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Systemic lupus erythematosus is characterized by high levels of IgG class autoantibodies that contribute to the pathophysiology of
the disease. The formation of these autoantibodies occurs in the germinal centers, where there is cooperation between follicular T
helper cells (TFH) and autoreactive B cells. Prolactin has been reported to exacerbate the clinical manifestations of lupus by
increasing autoantibody concentrations. The objective of this study was to characterize the participation of prolactin in the
differentiation and activation of TFH cells, by performing in vivo and in vitro tests with lupus-prone mice, using flow cytometry
and real-time PCR. We found that TFH cells express the long isoform of the prolactin receptor and promoted STAT3
phosphorylation. Receptor expression was higher in MRL/lpr mice and correlative with the manifestations of the disease.
Although prolactin does not intervene in the differentiation of TFH cells, it does favor their activation by increasing the
percentage of TFH OX40+ and TFH IL21+ cells, as well as leading to high serum concentrations of IL21. These results support a
mechanism in which prolactin participates in the emergence of lupus by inducing overactive TFH cells and perhaps promoting
dysfunctional germinal centers.

1. Introduction

The neuroendocrine and immune systems are closely interre-
lated, as the secretory products of the neuroendocrine system
can act on the immune system and vice versa [1]. One exam-
ple involves hormones that can regulate the immune system
[2, 3], such as prolactin (PRL) secreted by the pituitary gland,
and extrapituitary immune system cells, such as T cells [4, 5],
B cells, antigen presenting cells (APCs) [6], natural killer cells
[7, 8], and monocytes/macrophages [9]. The immunostimu-
latory functions of PRL have been previously described. PRL

favors the differentiation of thymocytes [10], increasing the
expression of CD69 and CD25 in activated CD8+ T cells
[11]. In CD4+ T cells, autocrine PRL is important for main-
taining the expression of CD69 and CD40L and the secretion
of IL2 and IFN-γ [5]. In a CD4+ T cell line, PRL induced T-
bet transcription through phosphorylation of JAK2 and
STAT5 [12]. In addition, hyperprolactinemia has been
detected in many patients with different autoimmune dis-
eases [13–15], including systemic lupus erythematosus
(SLE), where it has been associated with disease activity [16,
17], with the concentration of anti-dsDNA antibodies [18],
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anemia, and all types of serositis [19]. SLE is a chronic auto-
immune disease characterized by the presence of autoanti-
bodies targeting DNA, RNA, histones, RNP, Ro, La, etc.
[20]. These antibodies are from the IgG isotope, which form
immune complexes that are deposited in any organ, causing
damage. The prevalence of SLE is approximately ninefolds
higher in women than in men, and it increases after puberty
and decreases after menopause [21]. There are well-
established experimental models mimicking many aspects
of SLE, such as theMRL/lpr mouse strain [22]. Raising serum
PRL levels in this strain, we demonstrated that the concentra-
tion of IgG isotype anti-dsDNA autoantibodies increased,
resulting in earlier and more severe manifestations of the dis-
ease [23, 24].

In the different mouse models that develop SLE, there is
an increase in the spontaneous formation of germinal centers
(GCs), which correlates with the beginning of the production
of autoantibodies [25, 26]. GCs provide a proper microenvi-
ronment for the activation, somatic diversification, and affin-
ity maturation of autoreactive B cells, which occur before the
production of autoantibodies [27, 28]. GC formation
depends on the presence of follicular T helper cells (TFH), a
specialized subpopulation of CD4 T cells. TFH cells are char-
acterized by their expression of CXCR5, ICOS, PD1, CD154,
and transcription factor BCL6, in addition to secreting IL21
[29–33]. An increase in the frequency of circulating TFH is
reported in patients with SLE, having a positive correlation
with autoantibody titers and disease activity [34–37]. Mean-
while, it has been observed that the clinical manifestations of
the disease decrease upon inhibiting the expression of the
IL21 receptor in mouse models [38]. Therefore, dysregula-
tion of the TFH response contributes to the production of
pathogenic autoantibodies and, therefore, to the promotion
of autoimmune diseases mediated by autoantibodies such
as SLE [39].

Taking into account all aforementioned findings, we
designed this study to determine the contribution that PRL
has to the differentiation and activation of TFH cells in the
MRL/lpr mice. We found that TFH cells express the long iso-
form of the PRL receptor and promoted STAT3 phosphory-
lation. Furthermore, PRL favors the dysregulation of TFH
cells by increasing both their absolute number and their
activation.

