients into
high-risk (n = 246) and low-risk (n = 270) subgroups. The
gene expression profiles, TFS risk scores, and survival status
of the CRC patients in the TCGA cohort are displayed in
Figure 2(a).

The Kaplan–Meier survival analyses showed that the OS
was lower in the high-risk group (Figure 2(b) P < 0:00001)
than in the low-risk group. Next, the time-dependent area
under the receiver operating characteristic (AUC-ROC)
curve values were calculated to evaluate the ability of the
TFS to predict 1-, 3-, and 5-year OS in the TCGA cohort.
These values were 0.704, 0.703, and 0.665, respectively
(Figure 2(c)). As the treatment strategies and prognosis are
remarkably different between early-stage (stages I and II)
and advanced-stage (stages III and IV) CRC, the TFS was
further applied to these different clinical stages. The
advanced-stage patients had worse OS in the high-risk group
than in the low-risk group (Figure 2(e)) (log-rank test,
P < 0:0001).

3.3. Verification of the TFS in Four Independent Cohorts and
the Meta-GEO Cohort. To evaluate the prognostic robustness
of the eight-gene TFS, its performance in the four indepen-
dent GEO datasets (GSE17536, GSE39582, GSE17537, and
GSE87211) and the meta-GEO cohort was further assessed
using the same risk formula. Based on the optimal TFS risk
score cutoff, patients in the validation cohorts were divided
into high- and low-risk groups. The mRNA expression of
the eight genes in the TFS, survival status, and TFS risk score
in the meta-GEO cohort are presented in Figure 3(a). As
expected, the Kaplan–Meier results showed that the high-
risk patients had worse OS compared to the low-risk group,
in the GSE17536 dataset (cutoff = −0:43; log-rank test,
P = 0:0121) (Figure 3(c)), in the GSE39582 dataset
(cutoff = −0:2; log-rank test, P = 0:2372) (Figure 3(d)), in
the GSE17537 dataset (cutoff = 0; log-rank test, P = 0:0169)
(Figure 3(e)), and in the GSE87211 dataset (cutoff = −0:02;

Table 1: Clinical characteristics of the patients from multiple institutions.

Characteristics TCGA-CRC (n = 516) GSE17536 (n = 177) GSE17537 (n = 55) GSE39582 (n = 585) GSE87211 (n = 363)
Age
(years) (mean)

31-90 (66.18) 26-92 (65.48) 23-94 (62.31) 22-97 (66.95) 35.7-81.5 (62.90)

Gender

Male 235 81 29 263 115

Female 281 96 26 322 248

Stage

I + II 291 81 19 309 NA

III + IV 225 96 36 270 NA

NA 2 NA

0 4

OS state

Alive 411 104 35 385 304

Dead 105 73 20 194 49

NA 6 10

OS time (months) (mean) 0.03-150.07 (28.15) 0.92-142.55 (48.12) 0.43-111.48 (45.23) 0-201 (57.83) 0-152.48 (54.75)
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Table 2: The univariate Cox analysis of TNF family genes in the TCGA cohort.

