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Purpose. To improve immunotherapy efficacy for melanoma, a coexpression network and key genes of M2 macrophages in
melanoma were explored. A prognostic risk assessment model was established for M2-related coexpressed genes, and the role of
M2 macrophages in the immune microenvironment of melanoma was elucidated. Method. We obtained mRNA data from
melanoma and peritumor tissue samples from The Cancer Genome Atlas-skin cutaneous melanoma (TCGA-SKCM). Then, we
used CIBERSORT to calculate the proportion of M2 macrophage cells. A coexpression module most related to M2 macrophages
in TCGA-SKCM was determined by analyzing the weighted gene coexpression network, and a coexpression network was
established. After survival analysis, factors with significant results were incorporated into a Cox regression analysis to establish a
model. The model’s essential genes were analyzed using functional enrichment, GSEA, and subgroup and total carcinoma.
Finally, external datasets GSE65904 and GSE78220 were used to verify the prognostic risk model. Results. The yellow-green
module was the coexpression module most related to M2 macrophages in TCGA-SKCM; NOTCH3, DBN1, KDELC2, and
STAB1 were identified as the essential genes that promoted the infiltration of M2 macrophages in melanoma. These genes are
concentrated in antigen treatment and presentation, chemokine, cytokine, the T cell receptor pathway, and the IFN-γ pathway.
These factors were analyzed for survival, and factors with significant results were included in a Cox regression analysis.
According to the methods, a model related to M2-TAM coexpressed gene was established, and the formula was risk score =
0:25∗NOTCH3 + 0:008∗ DBN1 − 0:031∗KDELC2 − 0:032∗STAB1. The new model was used to perform subgroup evaluation
and external queue validation. The results showed good prognostic ability. Conclusion. We proposed a Cox proportional hazards
regression model associated with coexpression genes of melanoma M2 macrophages that may provide a measurement method
for generating prognosis scores in patients with melanoma. Four genes coexpressed with M2 macrophages were associated with
high levels of infiltration of M2 macrophages. Our findings may provide significant candidate biomarkers for the treatment and
monitoring of melanoma.

1. Introduction

Melanoma is the most common type of skin tumor. Because
access to early screening and primary health care varies glob-
ally, the incidence and mortality rates associated with mela-
noma vary widely [1]. In the past, advanced melanoma was
scary because it spread quickly and became life-threatening.
However, melanoma is one of the most immunogenic tumors

and can respond vigorously to immunotherapy. Advanced
melanoma thereby transformed into a new oncology model
for solid cancer and could test immune checkpoint inhibitors.

Nevertheless, melanoma possesses various inhibitory
mechanisms that often act synergistically to evade surveil-
lance and attack by innate and adaptive immunity. For this
reason, more effective treatments are needed to activate
tumor-specific immunity [2]. Causes of melanoma, including
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escape from immune surveillance, continuous angiogenesis,
and insensitivity to growth inhibitors, can be triggered by
molecular or epigenetic mechanisms that activate oncogenes
or tumor suppressor genes [3].

Macrophages can be stimulated by various microenviron-
ments and can be polarized into different cell subtypes [4].
Traditionally, macrophages are classified into classically acti-
vated M1 macrophages and alternately activated M2 macro-
phages [5]. M1 macrophages can be induced by Th1
cytokines, lipopolysaccharide, and interferon γ (IFN-γ). These
stimulate immune responses. Activated M1 macrophages
phagocytose, destroy, and eliminate tumor cells, and then
present antigens to T cells to induce adaptive immune
responses [6]. M2 macrophages can be induced by IL-4, IL-
10, IL-13, and TNF-β. They show immunosuppressive effects,
characterized by reduced antigen presentation to T cells and
cytokine production that stimulate Th2 responses. M2macro-
phages also participate in promoting tumor growth [7].

