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Propofol, 2,6-diisopropylphenol, is a short-acting intravenous sedative agent used in adults and children. Current studies show its
various antimicrobial as well as anti-inflammatory effects. Dengue virus (DENV) is an emerging infectious pathogen transmitted by
mosquitoes that causes mild dengue fever and progressive severe dengue diseases. In the absence of safe vaccines and antiviral
agents, adjuvant treatments and supportive care are generally administered. This study investigated the antiviral effects of
propofol against DENV infection and cellular inflammation by using an in vitro cell model. Treatment with propofol
significantly inhibited DENV release 24 h postinfection in BHK-21 cells. Furthermore, it also blocked viral protein expression
independent of the translational blockade. Propofol neither caused inhibitory effects on endosomal acidification nor prevented
dsRNA replication. Either the proinflammatory TNF-α or the antiviral STAT1 signaling was reduced by propofol treatment.
These results provide evidence to show the potential antiviral effects of the sedative propofol against DENV infection and
cellular inflammation.

1. Introduction

The anesthetic propofol is routinely used in the short term to
provide a rapid onset and offset of sedation in critically ill
patients under intensive care [1]. Treatment with propofol
confers a range of pharmacodynamic effects from amnestic,
muscle relaxant, and hypnotic effects to anesthesia. In addi-
tion to its neuropharmacological properties, propofol has
immunomodulating actions through its negative regulation

of proinflammatory cytokine/chemokine production and
immune cell activation [2, 3]. Additionally, general anes-
thetics, including propofol, remifentanil, and ketamine, exert
antimicrobial and microbial growth-promoting effects
against bacterial infection [4, 5].

Dengue, an arthropod-borne viral disease, is caused by
the dengue virus (DENV), a flavivirus transmitted by Aedes
mosquitoes [6]. Globally, infection with DENV affects more
than 100 countries, with an estimated 400 million new
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infections and 25,000 deaths annually [7]. Clinical presenta-
tions of DENV infection range from mild dengue fever to
severe dengue diseases, including dengue hemorrhagic
fever/dengue shock syndrome (DHF/DSS) and multiorgan
involvement. Without appropriate medication, severe den-
gue has a mortality rate ranging from 5 to 20%. Due to its
emerging disease status, safe and long-term protective DENV
vaccines and anti-DENV drugs are essential for dengue pre-
vention and treatment.

For severe dengue management, some sedative agents are
used in patients [8, 9]. An innovative patent describes the
application of propofol as an antiviral medication for pre-
venting and treating infections caused by influenza A viruses
(EP2590637A1; European Patent Office). However, its phar-
macological effects on viral replication as well as viral inflam-
mation remain undefined. In this study, we first investigated
the possible effects of propofol on DENV infection and rep-
lication and DENV-induced cellular inflammation by using
an in vitro cell model.

2. Materials and Methods

2.1. Cells and Virus. The process of cell culture and virus
preparation was according to our previous study [10]. Briefly,
baby hamster kidney- (BHK-) 21 fibroblasts (ATCC, CCL10)
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM; Thermo Fisher Scientific) containing 10% heat-
inactivated fetal bovine serum (FBS, Biological Industries)
and 1% penicillin-streptomycin (Thermo Fisher Scientific)
at 37°C in 5% CO2. BHK-21 cells harboring a luciferase-
expressing DENV replicon (BHK-D2-Fluc-SGR-Neo-1)
were maintained in DMEM with 10% heat-inactivated FBS,
1% penicillin-streptomycin, and 0.4mg/ml G418 agent
(Cat# A1720, Sigma-Aldrich) at 37°C in 5% CO2. The Aedes
albopictus clone mosquito C6/36 cells (ATCC, CRL1660)
were maintained in Minimum Essential Medium (MEM;
Thermo Fisher Scientific) containing 10% heat-inactivated
FBS, 1% penicillin-streptomycin (Thermo Fisher Scientific),
1% sodium pyruvate (Cat# 11360-070, Thermo Fisher Scien-
tific), 1% 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES; Cat# 15630-080, Thermo Fisher Scientific),
and 1% nonessential amino acids (NEAA; Cat# 11140-035,
Thermo Fisher Scientific) at 28°C in 5% CO2. Dengue virus
serotype 2 (DENV2, strain PL046) was obtained from Center
for Disease Control in Taiwan and propagated in a C6/36 cell
monolayer at a multiplicity of infection (MOI) of 0.01. After
incubation (28°C in 5% CO2) for 5 days, the viral superna-
tants were collected and filtered with a 0.22μm filter and then
stored at -80°C until use. Viral titers were determined by pla-
que assay using BHK-21 cells.