Gene symbol HR Aliases Family HR.95L HR.95H P value

CD27 0.9709 TNFRSF7 TNFRSF 0.8151 1.1565 0.7406

CD40 1.0949 TNFRSF5 TNFRSF 0.9181 1.3056 0.3130

CD40LG 1.0877 TNFSF5, CD154 TNFSF 0.7844 1.5083 0.6142

CD70 1.0377 TNFSF7, CD27L TNFSF 0.8573 1.2560 0.7044

EDA 0.9661 EDA-A1, EDA-A2 TNFSF 0.7994 1.1675 0.7208

EDA2R 0.9405 TNFRSF27, XEDAR TNFRSF 0.7224 1.2243 0.6484

EDAR 1.0668 EDA-A1R TNFRSF 0.9437 1.2060 0.3010

FAS 0.8419 TNFRSF6, CD95 TNFRSF 0.6874 1.0311 0.0962

FASLG 0.9453 TNFSF6, CD95-L TNFSF 0.6999 1.2766 0.7135

LTA 0.9417 TNFSF1 TNFSF 0.6381 1.3896 0.7621

LTB 1.0080 TNFSF3 TNFSF 0.8389 1.2112 0.9322

LTBR 1.4905 TNFRSF3 TNFRSF 0.9610 2.3117 0.0747

NGFR 1.1845 TNFRSF16, CD271 TNFRSF 0.9744 1.4399 0.0891

RELT 1.0834 TNFRSF19L TNFRSF 0.7789 1.5068 0.6343

TNF 0.8812 TNFSF2, TNFA TNFSF 0.6434 1.2069 0.4305

TNFRSF10A 0.8024 TRAILR1, CD261 TNFRSF 0.6140 1.0488 0.1071

TNFRSF10B 0.7799 TRAILR2, CD262 TNFRSF 0.5935 1.0248 0.0744

TNFRSF10C 0.7389 TRAILR3, CD263 TNFRSF 0.5563 0.9814 0.0367

TNFRSF10D 0.9766 TRAILR4, CD264 TNFRSF 0.7621 1.2514 0.8515

TNFRSF11A 0.7898 RANK, CD265 TNFRSF 0.6530 0.9554 0.0151

TNFRSF11B 0.9560 OPG TNFRSF 0.8222 1.1115 0.5582

TNFRSF12A 1.0208 FN14, TWEAKR, CD266 TNFRSF 0.8196 1.2715 0.8542

TNFRSF13B 0.9264 TACI, TNFRSF14B, CD267 TNFRSF 0.5875 1.4606 0.7420

TNFRSF13C 1.1481 BAFFR, CD268 TNFRSF 0.8683 1.5180 0.3326

TNFRSF14 1.3445 LIGHTR, HVEM, CD270 TNFRSF 0.9390 1.9252 0.1061

TNFRSF17 0.8806 BCMA, TNFRSF13A, CD269 TNFRSF 0.7463 1.0390 0.1318

TNFRSF18 1.0049 GITR, AITR, CD357 TNFRSF 0.8154 1.2386 0.9631

TNFRSF19 1.1917 TROY, TAJ TNFRSF 1.0162 1.3976 0.0309

TNFRSF1A 1.1784 TNFR1, CD120A TNFRSF 0.7865 1.7654 0.4262

TNFRSF1B 0.8724 TNFR2, CD120B TNFRSF 0.6804 1.1186 0.2819

TNFRSF21 1.1121 DR6, CD358 TNFRSF 0.7778 1.5902 0.5602

TNFRSF25 1.3221 DR3, TNFRSF12 TNFRSF 1.0482 1.6675 0.0184

TNFRSF4 1.0445 OX40, CD134 TNFRSF 0.8318 1.3116 0.7078

TNFRSF6B NA DCR3 TNFRSF NA NA NA

TNFRSF8 0.9705 CD30 TNFRSF 0.6332 1.4876 0.8908

TNFRSF9 0.8403 4-1BB, CD137, ILA TNFRSF 0.6078 1.1616 0.2922

TNFSF10 0.9383 TRAIL, CD253 TNFSF 0.7388 1.1917 0.6018

TNFSF11 0.8209 RANKL, CD254 TNFSF 0.6601 1.0207 0.0758

TNFSF12 1.1672 TWEAK TNFSF 0.9247 1.4732 0.1931

TNFSF13 1.0137 APRIL, CD256 TNFSF 0.8102 1.2683 0.9054

TNFSF13B 1.0583 BAFF, CD257 TNFSF 0.8784 1.2750 0.5510

TNFSF14 0.8514 LIGHT, HVEML, CD258 TNFSF 0.5787 1.2526 0.4141

TNFSF15 0.9451 TL1A TNFSF 0.7111 1.2563 0.6976

TNFSF18 0.8249 GITRL TNFSF 0.5191 1.3108 0.4152

TNFSF4 0.9764 OX40L, CD134L, CD252 TNFSF 0.7877 1.2104 0.8278

TNFSF8 1.1121 CD30L, CD153 TNFSF 0.7984 1.5490 0.5299

TNFSF9 0.9408 4-1BB-L, CD137L TNFSF 0.8274 1.0698 0.3521
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log-rank test, P = 0:3026) (Figure 3(f)). As P > 0:05 for two of
the above four independent datasets, the prognostic value of
the TFS was further evaluated in the meta-GEO CRC cohort.
The results revealed that the TFS had high predictive ability
for patients with CRC (cutoff = −0:2; log-rank test,
P < 0:001) (Figure 3(b)).