Tumor-associated macrophages (TAMs) are among the
main immune components of the tumor microenvironment
(TME). Many clinicopathological studies have shown that
TAMs are very similar to polarized M2 macrophages [8].
The recruitment of M1 macrophages during melanoma pro-
gression is far less than the increase of M2 macrophages.
Moreover, M1 macrophages can be transformed into the M2
phenotype in the early stage of melanoma. As with other
human cancers, M2 macrophage accumulation is a predictor
of poor outcome. The distribution of M2 TAM in melanoma
tissues is involved in avoiding tumor cell death and immune
surveillance, inducing angiogenesis and tumor cell activity [9].

Weighted gene coexpression network analysis (WGCNA)
is an analytical software package used for high-throughput
microarrays or RNA-seq datasets. It constructs weighted gene
coexpression networks, identifies gene modules, and identifies
critical genes in the module [10]. Tumor-infiltrating immune
cells are an essential part of the tumor microenvironment,
related to tumor prognosis and response to treatment. CIBER-
SORT is a computational method for quantifying cell compo-
sition from a large number of gene expression profiles.
CIBERSORT accurately estimates the immune components
of tumor biopsies [11].

In this study, CIBERSORT and WGCNA were combined
to preliminarily identify related modules and coexpressed
genes of M2 macrophages in melanoma. A model was then
established using multivariate Cox regression [12], and we
performed survival analysis and subgroup evaluation of the
model. Finally, the model’s essential genes were analyzed
using functional enrichment analysis and Gene Set Enrich-
ment Analysis (GSEA) [13]. We also compared the immuno-
histochemical results of these genes in normal and tumor
tissues. A flow chart is displayed in Figure 1, which illustrates
the analytical logic of this article.

The new approach to immunotherapy for melanoma in
the future will involve preventing the generation of M2, the
transition fromM1 to M2, and the reversal of TAM polariza-
tion, to reduce melanoma drug resistance and prevent the
progression and recurrence. We hypothesized that this
approach would affect the diagnosis and treatment of early
and late metastatic melanoma.

2. Materials and Methods

2.1. Macrophage M2 and Immune Phenotype Calculation.We
obtained TCGA-SKCM data from The Cancer Genome Atlas
(http://cancergenome.nih.gov/), which contains 470 skin
melanoma cancer tissue samples. GSE65904 [14] and
GSE78220 [15] were also obtained from the GEO (http://
www.ncbi.nlm.nih.gov/geo/) database whose platform is
GPL10558 and GPL11154. We calculated macrophage M2
cell proportions based on the LM22 matrix using the CIBER-
SORT algorithm. Melanoma samples with p < 0:05 were con-
sidered to be significant and were taken into the subsequent
analysis. The estimation of stromal and immune cells in
malignant tumor tissues using expression data is a method
that infers the fraction of stromal and immune cells using
gene expression signatures [16]. We evaluated tumor purity
in each melanoma sample base on this method. Tumor
mutation burden per megabyte was also calculated [17].

2.2. Type M2 Macrophage Coexpression Network. A macro-
phage M2 coexpression network was generated using the
weighted gene coexpression network analysis method.
WGCNA is a system biology approach that converts coex-
pression correlations into connection weights or topology
overlap values. We used this method to identify type M2
macrophage cell proportion coexpressing networks. We con-
ducted a scale-free topology network, set the soft threshold at
5, R square = 0:81, slope = −1:83, and set the number of genes
in the minimum module at 30. Each sample proportion of
M2 macrophage was taken into the phenotype files in
WGCNA analysis. In this manner, 19 M2 proportion coex-
pression networks were built. Sequentially, the genes with
M2 macrophage correlation greater than 0.4 in the most rel-
evant modules were identified.

2.3. Type M2 Macrophage-Related Module Function
Enrichment. Genes in the M2 macrophage coexpression net-
work were selected using ∣correlation coefficient ∣ >0:4. We
used Kyoto Encyclopedia of Genes and Genomes (KEGG)
(https://www.genome.jp/kegg/) [18] and Gene Ontology
(GO) (http://geneontology.org/) [19] to explore the biologi-
cal functions of these genes.