2. Materials and Methods

2.1. Mice. All studies were approved by the Animal Care
Committee of the Instituto Nacional de Enfermedades
Respiratorias “Ismael Cosio Villegas” and the Hospital de
Pediatría, Centro Medico Nacional Siglo XXI, IMSS (proto-
col numbers R-2016-785-050 and R-2017-785-114), and all
mouse measurements were in accordance with the approved
guidelines established by Mexico (Norma Oficial Mexicana
NOM-062-ZOO-1999) and the NIH Guide for the Care
and Use of Laboratory Animals. MRL/MpJFASlpr (MRL/lpr)
mice were purchased from the Jackson Laboratory (Maine,
USA), and C57BL/6 mice were purchased from the Instituto
Nacional de Ciencias Médicas y Nutrición (CDMX Mexico).

Mice were housed in a pathogen-free barrier facility and were
provided with sterile food and water ad libitum.

2.2. Prolactin Hormone. We used murine recombinant PRL
(National Hormone and Peptide Program, NIH).

2.3. Antibodies. All cells were labeled with the viability dye
Ghost Red (Tonbo Bioscience, USA). The antibodies used
for cell culture were as follows: anti-CD3 (clone 145-2C11)
and anti-CD28 (clone 37.51) from Invitrogen, USA; anti-
IFN-γ (clone XMG12) and anti-IL4 (clone 11B11) from Bio-
Legend, USA; anti-TGFβ from Peprotech, USA; cytokines
IL6 and IL21 fromMiltenyi Biotec, Germany. The antibodies
used for staining were as follows: anti-mouse PRL receptor
APC (clone T6, Novus Biologicals, USA); anti-CD4 PECy5
(clone GK1.5), anti-Ki-67 Alexa 488 (clone 16A8), anti-
IL21 biotin (clone 7H20-I19-M3), and PE-conjugated strep-
tavidin from BioLegend, USA; anti-CD44 PECy5 (clone
IM7), anti-CD62L PE, (clone MEL-14), anti-BCL6 PE (clone
BCL-DWN), anti-CXCR5 PECy7 (clone SPRCL5), and anti-
PD1 APC (clone J43) from eBioscience, Invitrogen, USA;
anti-ICOS VioGreen (clone 7E.17G9), anti-OX40 PE (clone
REA625), and anti-AKT PE (clone REA677) from Miltenyi
Biotec, Germany; and anti-STAT1 PE (clone A15158B),
anti-STAT3 PE (clone 13A3-1), and anti-STAT5 PE (clone
SRBC2X) from BioLegend.

2.4. Induction of High Prolactin Levels and Assessment of SLE
Manifestations. MRL/lpr and C57BL/6 female mice (9-
weeks-old) were subcutaneously injected with (i) 200μg of
metoclopramide (Sigma-Aldrich, US) in 100μL of PBS, (ii)
0.6mg/kg of bromocriptine (Santa Cruz Biotechnology,
USA) in 100μL of PBS, (iii) 100μL of PBS, or (iv) no treat-
ment for 6 weeks. Urinary protein levels were assessed semi-
quantitatively using reagent strips for urinalysis (Mission,
USA). Serum samples obtained at the beginning and at the
end of the experiments were kept at −35°C until they were
assayed for anti-dsDNA antibodies as we have previously
reported [23, 24].

2.5. Serum IL21 Concentration. For the detection of IL21 in
sera, the commercial Legend Max Mouse IL21 ELISA kit
(BioLegend, USA) was used according to the supplier’s
instructions. For each determination, 50μL of serum was
used. The plate was read in the ELISA reader (Dynatech
MR5000) at 450nm.

2.6. Purification of Tnaïve and TFH Cells from the Spleen. Eigh-
teen-week-old mice were euthanized, and spleen cells were
collected with cold RPMI supplemented with 2% FBS and
2mM EDTA (IBI Scientific, USA). Red blood cells were
depleted with lysis buffer (Sigma-Aldrich, USA) and incu-
bated with anti-CD4 MicroBeads (for T CD4 cells, Miltenyi
Biotec); they were selected with the magnetically activated
cell sorting (MACS) system (Miltenyi Biotec, Germany)
through positive selection using LS columns (Miltenyi Bio-
tec). Single-cell suspensions of CD4+ T cells were incubated
with fluorescently labeled antibodies specific for CD44,
CD62L, CXCR5, and PD1 in staining buffer (PBS with 0.5%
BSA) for 20min at 4°C. Further, the cells were incubated with
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DAPI to select living cells (DAPI−), washed, and Tnaïve
(CD44−CD62L+) and TFH cells (CXCR5+PD1+) were iso-
lated. Cell sorting was performed using a FACS Influx Sorter
(BD Biosciences). The purity of sorted cells ranged from 95%
to 98%.

