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Anti-drug antibody (ADAb) development is associated with secondary therapeutic failure in biologic-treated rheumatoid arthritis
(RA) patients. With a treat-to-target goal, we aimed to identify biomarkers for predicting ADAb development and therapeutic
response in adalimumab-treated patients. Three independent cohorts were enrolled. In Cohort-1, 24 plasma samples (6 ADAb-
positive and 6 ADAb-negative patients at baseline and week 24 of adalimumab therapy, respectively) were assayed with
immune-related microarray containing 1,636 correctly folded functional proteins. Next, we executed statistically powered
autoantibody profiling analysis of 50 samples in Cohort-2 (24 ADAb-positive and 26 ADAb-negative patients). Subsequently,
immunofluorescence assay was performed on 48 samples in Cohort-3 to correlate with ADAb titers and drug levels. The
biomarkers were identified for predicting ADAb development and therapeutic response using the immune-related microarray
and machine learning approach. ADAb-positive patients had lower drug levels at week 24 (median = 0:024μg/ml) compared
with ADAb-negative patients (median = 6:38 μg/ml, p < 0:001). ROC analysis based on the ADAb status revealed the top 20
autoantibodies with AUC ≥ 0:7 in differentiating both groups in Cohort-1. Analysis of Cohort-2 dataset identified a panel of 8
biomarkers (TROVE2, SSB, NDE1, ZHX2, SH3GL1, CARD9, PTPN20, and KLHL12) with 80.6% specificity, 77.4% sensitivity,
and 79.0% accuracy in discriminating poor from EULAR responders. Immunofluorescence assay validated that anti-TROVE2
antibody could highly predict ADAb development and poor EULAR response (AUC 0.79 and 0.89, respectively). Multivariate
regression analysis proved anti-TROVE2 antibody to be an independent predictor for developing ADAb. Immune-related
protein microarray and replication analysis identified anti-TROVE2 antibody as a useful biomarker for predicting ADAb
development and therapeutic response in adalimumab-treated patients.
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1. Introduction

Rheumatoid arthritis (RA), an inflammatory articular dis-
ease, is characterized by chronic synovitis and bone erosions
[1], and tumor necrosis factor- (TNF-) α is a crucial inflam-
matory mediator in this disease [2]. The important role of
TNF-α in RA pathogenesis is supported by the effectiveness
of biologics targeting this cytokine [2–4], although the
efficacy diminishes in some patients over time (secondary
failure) [5]. Accumulating evidence indicates that the
presence of anti-drug antibodies (ADAb), the so-called
immunogenicity, may be associated with low or undetectable
drug levels and ensuing reduction of therapeutic responsive-
ness to TNF-α inhibitors [6–11]. Given a treat-to-target goal
[12] and the uncertainty of therapeutic responsiveness to
TNF-α inhibitors, physicians are eager to find biomarkers
which can predict the emergence of ADAb and the effective-
ness of biologics. However, the patient-specific predictors for
biologic immunogenicity and secondary therapeutic failure
have not been identified.

Proteomics research has been increasingly applied to the
identification of novel biomarkers predictive of therapeutic
responsiveness to biologics in RA patients [13–15]. Hagiwara
et al. recently demonstrated that anti-Ro/SSA antibody-
positive patients treated with infliximab (anti-TNF-α mono-
clonal antibody) had a higher proportion (50%, 3/6) of ADAb
compared with anti-Ro/SSA antibody-negative patients (0%,
0/12), with all three ADAb-positive patients being poor
responders to infliximab [16]. However, there is scant
research into circulating potential biomarkers to predict the
developing ADAb in RA patients receiving anti-TNF therapy.

The Sengenics IMMUNOME protein microarray con-
sists of 1,636 immobilized full-length and correctly folded
functional proteins that have been selected based on their
involvement in the immune response [17]. This immune-
related protein array enables simultaneous screening for
autoantibodies against antigens and offers a powerful
method to identify specific autoantibody markers [18]. This
protein array has successfully identified protein biomarkers
useful for predicting disease severity of dengue virus infec-
tion [19]. However, there has not been any similar study
addressing the biologics immunogenicity in RA patients by
using the immune-related protein array.