2.2. Agents and Antibodies. Propofol (2,6-diisopropylphenol)
was purchased from Sigma-Aldrich (St. Louis, MO, USA).
An antibody against DENV NS1 (Cat# GTX124280) was
purchased from GeneTex (San Antonio, TX); antibodies
against phospho-STAT1Tyr701 (Cat# 9167; clone 58D6),
STAT1 (Cat# 9172), horseradish peroxidase- (HRP-) conju-
gated goat anti-rabbit IgG (Cat# 7074S), and HRP-
conjugated horse anti-mouse IgG (Cat# 7076S) were pur-

chased from Cell Signaling Technology (Beverly, MA); Alexa
Flour 488-conjugated goat anti-mouse antibody (Cat# A-
11029) and Hoechst 33258 (Cat# H3569) were purchased
from Thermo Fisher Scientific (Pittsburgh, PA, USA); anti-
body against dsRNA (Cat# 10010200) was purchased from
SCICONS; antibody against mouse β-actin (Cat# A5441),
4,6-diamidino-2-phenylindole (DAPI; Cat# D9542), the V-
ATPase inhibitor bafilomycin A1 (Baf A1; Cat# 19-148),
and acridine orange hemi (zinc chloride) salt (Cat# A6014)
were purchased from Sigma-Aldrich (St. Louis, MO).
According to the manufacturer’s instructions, cell cytotoxic-
ity was assessed using Cytotoxicity Detection Kit assays
(Roche Diagnostics, Lewes, UK).

2.3. Western Blotting. Accordingly [10], cells were collected
and extracted with lysis buffer containing a protease inhibitor
cocktail (Sigma-Aldrich). The processed proteins were sepa-
rated by 10% SDS-polyacrylamide gel electrophoresis
followed by transfer to a polyvinylidene difluoride (PVDF)
membrane (Millipore). Then, the PVDF membrane was
blocked with 5% nonfat milk in 0.05% Tween-20-
containing Tris-buffer-based saline (TBS-T) at room temper-
ature for 1 h. Next, the membrane was washed three times
with TBS-T buffer and immunohybridized with the indicated
primary antibodies at 4°C overnight. Then, the membrane
was washed with TBS-T buffer three times, followed by incu-
bation with the indicated HRP-conjugated secondary anti-
bodies at room temperature for 1 h. The antibody-protein
complexes on the PVDF membrane were detected using an
ECL Western blot detection kit (PerkinElmer). The signals
of the identified proteins were captured with a film exposure
system.

2.4. Plaque Assay. BHK-21 cells were grown in a monolayer
in a 12-well plate at 7 × 104 cells/well. Serially diluted viral
solutions were added to infect cells for 2 h and then replaced
with fresh DMEM containing 4% FBS and 0.5% methylcellu-
lose (Sigma-Aldrich) for 5 days. Next, wells were washed
with 2ml PBS twice and stained with crystal violet solution
containing 1% crystal violet (Sigma-Aldrich), 0.64% NaCl,
and 2% paraformaldehyde (Sigma-Aldrich) overnight. Sub-
sequently, wells were washed with water and air-dried to
count the number of plaque-forming units (PFU).

2.5. Reporter Assay. BHK-D2-Fluc-SGR-Neo-1 cells (repli-
cons) were seeded in 96-well plates at 3,000 cells/well over-
night. After the treatments, luciferase activity was detected
using the Dual-Glo® Luciferase Assay System (Cat# E2940,
Promega) and a spectral scanning multimode reader
(Thermo Varioskan Flash).

2.6. Double-stranded RNA (dsRNA) Staining. Cells were
washed with ice-cold PBS 3 times and fixed with 4% parafor-
maldehyde (Sigma-Aldrich) at room temperature for 15
minutes. Then, the cells were washed 3 times with ice-cold
PBS and permeabilized with permeabilization buffer (PBS
containing 1% Triton X-100) at room temperature for 5
minutes. The cells were then washed 3 times with ice-cold
PBS and immunoblocked with blocking buffer (PBS contain-
ing 1% BSA and 0.01% Triton X-100) at 4°C for 30 minutes.

2 Journal of Immunology Research



Next, the cells were washed 3 times with ice-cold PBS and
immunohybridized with mouse anti-dsRNA J2 primary anti-
body at 4°C overnight. Subsequently, the cells were washed 3
times with ice-cold PBS and stained with Alexa Fluor 488-
conjugated goat anti-mouse antibody (Thermo Fisher Scien-
tific) at room temperature for 15 minutes. The cells were
washed 3 times with ice-cold PBS and then visualized with
fluorescence or confocal microscopy. DAPI (Sigma-Aldrich)
was used for nuclear staining.