2.7. RT-PCR for Prolactin Receptor Isoforms. To determine
the expression of PRL receptor isoforms, Tnaïve and TFH cells
from 18-week-old MRL/lpr mice were purified by sorting
with a BD Influx Cytometer. Real-time PCR was performed
using the following primers synthesized by Integrated DNA
Technologies (IDT, USA): β-actin (housekeeping control)
5′–GAGGAGGCTCTGGTTCAACA–3′ (left) and 5′–
CAGTAAATGCCACGAACGAA–3′ (right). To determine
the PRL receptor isoforms, three primers were used: com-
mon 5′–AAGCCAGACCATGGATACTGGAG–3′ (left),
long isoform 5′–AGCAGTTCTTCAGACTTGCCCTT–3′
(right), and short isoform 5′–TTGTATTTGCTTGCAG
AGCCAGT–3′ (right). The samples were run in the LightCy-
cler II thermal cycler (Roche, Germany) under the following
conditions: one cycle at 95°C for 15min, 40 cycles at 95°C for
10 s, 61°C for 30 s, and 72°C for 30 s, and one cycle at 72°C for
30 s. The relative expression was analyzed using the 2−ΔΔCt

method. The murine breast cancer cell line EpH4 1424 was
used as a positive control for the expression of the long and
short PRL receptor isoforms.

2.8. Prolactin Receptor Expression (Protein). CD4+ T cells
from 9- and 18-week-old mice were isolated from the spleen
with the CD4+ T Cell Isolation Kit (Miltenyi Biotec, Ger-
many) and stained with anti-mouse PRL receptor, anti-
CD4, anti-CD44, and anti-CD62L for naïve T cells or anti-
CD4, anti-CXCR5, and anti-PD1 TFH cells.

2.9. Purification of Tnaïve. Nine-week-old mice were eutha-
nized and spleen cells were collected with cold RPMI, and
blood cells were depleted with lysis buffer. Naïve T cells were
isolated from the spleen using a CD4+ naïve T cell (Tnaïve)
Isolation Kit (BioLegend, USA), following the manufac-
turer’s instructions.

2.10. TFH Differentiation. Tnaïve cells were differentiated to
TFH cells in the presence of the following antibodies and
cytokines: anti-CD3, 2.5μg/mL; anti-CD28, 5μg/mL; anti-
IFN-γ, 10μg/mL; anti-IL4, 10μg/mL; anti-TGFβ, 20μg/mL;
IL6, 10 ng/mL; IL21, 10 ng/mL; and with or without
50 ng/mL of PRL for 48 h at 37°C and 5% CO2.

2.11. Flow Cytometry of In Vitro Differentiated TFH Cells. For
OX40 expression, differentiated TFH cells in vitro or spleno-
cytes from mice that underwent different treatments were
stained with Ghost Red (viability), anti-CD4, anti-CXCR5,
anti-PD1, and anti-OX40. For intracellular IL21, cells were
incubated with 1x Cell Stimulation cocktail (Invitrogen,
USA) and 1x Protein Transport Inhibitor cocktail (Invitro-
gen, USA) for 5 h at 37°C and 5% CO2. Cells were stained
with Ghost Red, as well as anti-CD4, anti-CXCR5, and
anti-PD1 antibodies. To stain for intracellular proteins
(BCL/6, Ki-67, and IL21), cells were fixed and permeated

using a Foxp3/transcription factor staining buffer set
(eBioscience, USA) or an Intracellular Fixation and Perm-
abilization Buffer Set (eBioscience, USA) for the latter two.
All FACS data were acquired with an MACSQuant Analyzer
10 flow cytometer (Miltenyi Biotec, Germany) and analyzed
using the FlowJo software (Tree Star, USA).

2.12. Analysis of STATs and AKT Phosphorylation. TFH cells
differentiated in vitro were left to rest for 8 h in medium, then
TFH and Tnaïve cells were incubated with PRL (50ng/mL) for
30min and fixed with 1x BD Phosflow Lyse/5x FIx Buffer
(BD Biosciences, USA) for 10min. Cells were permeabilized
with Perm Buffer III from BD Phosflow (BD Biosciences)
to determine STAT3, STAT1, STAT5, and AKT phosphory-
lation. Cells were washed with FACS buffer and incubated at
4°C for 30min with the antibodies for flow cytometry analy-
sis. Data were acquired using an MACSQuant Analyzer 10
cytometer (Miltenyi Biotec) and analyzed with FlowJo soft-
ware (Tree Star, USA). To confirm STAT3 activation, TFH
and Tnaïve cells were preincubated for 30min in basal
medium alone or with 10mM of the STAT3 inhibitor (Stat-
tic, Cell Signaling Technology, USA).

2.13. Statistical Analysis. The Shapiro–Wilk normality test
was used to determine the distribution of data. The results
were expressed as the mean and standard deviation. Differ-
ences between groups were determined using the ANOVA
test. A p value < 0.05 was considered significant; statistical
analysis of the data was performed using the SPSS Statistics
27 software.