We aimed to identify the potential biomarkers for pre-
dicting ADAb development and therapeutic response using
immune-related protein array. Subsequently, we performed
a validation on the identified biomarkers in an independent
cohort to test their diagnostic performance. Next, we evalu-
ated the predictive utility of the candidate biomarkers for
the emergence of ADAb and therapeutic response assessed
at week 24 of adalimumab therapy in RA patients.

2. Materials and Methods

2.1. Patients and Study Design. This study is divided into two
stages and three cohorts (Figure 1). In one medical center
(Hospital A), 60 biologic-naïve patients who met the 2010
revised criteria of the American College of Rheumatology
for RA [20] and had received at least 24 weeks of adalimumab

therapy were consecutively enrolled as the combined Cohort-
1 and Cohort-3. To avoid the effects of methotrexate (MTX)
on the emergence of adalimumab immunogenicity [21], all
patients received concomitant MTX at a stable dose of 10–
15mg weekly. Disease activity was assessed using the 28-
joint disease activity score (DAS28) at baseline and week 24
of adalimumab therapy [22]. Antibodies against adalimumab
(ADAb) were detected, and the therapeutic response using
EULAR response criteria [23]was evaluated atweek 24 of ada-
limumab therapy. We defined EULAR responders as patients
with good and moderate EULAR therapeutic responses. The
study design workflow was illustrated in Figure 1.

Stage 1 represents the pilot discovery study which is com-
prised of 24 plasma samples obtained from 6 ADAb(+)
patients (poor responders) and 6 ADAb(−) patients (EULAR
responders) at baseline and at week 24 of adalimumab ther-
apy, respectively (Cohort-1). In stage 2, fifty independent
plasma samples obtained from Cohort-2 participants includ-
ing 24 ADAb(+) and 26 ADAb(−) patients selected from
another medical center (Hospital B) were used to replicate
findings from stage 1 and identify statistically significant
biomarker panels.

We also conducted a replication study using another
assay-fluorescence immunoassay. Forty-eight plasma sam-
ples from Cohort-3 (8 ADAb(+) and 40 ADAb(−) patients
from Hospital A) at week 24 of adalimumab therapy were
used to validate the most discriminatory biomarkers. This
study was approved by the ethics committee of two medical
centers (CE15285B and CMUH107-REC1-142), and the
written consent was obtained from each participant accord-
ing to the Declaration of Helsinki.

2.2. Determination of Antibodies against Adalimumab and
Plasma Drug Trough Levels. Antibodies against adalimumab
were detected by bridging ELISA (Progenika Biopharma, SA,
Derio, Spain) at week 24 of adalimumab therapy according to
the described technique [11]. This assay measures plasma
levels of free ADAb but lacks sensitivity toward IgG4-
ADAb because only the bivalent fraction is detected [24].
Test results were converted into arbitrary units per milliliter
(AU/ml) by comparison with dilutions of a reference plasma.
Patients were defined as positive for anti-adalimumab anti-
bodies if the levels were greater than 3.5AU/ml according
to the manufacturer’s instructions. To avoid the probabil-
ity of a false-positive result, our patients were defined as
positive if the levels were greater than the threefold value
(10.5AU/ml) of the detection limit (3.5AU/ml). Plasma
trough levels of adalimumab were determined using the
sandwich ELISA (Progenika Biopharma, SA, Derio, Spain)
at week 24 according to the described technique [11]. The
details on these assays are added as the supplement text
(available here).

2.3. Protein Microarray. Plasma samples were assayed using
an IMMUNOME Array (Sengenics Pte Ltd., Singapore) as
previously described [18, 25]. This array comprises quadru-
plicate spots of 1636 full-length correctly folded immobilized
proteins through a proprietary biotin carboxyl carrier protein
(BCCP) folding marker. Four healthy individuals were
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independently assayed as the normal controls. Quality
control based on raw and normalized data was performed
to verify the quality. This array uses Cy3-labelled biotinylated
BSA (Cy3-BSA) replicates as the positive control spots across
slides. The IgG dilution series also act as a positive control to
assess the binding capacity of fluorescent-conjugated second-
ary incubation. Accurate serial dilution quantification is used
as a benchmark for ensuring that labelling efficiency and spot
detection pass quality control thresholds. All arrayed proteins
are assayed simultaneously under identical conditions result-
ing in quantitative and genuinely comparative data. Raw data
are processed and normalized using a robust pipeline that has
been previously described [26]. In the data sheet generated
from array, both foreground and background intensities of
each spot are represented in relative fluorescence units
(RFUs). Individual fold change is calculated by dividing the
RFU value for each protein by the mean RFU value of each
protein. We performed the composite normalization of data
using both quantile-based and intensity-based normalization
based on the Cy3-BSA control spots [27].