2.4. A Risk Score Based on the M2 Macrophage Coexpression
Network. We first carried out survival analysis on the genes
with M2 correlations greater than 0.4 and then included the
significant survival analysis factors into the multivariate
Cox regression risk model. Next, we constructed a prognostic
risk model based on the M2 macrophage content based on
the coefficients. To evaluate the accuracy of our model, we
divided the TCGA-SKCM cohort into different subgroups.
We used survival stages to evaluate the prognostic value of
the risk model in each subgroup. Also, we used the
GSE65904 and GSE78220 queues to verify our conclusions.

2.5. Immune Phenotype Correlation. To explore the correla-
tions between factors and immune phenotypes in the model,
we included some immune indicators related to M2 macro-
phages. We performed Pearson tests on the factors in the
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score and tumor purity, immune score, tumor mutation bur-
den, and CD8+ T lymphocytes.

2.6. The Human Protein Atlas (HPA) Database and GSEA
Analysis. The HPA database was applied to determine the
protein level differences for the genes in the risk model. GSEA
analysis can interpret gene expression data and identify path-
ways associated with gene expression. The gene matrices of
patients were divided into the high-expression group and the
low-expression group according to the median ratio of M2

macrophages. Each analysis performed 1,000 genome
substitutions. Gene sets with p < 0:05 and false discovery rate
ðFDRÞ < 0:05 were considered significantly enriched.

2.7. Timer. The coexpression factors of M2 type macrophages
were clarified above; however, we only demonstrated their
melanoma relevance. We speculated that this relationship
might also be meaningful in other cancers; therefore, we used
the TIMER database to explore these factors’ correlations
with M2 macrophages in other cancers [20].

1. Data processing
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Tumor mutation burden
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Figure 1: Flow chart to identify coexpressed genes that promote M2 macrophage infiltration in melanoma. (1) Data processing: 470
melanoma tissue samples were obtained from SKCM-FPKM. CIBERSORT algorithm was used to calculate M2 macrophage infiltration in
melanoma tissue samples. Then, the tumor purity and mutation burden in the tumor immune microenvironment were analyzed.
(2)WGCNA analysis: WGCNA was used to generate a coexpressed gene network to obtain coexpressed genes. Combined with the analysis
of M2 macrophage content and mRNA gene matrix, the yellow module with the most negative correlation to M2 and the green-yellow
module with the most positive correlation were selected. (3) Enrichment analysis: GO analysis and KEGG analysis were performed on the
yellow module and the green-yellow module. (4) Survival analysis: the genes screened by WGCNA were analyzed for survival. According
to these results, establish the Cox Proportional Regression model based on multiple factors and screen out the model’s essential critical
genes. TCGA-SKCM clinical subgroup analyses were performed on the prognostic model. GSEA analysis and pan-cancer analysis were
performed on the essential genes. (5) Model validation: a prognostic scoring model related to the coexpression genes of M2 macrophages
in melanoma was validated in the GSE69504 cohort and GSE78220 with immunotherapy follow-up cohort.
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3. Results

3.1. M2 Macrophage Content Acquisition. We obtained M2
macrophage proportions, tumor purity, stromal score,
immune score, and tumor mutation burden from each mela-
noma carcinoma sample. Using the screening principle of p
< 0:05, we obtained 214 melanoma samples accurately eval-
uated by M2 macrophages. By combining the microenviron-
ment correlation score with the TCGA-SKCM mRNA
expression files, we determined phenotype entry files of
WGCNA. We also obtained melanoma samples in
GSE65904 and GSE78220.

3.2. WGCNA Analysis. WGCNA analysis was performed on
the TCGA melanoma cohort. We applied a dynamic hybrid
cutting method to construct a hierarchical clustering tree
(Figure 2(a)). Each leaf on the tree represents a gene, and each
branch represents a coexpression module. A total of 19 coex-
pression modules were obtained (Figure 2(b)). Next, we calcu-
lated the correlation coefficients between eachmodule andM2
macrophage proportions, and the yellow and green-yellow
modules were determined according to the correlation coeffi-
cient (Figure 2(c)). The green-yellowmodule had the strongest
positive correlation with the M2 macrophage proportion in
TCGA melanoma cohort (Cor = 0:44; p = 2e – 11). The
magenta module had the highest negative correlation with
the M2 macrophage proportion in the TCGA melanoma
cohort (Cor = −0:31; p = 5e – 06) (Figure 2(c)). Based on these
findings, we supplemented the heat map of the correlation
between the factors in the green-yellow module (Cor = 0:64,
p = 3:4e − 13) (Figure 2(d)).