3. Results

3.1. TFH Cells Increase in Mice That Develop Lupus. Murine
models of SLE spontaneously increase the formation of GC,
which, however, has not been further explored. Seeking for
an explanation for this observation and given that the
increased GC formation correlates with prodromal SLE fea-
tures, we measured the percentage of TFH cells in splenocytes
of 9- and 18-week-old mice, in which the disease activity was
determined by measuring the concentration of anti-dsDNA
antibodies (IgG) and proteinuria. The 18-week-old MRL/lpr
mice showed significantly elevated serum concentrations of
anti-dsDNA antibodies (9:7 ± 3:97 μg/mL) and proteinuria
(100 ± 7:56mg/dL) compared with 9-week-old mice (anti-
dsDNA 0:82 ± 1:18 μg/mL; proteinuria 4:29 ± 6:50mg/dL).
We did not or we barely detected anti-dsDNA antibodies
and proteinuria in the control strain (C57BL/6)
(Figures 1(a) and 1(b)).

We found that the 18-week-old MRL/lpr mice had a sig-
nificantly higher percentage of TFH (6:35% ± 1:98%) com-
pared with the 9-week-old MRL/lpr mice (0:71% ± 0:43%)
and C57BL/6 mice (9 weeks old, 1:22% ± 0:90%; 18 weeks
old, 0:88% ± 0:08%) (Figures 1(c) and 1(d)). A similar behav-
ior was observed with the cell absolute numbers; 18-week-old
MRL/lpr mice had a higher number of TFH cells
(2:16 ± 0:97 × 106 cells/spleen) compared with 9-week-old
MRL/lpr mice (0:40 ± 0:24 × 106 cells/spleen) and C57BL/6
mice (9 weeks old, 0:26 ± 0:19 × 106 cells/spleen; 18 weeks
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Figure 1: Continued.
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old, 0:11 ± 0:01 × 106 cells/spleen) (Figure 1(e)). Therefore,
in lupus-prone MRL/lpr mice, the increased formation of
GCs may be at least partially explained by the increased for-
mation of TFH cells. Indeed, TFH cell numbers correlated with
autoantibody concentrations and with age (Figures 1(f) and
1(g)).

3.2. Tnaïve and TFH Cells Express the Long Isoform of the PRL
Receptor. To explore whether the formation of TFH cells may
be influenced by PRL, we determined the expression pattern
of the PRL receptor between lupus-prone and control mice,
reporting the expression of the PRL receptor as the fold
change in TFH cells with respect to that of 9-week-old Tnaïve
cells. We did not find an increase in the PRL receptor expres-
sion in TFH cells of 9- and 18-week-old C57BL/6 mice. On
the contrary, the MRL/lpr strain showed augmented expres-
sion, both at 9 (2:85 ± 0:56-fold change) and at 18 weeks of
age (3:87 ± 0:33-fold change), with TFH cells of the 18-
week-old mice exhibiting the greatest expression
(Figures 2(a)–2(c)); we have previously made a similar obser-
vation in B cell splenocytes [24]. We observed that both Tnaïve
and TFH cells of MRL/lpr mice only express the long isoform
of the PRL receptor (Figure 2(d)).

3.3. Prolactin Increases the Absolute Number of TFH OX40+

Cells and IL21-Secreting Cells. We previously reported in
MRL/lpr mice that pharmacologically raising serum PRL
levels with metoclopramide exacerbates the clinical manifes-
tations of SLE, with an increase in autoantibody concentra-
tion, as well as proteinuria [23, 24]. To determine whether
PRL could affect the number of TFH cells, as well as their acti-
vation in vivo, we treated MRL/lpr mice with metoclopra-
mide (to increase PRL levels), bromocriptine (to decrease
PRL levels), or PBS (Figure 3(a)). We found that the absolute
number of splenocytes spontaneously increased with age, as
it was observed even in MRL/lpr mice treated with PBS (16
weeks 235:36 ± 78:21 × 106 cells). Still, this increase was

more significant in mice treated with metoclopramide
(348:84 ± 52:71 × 106 cells), while the numbers of spleno-
cytes in the bromocriptine condition (138:80 ± 25:95 × 106
cells) were closer to the 9-week baseline
(92:27 ± 12:45 × 106 cells) (Figure 3(b)). A similar observa-
tion was made for the absolute numbers of CD4+ T cells
and TFH cells, as well as for activated TFH OX40+ cells and
TFH IL21+ cells. For all these populations, the highest abso-
lute numbers were from mice treated with metoclopramide
and the lowest for the bromocriptine condition. CD4+ T cells
are composed of the following: metoclopramide 63:58 ±
6:15 × 106 cells, PBS 44:74 ± 18:71 × 106 cells, and bromo-
criptine 24:57 ± 1:22 × 106 cells (Figure 3(c)). TFH popula-
tions are composed of the following: metoclopramide
(TFH7:69 ± 2:66; TFH OX40+2:35 ± 0:60; TFH

IL21+0:14 ± 0:07 × 106 cells), PBS (TFH3:77 ± 2:72; TFH

OX40+1:03 ± 0:43; TFH IL21+0:05 ± 0:01 × 106 cells), and
bromocriptine (TFH2:20 ± 0:59; TFH OX40+0:70 ± 0:11; TFH

IL21+0:03 ± 0:01 × 106 cells) (Figures 3(d)–3(f)). Therefore,
the increased number of splenocytes observed in each condi-
tion mirrors the numbers of each of these CD4 populations
that participate in GC formation. We did not observe differ-
ences in the absolute numbers of these cells between PBS
treated or untreated MRL/lpr mice.