3.4. Assessment of Immune Cell Infiltration and the TME in
the High- and Low-Risk Groups. To assess the immune cell
infiltration associated with the two TFS risk subgroups,
CIBERSORT with LM22 was used for each CRC case in the
TCGA cohort to evaluate the proportions of 22 immune cells
(Figure 4(a)). There was high infiltration of resting CD4
memory T cells and resting dendritic cells in the low-risk
group, while there was high infiltration of regulatory T cells
(Tregs), nonactivated macrophages (M0), activated natural
killer (NK) cells, and neutrophils in the high-risk group
(P < 0:001) (Figure 4(b)). Additionally, the ESTIMATE algo-
rithm was employed to evaluate the differences in ESTI-
MATE score, stromal score, immune score, and tumor
purity in patients with CRC between the low- and high-
risk groups. We found that the TFS was negatively associ-
ated with the ESTIMATE score and immune score, while
the TFS was positively associated with stromal score and
tumor purity. However, only the negative association
between TFS and immune score was significant (P < 0:05)
(Figures 4(c)–4(f)).

3.5. Associations between the TFS and Immunotherapy
Response. As the TFS successfully predicted the OS rate of
CRC patients, we further investigated its predictive ability
regarding immunotherapy responses.

First, a correlation analysis between the TFS and immune
checkpoint proteins, including CTLA4, PD-1, PD-L1, lym-

phocyte activation gene-3 (LAG-3), T cell immunoglobulin
and immunoreceptor tyrosine-based inhibition motif
domain (TIGIT), and T cell immunoglobulin-3 (TIM-3), in
the 516 CRC patients in the TCGA dataset was performed.
There were negative associations between the TFS and these
immune checkpoint proteins (P < 0:01), except for LAG-3,
which was not associated with the TFS (P > 0:05)
(Figures 5(c) and 5(d)).

Thereafter, the TIDE algorithm was applied to predict
responses to ICB. Interestingly, there were significantly
higher values in the high-risk group regarding the TIDE
Score, T cell dysfunction (Dysfunction), T cell exclusion
(Exclusion), and myeloid-derived suppressor cells (MDSC).
In contrast, there were significantly lower values in the
high-risk group regarding interferon-gamma (IFNG), MSI
score, Merck18, CD274, and tumor-associated macrophage
M2 (Mann–Whitney U test P < 0:001) (Figures 5(a) and
5(b)). Finally, we analyzed the difference in the tumor muta-
tion burden (TMB) between high- and low-risk patients, and
no significant difference was found (Figure 5(e)).

3.6. Functional Enrichment Analyses of the DEGs between the
High- and Low-Risk Groups. Based on the criteria of absolute
value of log 2ðfold change ðFCÞÞ ≥ 1 and FDR < 0:05, 127
DEGs were identified between the high- and low-risk groups.
Among them, 74 genes were upregulated (log 2FC > 1) and
53 genes were downregulated (log 2FC < 1) in the high-risk
group. Subsequently, the 127 DEGs were subjected to GO
and KEGG analyses to further understand the biological
functions and signaling pathways related to these genes.
The GO analysis indicated that the DEGs were mainly
enriched in the following GO biological processes: digestive
system development, O-glycan processing, hormone meta-
bolic process, and regulation of leukocyte chemotaxis. The
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Figure 1: Tenfold cross-validation for tuning parameter selection. (a) LASSO coefficient profiles of the nine prognostic genes (originally
identified in the univariate Cox regression analyses). (b) Plots of the cross-validation error rates.
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GO molecular functions of the DEGs included lipid trans-
porter activity, serine-type endopeptidase activity, receptor
ligand activity, positive regulation of granulocyte chemotaxis,
and growth factor activity. The main enriched GO cell com-
ponent was the anchored component of membrane
(Figure 6(b)). KEGG pathway analysis indicated that the
DEGs were highly associated with the peroxisome