3.3. M2 Macrophage Coexpression Module Functional
Analysis. We determined the top 20 M2 macrophages posi-
tively coexpressing mRNA in the TCGA-SKCM green-
yellow and yellow modules (Tables 1 and 2). The 20 M2mac-
rophage proportions positively coexpressing mRNA in the
green-yellow module were most significantly enriched in
response to transforming growth factor-beta. The 20 M2
macrophage proportion positively coexpressing the mRNA
yellow module were most significantly enriched in response
to IFN-γ, suggesting that these biological regulation func-
tions might be positively related to M2 macrophage infiltrat-
ing the melanoma immune microenvironment (Figures 3(a)
and 3(b)).

3.4. Clinical Outcome Analysis. To determine the overall sur-
vival outcome of these M2 macrophage coexpression genes,
survival analysis was applied to determine their prognosis.
The patients in the low-expression groups for DBN1 (TCGA:
p = 0:004), KDELC2 (TCGA: p = 0:004), NOTCH3 (TCGA: p
= 0:005), and STAB1 (TCGA: p = 0:016) showed survival risk
compared to the high-expression groups (Figures 4(a)–4(d)).
These results suggest that the coexpression genes in the green-
yellow module act in protective roles against melanoma.

3.5. M2 Macrophage-Related Gene Risk Model and Subgroup
Evaluation. An M2 macrophage coexpression gene Cox
regression hazard proportion model was generated based
on these melanoma prognosis protective factors.

Risk = 0:25 ∗NOTCH3 + 0:008 ∗DBN1
− 0:031 ∗KDELC2 − 0:032 ∗ STAB1:

ð1Þ

The risk score was evaluated in various subgroups,
including age, gender, stage, tumor purity, and tumor muta-
tion burden. The results were significant in these subgroups
(Figure 4(e)–4(s)).

3.6. GSE65904 Verification. Considering the excellent test
results, we verified the risk score in another queue. The M2
macrophage-related gene risk model was evaluated in
GSE65904. The samples in the high melanoma risk group
(GSE65904: p = 0:001, HR = 1:89) (Figure 5(a)) showed sur-
vival risk against the low-risk group, with the same results
in the GSE65904 subgroups (Figures 5(b)–5(f)).

3.7. GSEA Analysis and HPA Analysis. Antigen processing
and presentation, the chemokine signaling pathway, cyto-
kine-cytokine-receptor-interaction pathway, and T cell
receptor signaling pathway were related to the high-
expression group in NOTCH3, DBN1, KDELC2, and STAB1
(Figure 6). Then, we found the immunohistochemical results
of four independent factors in the risk scoring system in the
HPA database, and we identified expression differences at
the protein level (Figure 7).

3.8. Pan-cancer Analysis of M2 Macrophage Correlation. In
these studies, we demonstrated the role of NOTCH3,
DBN1, KDELC2, and STAB1 in melanoma patients. Next,
we analyzed the correlations between these genes and M2
macrophage proportions in other types of cancers based on
the TIMER database. The positive correlations to M2 macro-
phage proportion were determined in other types of cancers
(Figure 8).

4. Discussion

M2-TAM plays a role in promoting tumor growth during the
evolution of melanoma. Therefore, it is essential to study how
to inhibit the expression of coexpressed genes of M2 macro-
phages in melanoma. The CIBERSORT package was used to
analyze the proportion of the M2 component content in mel-
anoma tissues. Combined with WGCNA, we found that the
yellow-green coexpression module had the most positive cor-
relation of M2 macrophage content. Subsequently, we per-
formed functional enrichment analysis and GSEA analysis
on the essential genes in the model. We found that they play
essential roles in antigen treatment and presentation, chemo-
taxis, cytokine, the T cell receptor pathway, the IFN-γ path-
way, and others.