We determined the expression of BCL6 in TFH cells,
observing an increase only in mice treated with metoclopra-
mide (Figure 3(g)). Furthermore, the serum levels of IL21
were also more elevated in mice treated with metoclopramide
(Figure 3(h)). Meanwhile, we did not observe changes in the
numbers of these populations in C57BL/6 mice (Figure S1,
Supplementary Materials).

3.4. Prolactin Does Not Affect the Survival or Differentiation
of TFH Cells. PRL has been reported to increase survival in
immature B cells of mice that develop SLE [40]. We deter-
mined whether PRL could favor the survival and/or
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Figure 1: TFH cells increase in mice that develop lupus. In 9- and 18-week-old mice of the C57BL/6 and MRL/lpr strains, the following were
determined: (a) concentration of anti-dsDNA antibodies by ELISA and (b) levels of proteinuria using a test strip. (c) Demonstration of the
gating strategy for the flow cytometry analysis of TFH cells. Doublets were excluded by gating on FSC-H×FSC-A lymphocytes which were
identified on the basis of their scatter properties (FSC-A×SSC-A plot), and live cells were gated in the Ghost Red−. The gate of CD4+ T
cells was selected. The CXCR5+PD1+ or CXCR5+BCL6+ population represents TFH cells. (d) Percentage and (e) absolute number of TFH
cells. Each determination was made in eight mice. Pooled data are presented as the mean± SD; ∗∗∗p < 0:001 using ANOVA. Pearson’s
correlation between absolute number of TFH cells and (f) anti-dsDNA antibody concentration and (g) age.
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Figure 2: PRL receptor expression on Tnaïve and TFH cells. Splenocytes from 9- and 18-week-old C57BL/6 and MRL/lpr mice were stained
with anti-CD4, anti-CXCR5, and anti-PD1 for TFH cells (as shown in Figure 1(c)) and with anti-CD4, anti-CD44, and anti-CD62L for
Tnaïve cells, then cells were stained with an anti-PRL receptor antibody. (a) Demonstration of the gating strategy for the flow cytometry
analysis of Tnaïve cells. Doublets were excluded by gating on FSC-H×FSC-A, lymphocytes were identified on the basis of their scatter
properties (FSC-A×SSC-A plot), and live cells were gated in the Ghost Red−. The gate of CD4+ Tnaïve was selected (CD62L+ CD44−). (b)
Expression of the PRL receptor is reported as the fold change in receptor expression with respect to PRL receptor expression in Tnaïve
cells. (c) Representative histogram of PRL receptor expression in MRL/lpr mouse cells. The measurement was carried out in duplicate in
six mice per group. Pooled data are presented as the mean ± SD; ∗∗∗p < 0:001 using ANOVA. (d) Tnaïve and TFH cells from 18-week-old
MRL/lpr mice were purified by Sort, and the isoform of the PRL receptor was determined by real-time (RT-) PCR. The murine breast
cancer cell line EpH4 1424 was used as a positive control for the expression of the long and short PRL receptor isoforms (not shown).
Two different experiments were performed; in each experiment, a pool of cells isolated from three mice was used.
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differentiation of TFH cells as a mechanism to explain their
increased numbers. For this, we isolated CD4 Tnaïve cells
from 9-week-old C57BL/6 and MRL/lpr mice and induced
TFH differentiation in culture. We did not find differences
in the percentage of TFH cells differentiated without PRL
(C57BL/6 9:26% ± 3:50%; MRL/LPR 13:12% ± 3:26%) and
with PRL (C57/BL6 8:56% ± 2:35%; MRL/lpr 12:50% ± 4:41
%) (Figures 4(a) and 4(b)) nor did we find a difference in