proliferator-activated receptor (PPAR), phosphoinositide 3-
kinase (PI3K-) Akt, interleukin- (IL-) 17, and Wnt signaling
pathways and extracellular matrix- (ECM-) receptor interac-
tion, which have been confirmed to be involved in cancer ini-
tiation and progression (Figure 6(c)) [22–26]. These
biological functions and pathways may contribute to the
roles of DEGs in the development of CRC.
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Figure 2: Establishment of the TNF family-based signature (TFS). (a) Heatmap of the mRNA expression of the eight genes in the TFS,
survival status, and TFS risk scores in the high- and low-risk groups. (b) The Kaplan–Meier curves of the OS of CRC patients in the high-
and low-risk groups. (c) Validation of the prognostic value of the eight-gene TFS at 1, 3, and 5 years via time-dependent ROC curve
analysis in the TCGA cohort. The Kaplan–Meier survival analyses of the patients in the high- and low-risk groups with (d) early-stage
CRC (stages I and II) (n = 291) and (e) advanced-stage CRC (stages III and IV) (n = 225).
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3.7. TFS-Based Nomogram. To evaluate whether the TFS can
independently predict CRC prognosis, traditional clinically
important factors and the eight-gene TFS were subjected to
the univariate and multivariate Cox regression analyses.
Age, tumor, node, metastasis (TNM) stage, and the TFS were
significantly associated with worse OS based on the univari-
ate Cox regression (Figure 7(a)). The subsequent multivariate
Cox regression revealed that both the TNM stage and the
TFS were independent prognostic factors in CRC patients
in the TCGA cohort (Figure 7(b)). To provide a quantitative
tool to predict the prognosis of CRC patients in clinical prac-
tice, a nomogram that integrated the eight-gene TFS and
TNM stage was constructed (Figure 7(c)). Additionally, the
calibration curves for the nomogram showed that it had
favorable efficacy for predicting the 1-, 3-, and 5-year OS of
patients (Figures 7(d)–7(f)).

4. Discussion

As far as we know, this is the first time that a TFS has been
constructed to predict prognostic and immunotherapy
responses in CRC patients. Using the univariate Cox propor-
tional hazards regression analysis and the LASSO-Cox pro-
portional hazards regression analysis, an eight-gene TFS for
CRC was identified, and it was validated using GEO data.
The TFS was found to be an independent risk factor for poor
OS in patients with CRC. We also investigated the immune
profile in high- and low-risk patients and found that the
TFS was closely associated with various tumor-infiltrating
immune cells. Additionally, the TFS was negatively associ-
ated with several immunotherapy response biomarkers,
including PD-L1, PD-1, CTLA4, TIGIT, and TIM-3. This
indicates that tumor immune escape may contribute to the
adverse prognosis of high-risk CRC patients.

The gene expression profiles of TNF family members in
CRC patients were systematically analyzed. As a result, eight
genes (TNFRSF10B, LTBR, TNFRSF10C, TNFSF11,
TNFRSF19, NGFR, TNFRSF11A, and TNFRSF25) were used
to establish the TFS. TNFRSF10B (also known as DR5 or
TRAILR2) is a protein that belongs to the TNFRSF family
and mediates the extrinsic apoptotic pathway in various
cancer cells [27]. Recent studies revealed that upregulation
of this protein in human CRC cells enhanced the efficiency
of cancer therapy [28–30]. The lymphotoxin-beta receptor
(LTβR or LTBR) is a member of the TNFRSF family, and
it may be involved in the promotion of cell proliferation
in CRC [31]. TNFRSF10C belongs to the TNFRSF family
and can bind to TNF-related apoptosis-inducing ligand-
like (TRAIL) to inhibit the intracellular signaling pathway
of apoptosis. Additionally, downregulation of this protein
aggravates distant CRC metastasis [32]. TNFRSF19 (also
known as TROY) is a member of the TNFRSF family that
is upregulated in primary CRC, which results in the occur-
rence or progression of CRC [33]. NGFR belongs to the
TNFRSF family and has been shown to be directly or indi-
rectly involved in CRC development and metastasis [34].
Although the prognostic value of TNFSF25, TNFRSF11A,
and TNFRSF11 has not been previously investigated in
CRC, they still have the potential to be used as novel
biomarkers.