In this coexpression network, COL1A2, COL5A1,
ANTXR1, and other genes were positively correlated with
M2 macrophages. Then, survival analysis was carried out
for these factors, and factors with significant results were
included in the subsequent Cox regression analysis. Accord-
ing to this method, a model related to the coexpression gene
of M2-TAM was established.

The new model requires subgroup evaluation and exter-
nal queue validation. Age, tumor mutation burden, immune
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score, tumor purity, and stroma score were grouped to ana-
lyze various prognoses. The results suggested that the prog-
nostic risk assessment model of M2-related coexpressed
genes had good prognostic evaluation ability in the TCGA-
SKCM cohort. We also validated the prognostic risk score’s
ability to assess specific mortality in melanoma patients in
the external datasets GSE65904 and GSE78220.

In summary, we identified four prognostic factors asso-
ciated with M2 macrophages. We hypothesized that if
these factors were closely related to M2, they might also
be present in other cancers; therefore, we explored
whether these factors also play roles in the coexpression
of M2 in other cancers.

Macrophages are participants in the innate immune
response and are the main components of immune cell infil-

tration in solid tumors. Macrophages were initially found to
be involved in antitumor immunity; however, a growing
body of evidence suggests that TAMs may also paradoxically
enhance tumor development and metastasis [21]. These cells
have the potential to possess both protumor and antitumor
activities [22, 23]. During tumor progression, monocytes
and macrophages are recruited to the tumor site to alter the
tumor microenvironment. The escape of tumor cells from
immune surveillance is a key to regulating tumor growth,
survival, and metastasis. TAM, very similar to M2-polarized
macrophages, is a crucial regulator of the tumor microenvi-
ronment. It has poor antigen presentation, inhibits the
immune response of T cells by releasing immunosuppressive
factors [24], and strongly induces the expression of pro-
grammed cell death 1 (PD-L1) [25]. TAM regulates the
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Figure 2: WGCNA analysis of SKCM-FPKM. (a) A hierarchical clustering tree is constructed by using the dynamic hybrid cutting method.
(b) Each leaf represented one gene, each branch represented one coexpression module, and 19 coexpression modules were established. (c) The
correlation coefficient between different phenotypes and coexpression modules was shown. The positive correlation between the green-yellow
module and the M2 macrophage ratio was strongest (Cor = 0:44; p = 2e – 11). The yellow module was correlated with the proportion of M2
macrophages (Cor = −0:31; p = 5e – 06). (d) Heat map of correlation between factors in the green-yellow module (Cor = 0:64, p = 3:4e – 13).
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tumor microenvironment by secreting growth factors and
proteolytic enzymes, allowing tumor cells to invade. During
M1-M2 polarization, the tumor microenvironment is domi-
nated by cytokines and growth factors. The release of immu-
nosuppressive factors such as IL-10 and TGF-β can also
polarize M1-M2 macrophages [26].

M2 type macrophages have been proved to play an
important role in immunotherapy, and many emerging cases
of combination of genetic engineering, nanomedicine, and
immunotherapy have been reported [27, 28]. Lee et al. used
a mixed peptide MEL-DKLA to induce the death of M2 mac-
rophages, resulting in a slower tumor growth rate [29]. Xiao
et al. developed a smart nanodrug that can trigger active tar-
geting of M2-like macrophages only in acidic TME, repolar-
izing M2-like macrophages into M1 macrophages for cancer
immunotherapy with low side effects [30]. Klichinsky et al.
genetically engineered macrophages using chimeric antigen
receptors. They found that the modified macrophages trans-
formed M2 macrophages into M1 macrophages and
expressed cytokine chemokines that upregulated the antigen
presentation mechanism [31].