the expression (mean fluorescence intensity, MFI) of BCL6,
ICOS, and CXCR5 (Figure 4(c)); although a greater differen-
tiation to TFH was observed in cells fromMRL/lpr mice com-
pared with cells from C57BL/6 mice. When we determined
the survival of TFH cells after the differentiation assay, we
did not find significant differences between the percentage
of live differentiated TFH cells without PRL (C57BL/6 38:69
% ± 4:83%; MRL/lpr 45:49% ± 4:72%) and with PRL
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Figure 3: Metoclopramide increases the absolute number of TFH populations in MRL/lpr mice. Nine-week-old MRL/lpr mice were treated
with metoclopramide (meto), bromocriptine (bromo), or PBS or were left without intervention (left column marked by age in weeks) for 6
weeks. (a) Flow chart of treatment strategy. At the end of the treatment, cells were labeled with anti-CD4, anti-CXCR5, anti-PD1, anti-
OX40, anti-BCL6, or anti-IL21 antibodies. The graphs show the absolute number of (b) splenocytes, (c) CD4+ T cells, (d) TFH cells, (e)
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(C57BL/6 36:62% ± 4:87%; MRL/lpr 45:33% ± 5:33%)
(Figure 4(d)). Additionally, the cells differentiated to TFH
from MRL/lpr mice presented slightly better survival than
those from C57BL/6 mice. We did not observe differences
in the percentages of proliferating cells (Figure 4(e)).

3.5. Prolactin Activates TFH Cells. To assess whether TFH cells
were more active upon PRL treatment, we measured the
expression of OX40 and IL21, both molecules serving as acti-
vation markers of TFH cells. We found that the TFH cells dif-
ferentiated in the presence of PRL presented a statistically
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Figure 4: Differentiation and survival of TFH cells in the presence of PRL. Tnaïve cells from 9-week-old C57BL/6 and MRL/lpr mice were
purified by MACS and differentiated to TFH in the presence and absence of PRL for 48 h, before staining with a viability marker (Ghost
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cells. (a) Percentage of differentiation to TFH in vitro. (b) Zebra plot of one representative experiment. (c) Expression of BCL6, CXCR5,
and ICOS (MFI) in TFH cells. (d) Percentage of TFH cell survival. (e) Percentage of proliferation (Ki-67+). Six different experiments were
performed; each experiment was done in triplicate. Pooled data are presented as the mean ± SD; ∗∗p < 0:01 and ∗p < 0:05 using ANOVA.
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significant increase in MRL/lpr mice, determined by both
expression (MFI) and percentage of OX40
(1359:88 ± 172:05 MFI; 82:85% ± 4:20%), compared with
the condition without PRL (1138 ± 76:87 MFI; 70:87% ±
4:07%), likewise, for IL21, with PRL (97:36 ± 4:00
MFI;11:90% ± 1:12%) versus without PRL (87:43 ± 1:70
MFI;9:27% ± 0:61%). On the other hand, we did not observe
any difference in the C57BL/6 mouse cells (Figures 5(a)–
5(d)). Moreover, TFH cells derived from MRL/lpr mice
expressed more OX40 and IL21 than cells derived from
C57BL/6 mice at baseline.

3.6. Prolactin Promoted STAT3 Phosphorylation in TFH Cells.
It is known that the long PRL isoforms signal through the
JAK-STAT and PI3K-AKT pathways [41, 42]. We deter-
mined the signaling components associated with the PRL
receptor upon activation with recombinant PRL in TFH cells
differentiated in vitro. Wemeasured STAT1, STAT3, STAT5,
and AKT phosphorylation via flow cytometry. We found that
PRL induced phosphorylation of STAT3 (pSTAT3) only in
TFH cells derived from MRL/lpr mice and confirmed this
PRL activity with an inhibitor of STAT3 (Stattic). The level
of pSTAT3 was measured as a fold change (with respect to
TFH cells treated with medium) and percentage of positive

cells (medium: 1.00-fold change, 8:46% ± 1:00%; PRL:
1.74-fold change, 11:02% ± 1:33%; Stattic: 1.01-fold change,
7:74% ± 1:06%) (Figure 5(e)). In addition, the PRL activity
was more prominent in MRL/lpr TFH cells, since the inhib-
itor significantly reduced pSTAT3 only in the lupus-prone
strain. We did not observe pSTAT3 in TFH cells from
C57BL/6 mice or in Tnaïve cells from any mice. In addition,
PRL did not induce STAT1, STAT5, and AKT phosphory-
lation in MRL/lpr mice (Figure S2, Supplementary
Materials).