Recently, tumor-infiltrating immune cells in the TME
have received increased attention due to their important roles
in the regulation of cancer progression and predicting cancer
outcomes [35]. In this study, immune cell infiltration analy-
ses were performed to compare the inflammatory status
between the low- and high-risk groups. We found that the
high-risk CRC patients had higher proportions of Treg cells,
nonactivated macrophages (M0), and NK cells. Treg cells are

p = 3.026e−01

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (years)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

183 151 133 107 90 86 59 33 19 13 2 2 2

168 147 126 111 102 98 70 42 21 12 7 5 3Low risk

High risk

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (years)

Ri
sk

Risk

Low risk
High risk

(f)

Figure 3: Validation of the eight-gene TNF family-based signature (TFS) for CRC patients using GEO data. (a) Heatmap of the mRNA
expression of the eight genes in the TFS, survival status, and TFS risk scores in the high- and low-risk groups. The Kaplan–Meier survival
analyses of the patients in the high- and low-risk groups in the (b) meta-GEO cohort (n = 1162), and in the (c) GSE17536 (n = 177), (d)
GSE39582 (n = 579), (e) GSE17537 (n = 55), and (f) GSE87211 (n = 351) datasets.
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a subtype of CD4+ T cell that are critical to the maintenance
of immune homeostasis and are involved in tumor immune
escape, thereby contributing to tumor development and pro-
gression [36]. Similarly, tumor-associated macrophages are an

important component of the TME and play a role in tumori-
genesis and progression by promoting immune escape [37].
Although NK cells are considered to be major effector cells
in both innate immunity and tumor immunosurveillance
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Figure 4: Tumor-infiltrating immune cells and tumor microenvironment (TME) in high- and low-risk CRC patients. (a) Distribution of 22
tumor-infiltrating immune cells in 516 CRC patients. (b) Comparison of the proportions of tumor-infiltrating immune cells between the
high- and low-risk groups. (c–f) Associations of the TFS risk score with the ESTIMATE score, immune score, stromal score, and tumor
purity in CRC patients in the TCGA cohort.
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[38], high infiltration of NK cells has been associated with
poor prognosis in some tumors, which may be because
tumor-associated macrophages, monocytes, and other
immune cells impair their function [39, 40].

Additionally, we investigated the associations between
the TFS-based risk subgroups and several immunotherapy

response biomarkers, comprising immune checkpoint pro-
teins and TIDE scores. As expected, the high-risk CRC
patients generally had lower expression of PD-L1, PD-1,
CTLA4, TIGIT, and TIM-3. The results indicate that high-
risk patients may have a poor response to ICB [41]. TIDE
scores serve as an effective alternative to traditional single
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Figure 5: Comparison of the expression of immunotherapy response biomarkers in the high- and low-risk groups. (a) Comparisons of
Tumor Immune Dysfunction and Exclusion (TIDE) Score, interferon-gamma (IFNG), microsatellite instability (MSI) Score, Merck18,
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biomarkers for predicting ICB responses. A higher TIDE
Score not only indicates that the tumor has immune escape
phenotypes, but it also predicts a poor response to ICB
among cancer patients [21]. Additionally, increased values
for IFNG, MSI Score, and CD274 indicate a good response
to ICB [42]. We showed that the CRC patients in the high-
risk group had positive values regarding TIDE Score, T cell
dysfunction, and T cell exclusion, and negative values regard-
ing IFNG, MSI Score, and CD274. Taken together, these
results indicate that the poor prognosis of high-risk CRC
patients is due to tumor immune evasion and poor response
to ICB, which contributes to tumor invasion and metastasis.

The immunoscore summarizes the density of CD3+ and
CD8+ T cell effectors at the invasive margin and the core of
the tumor [43]. It has been reported to be superior to the
TNM classification for predicting OS in CRC [44]. Previous

studies reported that CRC patients with a high immunoscore
had the lowest risk of recurrence and better OS than those
with a low immunoscore [43, 45]. Accordingly, our results
showed that patients in the high-risk group had a low immu-
noscore, which further validate the reliability of the TFS.

However, the study had several limitations that should be
noted. First, the data in this study were from the TCGA and
GEO databases, and the results should be further clinically
validated to evaluate the robustness of the TFS in predicting
the prognosis of CRC patients in clinical settings. Second,
the predictive ability of the TFS in patients with various clin-
ical characteristics, such as high-fat diet, alcohol consump-
tion, anxiety, and depression was not evaluated. However,
these factors contribute to CRC initiation and progression
and the differential prognoses of patients [46, 47]. Third, as
there were no gene expression data from patients receiving
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immunotherapy, prospective studies are needed to confirm
the ability of the TFS to predict immunotherapy responses.

In summary, this was the first study to identify and vali-
date a reliable, clinically feasible TFS for CRC patients, which
has independent predictive value regarding clinical outcomes
and immunotherapy responses among these patients.
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