NOTCH receptor 3 (NOTCH3) acts as a signal receptor
that controls cell fate. NOTCH3 synergistically acts with
other NOTCH proteins to participate in the regulation of
stem cells in various tissues and the plasticity of vascular
smooth muscle phenotype in vascular remodeling. Depend-
ing on the type of tissue, transcription targets regulated by

NOTCHmay be oncogenic or tumor suppressor genes; how-
ever, NOTCH3 plays an oncogenic role. NOTCH3 signaling
may play an essential role in tumor aggressiveness, mainte-
nance, and chemotherapy resistance [32–34]. Some authors
identified a relationship between NOTCH3 and macro-
phages. For example, NOTCH3 induced by nuclear factor
kappa-B in injured renal epithelial cells maintains a proin-
flammatory environment, attracting activated macrophages
to the site of injury [35]. During the culture of macrophages,
it was found that they express various NOTCH pathway
components, including all four receptors. NOTCH3 selectiv-
ity increased during macrophage differentiation [36].

NOTCH3 also plays an essential role in the development
of melanoma. Pekkonen et al. conducted a series of experi-
ments to identify specific proteins in melanoma cells that
make cancer more aggressive when interacting with lym-
phatic cells. They found that lymphatic endothelial cells pro-
mote melanoma metastasis and invasion by relying on
MMP14, NOTCH3, and β1 integrin [37]. The failure of mel-
anoma treatment is due to tumor heterogeneity, especially
subsets with stem cell-like characteristics. Hsu et al. found
that NOTCH3 is a molecular switch that drives melanoma
heterogeneity. The NOTCH3 signaling pathway may pro-
mote melanoma stem-like cells’ plasticity and niche mor-
phology in an environment-dependent manner [38].
Howard et al. reported that NOTCH3 is upregulated explic-
itly in melanoma, and the NOTCH3 signal transduction

Table 1: The top 20 gene significance for M2 macrophage cell-
related genes in the green-yellow module.

ID GS.T.cells.M2 macrophage p value

COL1A2 0.505033449 3:46E − 15

COL5A1 0.475129912 2:15E − 13

ANTXR1 0.464696848 8:29E − 13

COL5A2 0.450124777 5:06E − 12

COL3A1 0.441765163 1:38E − 11

POSTN 0.432492676 4:04E − 11

NREP 0.432407501 4:08E − 11

LRP1 0.431348963 4:61E − 11

PXDN 0.426245907 8:20E − 11

VCAN 0.400316274 1:33E − 09

CD248 0.398530783 1:60E − 09

COL1A1 0.394554125 2:40E − 09

ADAM12 0.38940663 4:01E − 09

OLFML2B 0.382029469 8:27E − 09

NOTCH3 0.37934344 1:07E − 08

TGFB3 0.378152978 1:20E − 08

COL4A2 0.376079724 1:46E − 08

COL4A1 0.375167293 1:60E − 08

ISLR 0.37129622 2:30E − 08

FBN1 0.371019005 2:36E − 08

GS: gene significance.

Table 2: The top 20 gene significance for M2 macrophage cell-
related genes in the yellow module.

ID GS.T.cells.M2 macrophage p value

SIRPG -0.331 7:75E − 07

CD2 -0.326408965 1:12E − 06

HLA-F -0.324754936 1:27E − 06

PSMB8 -0.321355618 1:67E − 06

CD7 -0.309946411 4:01E − 06

HAPLN3 -0.309157691 4:25E − 06

PDCD1 -0.307610411 4:78E − 06

NFKBIE -0.305359497 5:65E − 06

BATF -0.304894644 5:84E − 06

IRF1 -0.304084891 6:20E − 06

RNF114 -0.301049264 7:75E − 06

FBXO6 -0.297658896 9:91E − 06

GCH1 -0.296345108 1:09E − 05

PSMB9 -0.289993511 1:71E − 05

CD8B -0.2883301 1:92E − 05

NUB1 -0.286883552 2:12E − 05

ETV7 -0.278476058 3:75E − 05

PARP14 -0.277295951 4:06E − 05

BTN3A1 -0.277173902 4:09E − 05

APOL3 -0.274631807 4:85E − 05

GS: gene significance.
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induced in melanoma cell lines can lead to enhanced tumor
cell migration [39].