2.4. Identification of Discriminative Biomarkers for the
Presence or Absence of ADAb. In protein microarray, the
intensity of each spot was represented in relative fluorescent
units (RFUs). The autoantibody response towards antigens
on the array is classified as a biomarker if it satisfied all of
the following criteria: (i) high penetrance fold change in the
tested group (pFC ≥ 2:0-fold), (ii) high penetrance frequency
in the tested group (pFreq ≥ 20%), and (iii) low penetrance
frequency % in the pooled negative control group
(pFreq < 10%). The top 20 potential biomarkers at baseline
and at week 24 of adalimumab therapy, which could stratify
between ADAb-positive and ADAb-negative patients, were
selected based on penetrance fold change. To test the diag-
nostic ability, individual receiver operating characteristic
(ROC) curve analysis for the differentially expressed markers
was performed to determine the area under ROC curve
(AUC). The high discriminative biomarkers were selected
from the overlapped markers with AUC ≧ 0:80 in the ROC
analysis at both time points. Using the composite-
normalized RFU of all 1,622 antigens, a ROC analysis was
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Figure 1: Study design and workflow. ADAb: anti-drug antibodies; ada: adalimumab.
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performed to determine the sensitivity and specificity of each
antigen in differentiating both groups. The ROC statistics are
calculated based on “roc” function from the “pROC” package
in R. The unsupervised clustering analysis to generate the
heat map was conducted using Ward’s method, and the dis-
tance was calculated based on the Euclidean distance.

2.5. Biomarker Panel Selection and Bioinformatics. The
extracted raw data from Cohort-2 was merged with those
from Cohort-1 baseline samples, and ComBat normalization
was performed on the net fluorescent intensity values to
adjust for possible batch effects between the two studies
[28]. The ComBat-normalized fluorescent intensities across
1,600+ autoantibodies were used as inputs for model genera-
tion. The best subsets of biomarkers were selected based on a
backward selection iterative process known as recursive
feature elimination (RFE). The selection is classified based
on the ADAb status. Permutating features (autoantibodies)
with high mean decrease in Gini importance would result
in reduced separation of the two output classes. The 300 iter-
ations were performed with random resampling and fivefold
crossvalidation on the dataset. This methodology was
adapted as an exhaustive way to identify the best panel of
autoantibodies while considering randomization in the data-
set. Using a machine learning approach, RA cohorts were
randomly divided into a training dataset and a test dataset
and a confusion matrix was built using the selected variables
to summarize the performance of the classification algorithm.

To test the stability of the best panel selected from RFE,
random forest (RF) analysis was performed with the number
of trees generated being set to 1,000 and the number of fea-

tures being set to the default value [29, 30]. One thousand
iterations of RF were performed to assess the overall stability
of the model.

2.6. Statistical Analyses. Fisher’s exact test was used for
between-group comparisons of ADAb positivity and thera-
peutic responses. The Mann–Whitney U test was used for
among-group comparison of drug levels or plasma levels of
candidate biomarkers between ADAb-positive and ADAb-
negative patients. Spearman’s correlations were determined
between plasma levels of candidate biomarkers and ADAb
titers. We constructed a multivariate logistic regression
model to evaluate the factors predicting the emergence of
immunogenicity or a poor EULAR response. The ROC curve
analysis was performed to determine the area under ROC
curve (AUC), sensitivity, specificity, and accuracy using
MedCalc v.14. A p value< 0.05 was considered significant.