2.7. Acridine Orange Staining. Cells were washed with HBSS
(Thermo Fisher Scientific) once and then stained with acri-
dine orange agent (Sigma-Aldrich) and Hoechst 33258
(Thermo Fisher Scientific) in an incubator at 37°C in 5%
CO2. After 45 minutes, the cells were washed with HBSS once
and rinsed with HBSS. Subsequently, cells were visualized
with a fluorescence microscope (EVOS). Hoechst 33258
was used for nuclear staining.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA). Accord-
ing to the manufacturer’s instruction, samples were harvested,
and the concentration of mouse TNFα was determined using
ELISA kit (Cat# 88-7324-88, eBioscience).

2.9. Statistical Analysis. GraphPad Prism (version 8.3.0) was
applied to analyze the experimental data. One-way ANOVA
(Tukey’s multiple comparison test) was used to determine
experiments involving numerous groups. Values are means
± standard deviation (SD). All p values were obtained from
two-tailed significance tests. A p value of <0.05 was consid-
ered statistically significant.

3. Results

3.1. Propofol Treatment Inhibits DENV Infection. Several
antiviral drugs have been designed and repurposed to reduce
DENV infection [11]. Here, we examined propofol, a short-
term anesthetic, for its antiviral activity. The LDH assay
showed that propofol did not cause cytotoxicity at testing
dosages ranging from 1 to 50μg/ml (Figure 1(a)). Based on
these results, BHK-21 cells were pretreated with propofol
for 1 h and then infected with DENV for an additional 24 h.
In this DENV infection model, 24 h postinfection showed a
significant viral replication as demonstrated by using plaque
assay. The results showed that propofol significantly
(p < 0:001) reduced DENV virion release, as demonstrated
by the viral titer, at doses of 5, 10, 25, and 50μg/ml
(Figure 1(b)). These results indicate that propofol treatment
effectively blocks DENV infection.

3.2. Propofol Reduces DENV Viral Protein Expression but
Does Not Affect Viral Translation. To assess propofol’s inhib-
itory activity on DENV infection, we next used BHK-21-SGR
cells, a cellular replicon-based reporter assay, to examine pro-
pofol’s translational targets. The luciferase activity showed
no remarkable difference in replicons treated with or without
propofol (Figure 2(a)), indicating that a protein translation-
independent route mediates the propofol-induced antiviral
effect. By western blot analysis, we found that viral NS1 pro-
tein expression was effectively increased 24 h postinfection

and was decreased in a dose-dependent manner under pro-
pofol treatment (Figure 2(b)). Overall, propofol inhibits
DENV viral protein expression independent of the transla-
tional blockade.

3.3. Propofol Does Not Affect DENV-Induced Endosomal
Acidification. The endosomal acidification step is critical for
DENV uncoating to release the viral genome for further rep-
lication in the cytoplasm [6]. Therefore, the pH-sensitive dye
acridine orange (AO) was used to explore whether propofol
affects the early stages of DENV infection accordingly [12].
After a 2-hour infection, images of AO-stained BHK-21 cells
showed a low pH in the endosomes (red) of DENV-infected
cells compared with mock-infected cells. Cells treated with
bafilomycin (Baf) A1, a V-ATPase inhibitor [12], were
intensely stained green, indicating that endosome acidifica-
tion was blocked. Notably, cells treated with propofol exhib-
ited a red color attenuated by cotreatment with Baf A1
(Figure 3). These results reveal that propofol does not affect
endosomal acidification during DENV infection.

3.4. Propofol Does Not Inhibit dsRNA Replication at the Early
Infectious Stage. Following endocytosis, the viral genome is
released into the cytoplasm and undergoes genome replica-
tion [6]. To investigate propofol’s inhibitory effect on viral
RNA replication, cells were pretreated with the indicated
drugs for 1 h and then infected with DENV for an additional
6 h. Images of dsRNA immunostaining showed that dsRNA
expression occurred, as demonstrated by positive staining
(green), in both cells treated with and without propofol
under DENV infection. However, cells pretreated with
Baf A1 as a positive control then treated with propofol
showed reduced dsRNA expression in the infected cells
(Figures 4(a) and 4(b)). The data demonstrate that propo-
fol does not affect blocking DENV viral dsRNA replication
at early infection.

3.5. Propofol Impedes Proinflammatory Cytokine Responses.
DENV infection induces robust cytokine productions, such
as TNF-α, which is immunopathogenic in vivo and in vitro,
to defeat hosts [13–15]. Although propofol is typically used
as an anesthetic agent, it also functions to eliminate inflam-
mation. Propofol reduces both the gene and cytokine
productions of TNF-α in not only CoCl2-treated hypoxic
BV2 microglia but also cecal ligation and puncture-
administrated rat liver [16, 17]. In this study, RAW 264.7
cells were pretreated with or without propofol (10 or
25μg/ml) followed by infected with DENV for 24h. ELISA
analysis showed that DENV infection significantly increased
mouse TNF-α production; however, propofol treatment
reduced the cytokine levels in a dose-dependent manner
(Figure 5(a)). Regarding propofol treatment that inhibits
DENV replication, it is hypothesized that propofol may
enhance antiviral interferon (IFN) responses. The protein
expressions of phospho-STAT1 and STAT1, the expected
transcription factor of antiviral IFN signaling, were increased
following DENV infection but inhibited by propofol treat-
ment (Figure 5(b)). Thus, it is suggested that propofol has
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anti-inflammation activity against DENV-induced cellular
inflammation.