Although there is no clear evidence to elucidate the rela-
tionship between drebrin 1 (DBN1), KDEL (Lys-Asp-Glu-
Leu) containing 2 (KDELC2) with M2 macrophages and
melanoma, studies have shown that DBN1 and KDELC2 play
essential roles in other cancers. The low expression of the
DBN1 gene may be related to colon cancer cells’ resistance

to vincristine [40]. It is currently believed that DBN1 is
involved in actin cytoskeletal recombination and inhibits
the crosslinking and binding of actin filaments. DBN1 may
play an essential role in cancer metastasis because actin
recombination is an essential tumor cell migration and inva-
sion process. Some authors used immunohistochemical tech-
niques to measure the overexpression of DBN1 in colorectal
cancer tissue lymph nodes and liver metastases in matching
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Figure 3: Functional enrichment analysis. (a) Functional enrichment analysis of the green-yellow module. In the biological process, essential
genes are enriched in cells’ response to transforming growth factor stimulation. (b) Functional enrichment analysis of the yellow module. In
the biological process, the essential genes are concentrated in IFN-γ-mediated signaling pathway and antigen processing and presentation.
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Figure 4: Continued.
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tissue sections [41]. Also, DBN1 is an independent prognos-
tic indicator for luminal breast cancer related to endocrine
treatment response and prognosis [42]. Lyama et al. found
that, in terms of disease-free survival rate, the prognosis of
patients with lung adenocarcinoma with strong DBN1
expression was significantly worse than that of patients with
weak DBN1 expression [43].

KDELC2 is thought to be associated with apoptotic path-
ways [44]. Tsai et al. evaluated the inhibitory properties of
glioblastoma stem cells and angiogenesis after knockout
KDELC2 gene. They found that the activation of the NOTCH

pathway induced glioblastoma, and the inhibition of the
KDELC2 downregulated NOTCH3 receptor inhibited GBM
invasive behavior [45].

Stabilin-1 (STAB1) is a receptor for endocytic stabilator
expressed on alternating activated macrophages. It is
expressed explicitly by discontinuous sinusoidal endothelial
cells in the liver, spleen, and lymph nodes andM2 or activated
macrophages in human malignancies. Schonhaar et al. ana-
lyzed STAB1 expression in melanocytic lesions and found
the STAB1-positive blood vessels in all analyzed non-
Langerhans histiocytic hyperplasia and melanocytic lesions
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Figure 4: Survival analysis and subgroup analysis. (a–d) Independent prognostic analysis of four factors. (e–s) A subgroup assessment of the
prognostic risk score model for M2 macrophage-associated coexpression factors.
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Figure 5: (a) Validation test and (b–f) subgroup evaluation of the GSE65904 cohort.
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Figure 6: GSEA analysis. (a) DBN1 is enriched in antigen processing and presentation, chemokine signaling pathway, cytokine-cytokine
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Figure 7: Differences in protein expression levels of NOTCH3, DBN1, KDELC2, and STAB1 were verified in the HPA database. In the
immunohistochemical samples corresponding to each gene, the staining degree of melanoma tissue was higher than normal skin tissue.

11Journal of Immunology Research



[46]. The expression of STAB1 was found on the TAM ofmel-
anoma, and it can promote the tumor in the mouse model of
melanoma. In the study of STAB1 expression on TAM in
breast cancer, some scholars found that STAB1-mediated
silencing of extracellular tumor growth suppressor was the
mechanism of STAB1-induced tumor growth [47].

We know that CD8+T cell content can be used as one indi-
cator to evaluate patients after immunotherapy and patients
with more CD8+T cells can benefit more significantly from
immunotherapy. The content of M2 macrophages in the
tumor microenvironment was negatively correlated with the
content of CD8+T cells. STAB1 was considered in this paper
to have a strong positive correlation with M2 macrophages
in melanoma. We verified in GSE65904 that the low STAB1
expression group had a better effect on immunotherapy
(Figure 9(e)). This means that samples with a lower M2 mac-
rophage content would benefit more from immunotherapy.