3. Results

3.1. Clinical Characteristics of RA Patients. Among the 60
patients in the combined Cohort-1 and Cohort-3, 14
(23.3%) patients had positive ADAb assessed at week 24 of
adalimumab therapy. The positive rate of anti-Ro60/SSA
antibody at baseline was significantly higher in ADAb-
positive patients (64.3%) than in ADAb-negative patients
(4.3%, p < 0:001). However, there were no significant differ-
ences in the positive rate of rheumatoid factor or anti-
citrullinated peptide antibodies, dosage of corticosteroids or
MTX, or the proportion of csDMARD usage between the
ADAb-positive and ADAb-negative patients (Table 1).

Table 1: Clinical characteristics of RA patients with and without ADAb in the combined Cohort-1 and Cohort-3 (Hospital A)a.

ADAb positive (n = 14) ADAb negative (n = 46) p value

Mean age at entry of study (years) 55:2 ± 13:4 56:7 ± 13:5 0.728

The proportion of female (%) 13 (92.9%) 39 (84.8%) 0.667

Disease duration (years) 13:0 ± 5:3 12:4 ± 5:2 0.638

RF positivity (%) at baseline 11 (78.6%) 35 (76.1%) 0.580

ACPA positivity (%) at baseline 10 (71.4%) 31 (67.4%) 0.526

Anti-Ro60/SSA positivity (%) at baseline 9 (64.3%) 2 (4.3%) <0.001
DAS-28 at baseline 6:71 ± 0:79 6:45 ± 0:75 0.274

Daily steroid dose (mg) at baseline 7:1 ± 2:2 6:8 ± 1:7 0.596

Weekly MTX dose (mg) at baseline 12:9 ± 2:4 13:0 ± 2:2 0.848

csDMARDs at baseline

Methotrexate 14 (100%) 46 (100%) —

Sulfasalazine 11 (80.0%) 38 (82.6%) 0.707

Hydroxychloroquine 10 (71.4%) 35 (76.1%) 0.734

Plasma ada levels at week 24 (μg/ml) 0.02 (0.02–0.02) 6.38 (4.59–8.31) <0.001
Poor EULAR responder at week 24 10 (71.4%) 2 (4.3%) <0.001
The proportion of LDA at week 24 2 (14.3%) 23 (50.0%) 0.028
aData are presented as mean ± standard deviation, number (percentage), or median (interquartile range). RF: rheumatoid factor; ACPA: anti-citrullinated
peptide antibodies; DAS28: disease activity score for 28 joints; MTX: methotrexate; DMARDs: disease-modifying antirheumatic drugs; ada: adalimumab;
LDA: low disease activity, which was defined as DAS28 ≦ 3:2; EULAR: European League Against Rheumatism. Poor responders are those who have either
ΔDAS28 (DAS28 decrementÞ<0:6 or a DAS28 > 5:1 at week 24 of adalimumab therapy. Mann–Whitney U test was used for between-group comparison of
numerical variables. The χ2 test with Yates’s continuity correction or Fisher’s exact test was used to compare binary variables.
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In an independent Cohort-2 of 50 samples (24 ADAb-
positive and 26 ADAb-negative patients), the differences in
clinical characteristics between ADAb-positive and ADAb-
negative groups (Supplementary Table S1) were similar to
those in the aforementioned combined cohort.

3.2. ADAb Titers and Their Relation to Adalimumab Levels or
Therapeutic Response. As shown in Table 1 and Figure 2(a),
ADAb-positive patients had significantly lower drug levels
at week 24 of adalimumab therapy compared with ADAb-
negative patients. There was also an inverse correlation
between ADAb titers and drug levels (Figure 2(b)). Hence,
ADAb-positive patients had a significantly higher proportion
of poor EULAR response and lower proportion of achieving

low disease activity at week 24 compared with ADAb-
negative patients (Table 1 and Figures 2(c) and 2(d)).

3.3. Individual Biomarker Analysis Identified That TROVE2
Is Highly Associated with Poor Therapeutic Response. Based
on penetrance fold change analysis on the pilot study data,
the top 20 putative biomarkers at baseline and at week 24 that
are able to stratify between ADAb-positive and ADAb-
negative patients are listed in Supplementary Table S2.
Nine of these biomarkers (TROVE2, PACSIN3, SSB,
DDX55, HNRNPA2B1, GADD45G, PDCL3, TSGA10, and
TPM1) overlapped between baseline and week 24 (Figure 3).