4. Discussion

As a sedative agent, the anesthetic propofol is usually used in
critically ill patients [1]. Although it is not a standard med-
ication used in severe dengue patients, its immunomodula-
tory effects have been reported to inhibit inflammation.
Regarding its dual antimicrobial [4] and promicrobial
impact [18], this compound confers intense antiviral action
against enveloped viruses, especially the influenza viruses
(EP2590637A1; European Patent Office). However, propofol
is an emulsion of soybean oil, glycerol, and egg lecithin that
may prolong the environmental stability to sustain the sur-
vival of the hepatitis C virus under this lipid-based formula-

tion [19]. Therefore, the treatment time and the dosage of
propofol used for antimicrobial therapy need full consider-
ation. As demonstrated in this in vitro cell model, our study
is the first to report an antiviral effect of propofol against fla-
vivirus DENV infection.

To date, no licensed antiviral drugs are available for
treating DENV. Several potential agents, including chloro-
quine (a 9-aminoquinoline), balapiravir (4′-azidocytidine),
prednisolone, lovastatin, and the orα-glucosidase inhibitor
celgosivir, are relatively limited by their unusable antiviral
effects in dengue patients [20–22]. To speed the develop-
ment of antiviral agents against DENV infection, repurpos-
ing FDA-approved agents is an alternative strategy to
target DENV infection and replication [23]. Host factor
cyclooxygenase- (COX-) 2 can facilitate DENV replication,
and pharmacologically inhibiting its kinase activity has been
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demonstrated as a potential antiviral strategy [24]. Signifi-
cantly, treating macrophages with propofol could modulate
cellular inflammation via COX activity suppression [25,
26]. It is speculated that the antiviral activity of propofol is
mediated by targeting the COX signaling pathway.

Administration of propofol significantly inhibits virion
release following the inhibition of viral protein expression;
however, propofol treatment does not block DENV-
induced endosomal acidification or viral dsRNA replication.
Based on our findings, as demonstrated by using a replicon-
based reporter system, propofol did not interfere with viral
protein translation. All these results indicate a possible effect
initiated by propofol targeting protein posttranslational
modification. Although a COX-regulated viral infection
may act on viral gene transcription, protein expression, and
viral genome replication [27], its possible interaction with
host factors may also control the posttranslational regulation
of viral proteins [28]. Further investigations for exploring
propofol-mediated inhibition on the DENV infectious cycle,
such as viral protein posttranslational modification, virion
assemble, and release, are needed to identify propofol’s anti-
viral actions.

In addition to the modulation of cellular inflammation
through suppressing COX activity in macrophages, propofol
attenuates neuroinflammation. Peng et al. found that propo-
fol treatment blocks NF-κB/Hif-1α signaling and reduces the
gene expressions and cytokine secretions of TNF-α, IL-1β,
and IL-6 in hypoxic BV2 microglia [16]. Propofol treatment
also could remarkably inhibit gene expressions of TNF-α,
TLR-4, CD14, and GM-CSF in cultured hepatocytes under
LPS stimulation [29]. Besides, propofol exposure causes the
reductive numbers of TNF-α and inducible nitric oxide
synthase-producing dendritic cells in Listeria monocyto-
genes-infected mouse spleens, which therefore reduces the
sufficient bacterial clearance [30]. Proinflammatory cyto-

kines such as TNF-α are positively associated with severe
dengue disease [31]. Jhan et al. further revealed that the
blockade of TNF-α by knocking the TNF-α gene or neutraliz-
ing TNF-α could reduce the disease severity and mortality in
DENV-infected mice [15]. Therefore, in consideration of
propofol’s inhibition activity on TNF-α production, propofol
treatment may be a considerable agent to prohibit dengue
disease progression.

In conclusion, by using an in vitro cell model of DENV
infection, for the first time, we demonstrate the antiviral
capacity of propofol against DENV infection, which probably
occurs through a mechanism involving the blockade of viral
protein expression independent of translational inhibition
as well as the increase in an antiviral interferon response.
While propofol is used as a sedative agent, this study’s find-
ings further provide evidence to show the potential antiviral
and anti-inflammatory application of propofol in patients
with DENV infection. In considering safe dose used in the
clinic, an in vivo model of DENV infection is essential for
evaluating its antiviral and anti-inflammatory effects.
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