Meanwhile, in GSE78220, the role of STAB1 in immunother-
apy outcome follow-up was consistent with the positive corre-
lation between STAB1 and M2 macrophages that we
previously believed (Figures 9(a)–9(d)).

We compared the prognosis model of M2 macrophages
of melanoma in this paper with the prognosis model of
immune-related proposed by other scholars [48, 49]. The
area under curve (AUC) value of Yansig was 0.655, that of
Liaosig was 0.566, and that of Songsig was 0.579
(Figure 10). Therefore, it can be seen that the prediction abil-
ity of the model in this paper is better. However, there were
some limitations in this study. We selected a total of two
queues from two databases for analysis, and more samples
were needed to verify the scientific accuracy of the results.
Although comprehensive bioinformatics analysis and layer
by layer data verification were carried out in this study, fur-
ther verification is still needed using in vitro experiments.

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

UVM (n=80)
UCS (n=57)

UCEC (n=545)
THYM (n=120)
THCA (n=509)
TGCT (n=150)
STAD (n=415)

SKCM−Primary (n=103)
SKCM−Metastasis (n=368)

SKCM (n=471)
SARC (n=260)
READ (n=166)
PRAD (n=498)
PCPG (n=181)
PAAD (n=179)

OV (n=303)
MESO (n=87)
LUSC (n=501)

LUAD (n=515)
LIHC (n=371)

LGG (n=516)
KIRP (n=290)
KIRC (n=533)
KICH (n=66)

HNSC−HPV+ (n=98)
HNSC−HPV− (n=422)

HNSC (n=522)
GBM (n=153)
ESCA (n=185)
DLBC (n=48)

COAD (n=458)
CHOL (n=36)
CESC (n=306)

BRCA−LumB (n=219)
BRCA−LumA (n=568)

BRCA−Her2 (n=82)
BRCA−Basal (n=191)

BRCA (n=1100)
BLCA (n=408)

ACC (n=79)

N
O

TC
H

3

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

D
BN

1

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

KD
EL

C2

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

ST
A

B1
p > 0.05

p ... 0.05

–1

0

1
Partial_cor

N
O

TC
H

3

D
BN

1

KD
EL

C2

ST
A

B1

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

M
ac

ro
ph

ag
e M

2_
CI

BE
RS

O
RT

−A
BS

Figure 8: The correlation between NOTCH3, DBN1, KDELC2, and STAB1 and the M2 macrophage proportion in other cancer types was
analyzed based on the TIMER database. In other types of cancer, the M2 macrophage proportion was also positively correlated in most
cases, and STAB1 was most correlated with the M2 macrophage proportion in other types of cancer.
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Figure 9: (a–d) External immunotherapy follow-up cohort validation of the model. In GSE78220, there was a significant difference in survival
between the high-risk and low-risk groups, and patients with higher levels of STAB1 had a worse prognosis. (e) The low STAB1 expression
group had a better effect on immunotherapy in GSE65904.
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Due to our research methods’ limitations, the mechanism of
these factors was not studied in depth in the scoring model.
Also, some genes have been less studied, and few studies
can be found; nevertheless, our findings may provide the
basis for future research.

For patients with melanoma, especially those in advanced
stages, including metastasis, combined immunotherapy
should be emphasized. Conventional excision and targeted
therapy may have neglected the combined effects of the
immune microenvironment of melanoma. In summary, we
found that NOTCH3, DBN1, KDELC2, and STAB1 were
closely related to M2 macrophage infiltration in melanoma
tissues. M2-TAM constitutes a part of the tumor microenvi-
ronment in malignant tumors, and it can promote the occur-
rence and progression of tumors. We believe that
suppression of infiltrating M2 macrophages in tumor tissues
is a new direction for melanoma immunotherapy. The Cox
proportional hazard regression model established based on
the coexpression genes of melanoma M2 macrophages may
impact the prognosis and treatment of melanoma.
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