A multiple logistic regression was calculated to predict
the presence of ADAb based on 20 biomarkers (BUD31,
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Figure 2: Comparison of plasma drug levels between RA patients with positive ADAb [ADAb(+)] and negative ADAb [ADAB(−)] assessed at
week 24 of adalimumab therapy (a). The correlation between plasma ADAb titer and drug levels (b). The proportion of EULAR therapeutic
response (c) and the proportion of achieving low disease activity (d) at week 24 in RA patients with ADAb(+) and ADAb(−). The ranks of the
anti-adalimumab Ab value were presented as the log transformation. RA: rheumatoid arthritis; EULAR: European League Against
Rheumatism. Good EULAR responders are defined as patients who have a decrease in DAS28 from baseline ðΔDAS28Þ > 1:2 and a DAS
28 ≦ 3:2; moderate responders have either ΔDAS28 > 1:2 and a DAS28 > 3:2 or ΔDAS28 of 0.6-1.2 and a DAS28 ≦ 5:1; poor responders
are those who have either ΔDAS28 < 0:6 or a DAS28 > 5:1. Low disease activity was defined as DAS28 ≦ 3:2. The data were presented as
boxplot diagrams, with the box encompassing the 25th percentile (lower bar) to the 75th percentile (upper bar). The horizontal line within
the box indicates the median value and the horizontal lines above and below the box represent the maximum and minimum values,
respectively, for each group. ∗p < 0:001, ADAb(+) versus ADAb(−) patients.
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DDX55, GADD45, HNRNPA2B1, MAGEC2, NFE2, NOL4,
PACSIN3, PDCL3, PSIP1, RTFDC1, SSB, TPM1, TPM3,
TROVE2, TSGA10, ZHX2, ZMYND8, ZNF207, and
ZNF593). Fifteen out of 20 biomarkers were considered as
significant, and anti-TROVE2 antibody had the highest dis-
criminative power as shown in Supplementary Table S3.

Individual ROC analysis of the putative biomarkers
revealed that anti-TROVE2 antibody had a high discrimina-
tive power both at baseline and at week 24 for predicting the
emergence of ADAb (Figures 4(a) and 4(b)). In combined
sample (Cohort-1 and Cohort-3) analysis, anti-TROVE2
antibody at baseline also had a high discriminative power
for predicting the emergence of ADAb and poor EULAR
response (Figures 4(c) and 4(d)).

3.4. Plasma TROVE2 Antibody Titers and Their Relation to
ADAb Titers or Drug Levels. There was a positive correlation
between anti-TROVE2 antibody titers either at baseline or at

week 24 and ADAb titers (r = 0:76, p < 0:005 and r = 0:79,
p < 0:005, respectively (Figures 5(a) and 5(b))). In combined
samples, anti-TROVE2 antibody titers at baseline were
positively correlated with ADAb titers (r = 0:60, p < 0:001)
and negatively correlated with plasma adalimumab levels
(r = −0:63, p < 0:001 (Figures 5(c) and 5(d))).

3.5. Plasma TROVE2 Antibody Titers and Their Relation to
EULAR Response. In combined sample analysis, plasma
anti-TROVE2 antibody titers were significantly higher in
poor EULAR responders (median = 125:0U/ml, IQR = 12:0 –
365:0U/ml) than in EULAR responders (median = 0:40U/ml,
IQR = 0:10 – 0:70U/ml, p < 0:001). There was an inverse cor-
relation between anti-TROVE2 antibody titers at baseline and
ΔDAS28 assessed at week 24 in adalimumab-treated patients
(r = −0:501, p < 0:001).