4. Discussion

The endocrine system produces hormones that regulate dif-
ferent systems, one of them being the immune system [43].
The bidirectional interactions between the endocrine and
immune systems play critical roles in the maintenance of
homeostasis. Disturbing mutual communication between
these systems might initiate or exacerbate the development
of a wide variety of diseases, such as autoimmune thyroid dis-
ease [44], rheumatoid arthritis [45], Sjögren syndrome [46],
and SLE [47]. Patients with SLE, as well as experimental
model mice of the disease (MRL/lpr, NZB/W), show an
increase in serum PRL levels associated with the activity of
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Figure 5: Activation and signaling of differentiated TFH cells in vitro in the presence of PRL. Tnaïve cells from 9-week-old C57BL/6 and
MRL/lpr mice were purified by MACS and differentiated to TFH with or without PRL. (a) Expression of OX40 (MFI) and representative
histograms of OX40 expression in TFH cells from MRL/lpr mice. (b) Percentage and representative Zebra plots of TFH OX40+ cells. (c)
Expression of IL21 (MFI) and representative histogram of IL21 expression in TFH cells from MRL/lpr mice. (d) Percentage and Zebra
plots of TFH IL21+ cells. (e, f) Tnaïve and TFH cells were preincubated for 30min with the inhibitor of STAT3 (Stattic). For STAT3
inhibition, Tnaïve cells were differentiated to TFH, left to rest for 8 h, and then incubated for 30min with PRL to subsequently determine
the MFI of pSTAT3 (histogram). For the plot, pSTAT3 is reported as fold change taken as baseline levels found in Tnaïve or TFH cells only
treated with medium. (f) Percentage and Zebra plots of pSTAT3. Six different experiments were performed; each experiment was done in
duplicate. Pooled data are presented as the mean ± SD; ∗∗∗p < 0:0001 and ∗p < 0:05 using ANOVA.
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the disease and/or the concentration of IgG autoantibodies
[17, 18, 24]. Furthermore, the activity of lupus has also been
associated with an increase in TFH cells [36, 48, 49], a subset
of helper CD4 T cells that play a crucial role in the generation
of antibodies. Indeed, dysfunctional TFH cells can activate
autoantibody-producing B cells that cause SLE [50].
Although these studies support that PRL influences TFH cell
function in SLE, with a concomitant rise of autoantibodies,
the link between PRL and TFH cells is still not clear.

In this study, we present new evidence of the importance
of PRL in the development of SLE by increasing the absolute
number of TFH cells, the activation of TFH cells, and IL21
secretion in lupus-prone mice. This could favor an uncon-
trolled response of GCs, faulty tolerance, and an increase in
the production of autoantibodies implicated in the pathogen-
esis of the disease. As it has been observed in the B6.MRL-
Faslpr (B6.lpr) and BXD2 strains, the increase in TFH corre-
lates positively with total IgG concentration in serum, as well
as with anti-dsDNA antibody levels [51, 52]. We demon-
strated here that lupus-prone MRL/lpr mice also presented
a positive correlation between the absolute number of TFH
cells and the concentration of anti-DNA IgG isotype autoan-
tibodies, as well as a correlation with age. Increased serum
PRL levels in these SLE-developing mice are associated with
disease exacerbation [24, 53, 54]. Previously, we have also
reproduced the exacerbation of the disease by pharmacolog-
ically raising serum PRL concentrations with metoclopra-
mide [23, 24]. Here, this same treatment induced an
increase in the absolute number of CD4+ T cells and TFH
cells. Conversely, treating mice with an antagonist of the
secretion of PRL (bromocriptine) decreased the absolute
number of these cells with respect to mice treated with PBS
or without treatment; this behavior was only observed in
lupus-prone mice. This increase in TFH cells may be due to
an increase in the differentiation of TFH cells, as the expres-
sion of BCL6, the master transcription factor of TFH cells
[55], was increased only in mice treated with metoclopra-
mide. This increase in the absolute number of TFH cells could
give us at least a partial explanation for the association
between high levels of PRL and the increase in autoantibodies
of the IgG isotype in patients or mice with SLE, as the uncon-
trolled accumulation of TFH cells might activate autoreactive
B cells to produce excessive autoantibodies that cause auto-
immune responses [50, 56].

In different reports, it has been shown that PRL is an
important factor for both survival and proliferation of differ-
ent cell types [57, 58]. It has been demonstrated that PRL is
an important factor for both the survival and proliferation
of early T-cell precursors, such as CD25+CD4−CD8− double
negative cells [10], as well as for the protection of thymocytes
from glucocorticoid-induced apoptosis [59]. However, in this
work, the prosurvival effects of PRL were not observed in TFH
cells differentiated from mature Tnaïve cells, as happens in the
immature B cells of these mice [40]. In addition, there was no
effect on the differentiation and proliferation of TFH cells,
despite the fact that Tnaïve and TFH cells expressed the PRL
receptor; however, receptor expression was lower in Tnaïve
cells. Furthermore, we did not find evidence of STAT3 activa-
tion in Tnaïve cells, as this kinase was not phosphorylated

upon PRL treatment, explaining why the effect of PRL on
Tnaïve cells and their differentiation to TFH was not observed.
The increase in the absolute number of TFH cells and the
expression of BCL6 (MFI) in vivo may be rather due to an
indirect effect of PRL. PRL could be acting on other cells that
are helping TFH cells to differentiate. For example, it is known
that B cells (follicular and marginal zone) express the PRL
receptor and that this expression increases when PRL con-
centrations rise [24]. On the other hand, it has been reported
that IL6 secreted by B cells is important for the differentiation
of TFH cells [25]; thus, it will be important to demonstrate, in
future tests, if PRL can increase IL6 secretion in B cells, thus
favoring the differentiation of TFH cells.