3.6. Multivariate Logistic Regression for Predicting ADAb
Development or Therapeutic Response. Among 60 RA
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patients from the combined Cohort-1 and Cohort-3, multi-
variate logistic regression analysis identified anti-TROVE2
antibody to be an independent biomarker associated with
ADAb development (odds ratio (OR) 70.27, 95% confidence
interval (CI) 8.17-604.38, p < 0:001) after adjusting for age,
sex, disease duration, radiographic stage, baseline DAS28,
and the positivity of RF or ACPA. Similarly, anti-TROVE2
antibody was found to be an independent biomarker for pre-
dicting poor EULAR response assessed at week 24 (OR 55.1,
95% CI 1.9-1596.3, p < 0:05) after adjusting for potential con-
founding factors.

3.7. Recursive Feature Elimination (RFE) to Identify the Panel
of Biomarkers with the Highest Discriminative Power. In
order to identify additional biomarkers able to predict the
development of ADAbs, we carried out a larger, statistically
powered study on additional plasma samples (Cohort-2)
using the same IMMUNOME Array platform. The resultant
dataset was merged with the pilot baseline dataset in order to
further increase statistical power in the subsequent machine
learning RFE and RF analyses. Following ComBat normaliza-
tion to reduce batch effects, normalized net intensity values
across all proteins on the IMMUNOMEArray were subjected
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Figure 4: Receiver operating characteristic (ROC) curve analysis of the candidate biomarker, anti-TROVE2 (Ro60/SSA) antibody, either (a)
at baseline or (b) at week 24 for predicting the emergence of anti-drug antibody (ADAb) in protein microarray. ROC curve analysis of anti-
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of adalimumab therapy.
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to RFE to identify and rank the individual biomarkers based
on their ability to discriminate. The importance of each bio-
marker is shown in Supplementary Figure 1, with the most
important variables, TPBG, TROVE2, and SSB, being
indicated at the left hand end of the plot.

In addition, RFE analysis was conducted to identify the
best panels of biomarkers based upon their performance in
stratifying the samples according to the ADAb status.
Supplementary Table S4 shows the 7 top panels identified
in the larger cohort study. Notably, all 7 panels contain at
least TROVE2 and SSB.

To determine the stability of the 7 panels, random forest
analysis was performed based on the normalized net inten-
sity values of the best predictors and subjected into 1000 iter-
ations. Randomization of the samples is based on the feature
reduction classification method using an RF algorithm. Anal-
ysis showed that one panel consisting of 8 biomarkers
(TROVE2, SSB, NDE1, ZHX2, SH3GL1, CARD9, PTON20,
and KLHL12) gave the most stable performance, with
80.6% specificity, 77.4% sensitivity, and 79.0% accuracy
(Figure 6(c)). Although TROVE2 and SSB were found in all
panels, the diagnostic performance of this panel (Supplemen-

tary Figure 2) was found to be lower than that in the panel 3
of 8 biomarkers.

3.8. Change in Plasma Anti-TROVE2 Levels after 6-Month
Adalimumab Therapy. The change in anti-TROVE2 levels
determined by fluorescence immunoassay after 6-month
therapy was analyzed, and no statistical significance was
found (mean ± SD, 79:0 ± 28:2U/ml and 97:0 ± 30:1U/ml;
Supplementary Figure 3).

4. Discussion

Currently, there are no definite circulating protein
biomarkers that can reliably predict the emergence of ADAb
or therapeutic responsiveness to adalimumab. The immune-
related protein microarray platform used in this study offers
a powerful tool to identify autoantibody-based diagnostic or
prognostic biomarkers in many diseases and treatments;
particularly, it displays both linear and discontinuous epi-
topes across thousands of human proteins, thus enabling
the identification of specific autoantibody markers. Using
this platform, we are the first to identify a novel panel of 8
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Figure 5: The correlation between anti-TROVE2 (Ro60/SSA) antibody titers either at baseline (a) or at week 24 (b) and plasma anti-drug
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autoantibodies able to discriminate between patients with
and without ADAb with high sensitivity (77%) and specific-
ity (81%). Amongst these autoantibodies, anti-TROVE2 anti-
body had the highest individual discriminating ability, both
at baseline (pretreatment) and week 24 of adalimumab ther-
apy, and may serve as a novel predictor of adalimumab
immunogenicity. In the independent validation cohort, the
use of immunofluorescent-based ELISA confirmed that
anti-TROVE2 performed particularly well in discriminating
ADAb-positive patients from ADAb-negative patients.
Moreover, plasma anti-TROVE2 antibody levels were corre-
lated positively with ADAb titers and negatively with drug
levels. Besides, the multivariate regression analysis revealed
that anti-TROVE2 antibody was an independent predictor
for ADAb development and poor EULAR response.

Given the association of ADAb positivity with reduced
therapeutic response, it is not surprising that a higher pro-
portion of our RA patients with anti-TROVE2 (anti-
Ro60/SSA) antibody had poor EULAR response compared
to those without this antibody. Other previous studies [16,
31] have reported a significant association of anti-Ro60/SSA
positivity with treatment failure to infliximab, a biologic with
high immunogenicity [32, 33] like adalimumab. The strong
association of anti-TROVE2 with developing ADAb to adali-
mumab in our study may also explain the lack of significant
association of anti-Ro60/SSA positivity with therapeutic inef-
ficiency of etanercept, abatacept, or tocilizumab [16, 31],
which have low immunogenicity [11, 32–35]. Based on these
findings, we propose that the detection of anti-TROVE2
(anti-Ro60/SSA) antibody before starting therapy with
biologics, especially those with high immunogenicity, may
predict a high rate of secondary therapeutic failure due to
the development of ADAb.

Autoantibodies against the 60 kDa Ro (Ro60)/SSA ribo-
nucleoprotein (TROVE2), which is a common member of
extractable nuclear antigens and frequent target of humoral
immunity, are usually detected in autoimmune diseases such

as primary Sjogren’s syndrome, systemic lupus erythemato-
sus, and RA. Anti-Ro60/SSA antibodies were found in 3–
16.8% of RA patients [31, 36–38], a rate similarly observed
in our study (18.3%). Given the close link between anti-
TROVE2 antibody and the development of ADAb in our
adalimumab-treated patients, we speculate that Ro autoanti-
gen probably plays a role in the diversification of the autoan-
tibody response through a determinant spreading [39].
Similarly, Deshmukh et al. identified multiple T cell and B
cell determinants contained in both human and mouse
Ro60 peptides, which can enhance the autoimmune
responses of T cells and B cells [40] and may support our
hypothesis. Mamula et al. revealed that Ro/SSA and the
F(ab′) fragment of immunoglobulin G shared epitopes that
were bound by anti-Ro/SSA antibody [41]. Moreover, it has
been reported that anti-Ro/SSA antibody-positive RA
patients had B cell activation with a spread autoantibody
profile, including polyclonal hypergammaglobulinemia and
positive antinuclear antibodies [38, 42, 43]. Magill et al.
recently reveal that a low percentage of signal regulatory pro-
tein α/β +memory B cells in peripheral blood can predict the
development of ADAb to adalimumab [44]; however, the
mechanism remains unclear. These findings suggest that
anti-Ro60 (anti-TROVE2) autoantibody directly binds to the
fully human monoclonal antibody adalimumab, although the
correlation coefficient between anti-Ro60 titers and ADAb
titers might be expected to be higher than 0.79 measured in
our study. Presumably, an initially weak binding interaction
between anti-Ro60 (anti-TROVE2) and adalimumab could
potentially serve as a template for ensuing development of
anti-drug antibodies with high affinity adaptive response.
However, an exactmechanismof anti-TROVE2 in the develop-
ment of neutralizing ADAb responses remains to be explored.

Despite the novel findings presented in this pilot study,
there are some limitations. Given a limited data for
ADAb-positive samples, the prediction scores were built
on training and testing datasets randomly split from our
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Figure 6: Mean distribution plot for 1,000 iterations from random forest analysis. (a)-(g) The most stable panel with 8 biomarkers which
consists of TROVE2, SSB, NDE1, ZHX2, SH3GL1, CARD9, PTPN20, and KLHL12.
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cohort dataset; however, we revealed a good replication of
the prediction scores in an independent cohort. Therefore,
a future study enrolling a larger group of ADAb-positive
RA patients is needed.