It could also be due to the effect that PRL may have on
other hormones that also influence specific components of
the immune responses, such as the thyroid-stimulating hor-
mone (TSH). The elevated TSH levels increased the
mitogen-induced proliferative response of mouse lympho-
cytes [60], as well as the percentage of CD4+ T cells [61]. Fur-
thermore, serum levels of TSH correlate positively with those
of PRL [62], and 11.6% of patients with SLE present elevated
levels of TSH [63]. This suggests that in our in vivo tests, the
increase in the number of TFH cells in the mice treated with
metoclopramide may be due both to an indirect effect of
PRL on other cells and to the effect of other hormones such
as TSH on CD4+ T cells. Therefore, it will be important to
study the effect of TSH on TFH cells.

It is probable that the effect of PRL directly occurs in
cells that are already differentiated and/or activated where
the expression of the receptor is greater. The costimulatory
roles of PRL in the in vitro activation of T cells and B cells
have been previously reported [5, 64]. In addition, PRL
promotes differentiation into CD4+ T-bet+ T cells [12],
CD4+ Eomes+ T cells [6], and NK cells [8]. TFH cells have
a higher expression of the receptor with respect to Tnaïve
cells. This expression increases with age and with the man-
ifestations of the disease in mice that develop SLE, as seen
for T cells from patients with SLE, where the T cells express
higher levels of the receptor than T cells from healthy
subjects [65, 66].

In this work, we demonstrated that TFH cells exclusively
express the long isoform of the PRL receptor, finding that
PRL could participate in signaling through STAT3 in these
cells. An extensive body of evidence links STAT3 with auto-
immune diseases. Most of this evidence is related to the
capacity of STAT3 to influence the differentiation of lym-
phoid cells, such as Th17 and Treg CD4+ T cells [67]. Stattic
has also been used to delay the onset of disease in MRL/lpr
mice, reducing the levels of clinical hallmarks of SLE, such
as nephritis, renal and skin lesions, proteinuria, and serum
autoantibodies [68, 69]. This increase in the phosphorylation
of STAT3 when incubating TFH cells with PRL could explain
the role of PRL in increasing the percentage (in vitro) and
absolute number (in vivo) of IL21-secreting TFH cells (TFH
IL21+). This is consistent with the observations that the
increased IL21 mRNA expression in CD4+ T cells from SLE
patients is dependent on the activation of STAT3 [70, 71]
and that STAT3 directly binds the IL21 promoter [72, 73].
Furthermore, in mice treated with metoclopramide, the
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serum levels of IL21 were increased. IL21 serves as a “helper”
cytokine to stimulate B cells through interacting with IL21R.
IL21 enhances murine B-cell proliferation, IgG class switch-
ing, and plasmablast differentiation [74, 75]. Therefore, the
increase in IL21 in lupus-prone mice could favor the genera-
tion of autoreactive plasma cells and the increase in
autoantibodies.

Another effect of PRL on TFH cells was an increase of TFH
OX40+ cells. OX40 is transiently induced following TCR
engagement after antigen (Ag) recognition. Many factors
are involved in the kinetics of OX40 expression, including
IL21 [76]. IL21 acts in an autocrine way in TFH cells [77];
thus, the PRL-dependent increase in the percentage and
number of TFH IL21+ cells, as well as the serum levels of
IL21, could favor an increase in the percentage of activated
TFH cells (OX40+). However, it has also been reported that
STAT3 plays a direct regulatory role in OX40 mRNA expres-
sion in CD4+ T cells [78]. Similarly, STAT3 enhances T cell
survival by upregulating OX40, BCL2, and Fas ligand [76].
Therefore, the PRL-mediated increase of OX40 on TFH cells
could be a direct effect or mediated through IL21. Further-
more, an increased percentage of OX40-expressing CD4+ T
cells was found in SLE patients, in which it was an indicator
of disease activity [79], and the OX40L-OX40 axis was also
found to contribute to lupus pathogenesis by promoting the
generation of TFH cells [80]. Therefore, PRL influences the
immune system in SLE exacerbating the activity of the dis-
ease by increasing the number of OX40+ TFH cells and acti-
vating the OX40-OX40L axis.

5. Conclusions

Collectively, our data suggest that PRL acts on TFH cells that
express the long isoform of the receptor and could participate
in signaling through STAT3. We also observed an increase in
the number and activation of TFH cells that may favor the for-
mation of GC, interfere with tolerance, and facilitate the gen-
eration of autoreactive plasma cells and the secretion of
autoantibodies. Therefore, in future studies, it will be impor-
tant to assess the influence of PRL on the GCs, as well as the
interaction of B cells and TFH in an environment featuring
high levels of PRL, to better understand the role of PRL in
GC formation and to define the most important steps in
the pathogenesis of SLE that could be targeted by antagonis-
tic molecules (Figure 6).
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