5. Conclusion

Recently, an integrated analysis of blood-based biomarkers
with clinical data requires an adaptation of the machine lean-
ing approach [45]. We are the first to use high-density
protein microarray with the machine learning approach to
identify protein biomarkers that are predictive of ADAb
development and therapeutic response to adalimumab. Our
findings indicate that anti-TROVE2 (anti-Ro60/SSA) anti-
body could be a useful baseline biomarker for predicting
the emergence of ADAb and secondary therapeutic failure
in adalimumab-treated RA patients. Our findings provide
aid in making personalized therapeutic decisions with cost-
effective benefit.
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Supplementary Materials

Assessments of plasma levels of antibodies against adalimu-
mab. Antibodies against adalimumab were detected by bridg-
ing ELISA (Progenika Biopharma, SA, Derio, Spain). Briefly,
100μl of samples was added to ELISA-corresponding wells
precoated with adalimumab and then incubated for 1 hour
at room temperature (RT) (20–25°C). After removal of the
content of each well by decanting, 200μl of diluted wash
buffer was added and later removed by decanting for a total
of 3 washes. Subsequently, 100μl of horseradish peroxidase-
(HRP-) conjugated adalimumab was added to each well and
then incubated for 1 hour at RT. After 3 washes with diluted
wash buffer solution, 50μl of substrate solution was added
to each well and incubated for 30 minutes at RT. Finally,
50μl of stop solution was added to each well and then thor-
oughly mixed. The absorbance (OD) to a 450nm wavelength
in eachwell was readwithin 15minutes. Patients were defined
as positive for anti-adalimumab antibodies if the levels were
greater than the threefold value (10.5AU/ml) of the detection
limit (3.5AU/ml) on at least 1 occasion. The overall intra-
assay and interassay coefficients of variation (CV) were calcu-
lated at 6.6% and 11.8%, respectively. All baseline samples
taken before starting adalimumab therapy were negative for
anti-adalimumab antibody. Determination of plasma trough
levels of adalimumab. Plasma trough levels of adalimumab
were determined using sandwich ELISA according to the
manufacturer’s instructions (Progenika Biopharma, SA,
Derio, Spain). A human monoclonal F(ab′)2 fragment to
adalimumab was engineered in this assay, in contrast to poly-
clonal antibodies used in other assays. In brief, 100μl of
plasma samples was added to the wells precoated with an
anti-adalimumab human F(ab′)2 fragment and then incu-
bated for 1 hour at RT. After removal of the content of each
well by decanting, 200μl of diluted wash buffer was added
and later removed by decanting for a total of 3 washes. After
elimination of the diluted wash buffer solution, 100μl of
HRP-labeled anti-adalimumab F(ab′)2 fragment was added
to each well and incubated for 1 hour at RT. After 3 washes
with diluted wash buffer solution, 50μl of substrate solution
was added to each well and then incubated in the dark for 30
minutes at RT. Finally, 50μl of stop solution was added to
each well and thoroughly mixed. The absorbance (OD) to a
450 nm wavelength in each well was read within 15 minutes.
The minimal detectable levels were 0.024μg/ml for adalimu-
mab. The overall intra-assay and interassay CV were calcu-
lated at 6.1% and 5.1%, respectively. Supplementary Table
S1: clinical characteristics of RA patients with and without
ADAb in Cohort-2 (Hospital B)a. Supplementary Table S2:
the top 20 putative biomarkers which can stratify RA patients
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based on the ADAb status. Supplementary Table S3: a multi-
ple logistic regression was calculated to predict the presence
of ADAb based on the 20 biomarkers. Supplementary Table
S4: the panels of biomarkers in stratifying anti-drug anti-
body- (ADAb-) positive and ADAb-negative RA patients.
Supplementary Figure S1: the ranking of the discriminative
power for the anti-drug antibody (ADAb) status among
the individual biomarkers based on the mean decrease in
Gini value. Supplementary Figure S2: mean distribution plot
and the stability of a panel of both TROVE2 and SSB.
Supplementary Figure 3: change in plasma anti-TROVE2
levels after 6-month adalimumab therapy. The change in
anti-TROVE2 levels determined by fluorescence immunoas-
say before and after 6-month therapy was analyzed, and no
statistical significance was found. Rx: treatment. Bars and
error bars indicate mean value and standard deviation,
respectively. (Supplementary Materials)
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