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Breast cancer is the 3rd most common type of malignant tumor worldwide with high heterogeneity, frequent recurrence, and high
metastasis tendency. In this study, we aimed to demonstrate the value of extracellular matrix- (ECM-) related genes in breast
cancer patients. The overall expression of ECM is assessed with a novel SC3 clustering method, and patients were divided into
two clusters with diverse recurrence rate. We established the Cox regression model in breast cancer patients and identified
NPPA as an independent prognostic marker. The NPPA expression is downregulated in breast cancer patients, independent of
the ER status, PR status, stemness score, and immune infiltrating condition. And we observed the enhanced proliferation,
migration, and invasion potential of breast cancer cells after NPPA depletion. Further, we predicted the transcription
modulation of NPPA with PROMO and JASPAR. And we further validated the binding of MZF1 to the -318 bp~-452 bp
region of the NPPA promoter with chromatin immunoprecipitation and dual luciferase assay. Together, our study identified
NPPA as a potential prognostic biomarker for breast cancer patients, whose downregulation is associated with an enhanced
malignant behavior of breast cancer cells both in vivo and in vitro and identified the transcription regulation of NPPA by MZF1.

1. Introduction

Breast cancer is among the most common types of malignant
tumor worldwide and the most common type of malignant
tumor in women, accounting for at least half million of death
annually [1]. Breast cancer typically has a high level of hetero-
geneity and can be further categorized into multiple subtypes
with respect to variousmolecular and pathological signatures,
including Her2 status, estrogen receptor (ER) status, proges-
terone receptor (PR) status, and PAM50 features [2, 3]. Like
other types of malignant tumors, early diagnosed breast
cancer are largely curable with the combination of primary
surgical approaches and multiple following effective subse-

quential therapies, including chemotherapy, radiotherapy,
or targeted therapy [4–6]. However, the high recurrence rate
of breast cancer remains a critical barrier for the long-term
survival of patients. Also, the underlying mechanisms of
recurrence and distant metastasis are not fully investigated.

Extracellular matrix (ECM) typically includes fibrillar
collagens, fibronectin, specific laminins, proteoglycans, and
matricellular proteins [7]. The extracellular matrix-related
genes comprise of at least 555 proteins and are considered
to have a critical influence on the prognosis of cancer [8],
whose alteration are closely linked to the invasion and
metastasis of the tumor [9–11], such as brain and lung
metastases [12]. The chemical and biological properties of
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ECM are highly complicated and are delicately modulated in
the tumor microenvironment, including local hypoxia,
nutrition deprivation, and the infiltration of immune cells
[13–17]. The modeling of cancer ECM by various cell types,
such as epithelia and stroma, has been proposed to have a
profound effect on the progression of cancer [18]. While
many of the ECM-related genes and their regulation net-
work have been identified [19–21], the ECM-related genes
in the Gene Ontology (GO) database comprises of as many
as 555 genes, whose biological functions are largely
unknown. Besides, the approaches to modulate ECM in
breast cancer tissues are very limited [8, 21, 22].

NPPA (natriuretic peptide precursor A) belongs to the
ECM genes in the GO database, whose expression is consid-
ered to involve in the familial atrial fibrillation, heart devel-
opment, and hypertension [23–25]. However, the function
and expression of NPPA in cancer, such as breast cancer,
have not been explored.

The single-cell consensus matrix (SC3) model was pro-
posed by Kiselev et al. as a quick and efficient nonmoni-
tored clustering method, primarily used in the analysis of
single-cell sequencing data [26]. With this method, we
could calculate the eigenvector of each sample with all the
expression genes and effectively distinguish the subclusters
of breast cancer patients while identifying the potential
markers for each cluster.

Here, in this study, we have analyzed the expression of
all 555 ECM-related genes in the TCGA breast cancer data-
base and performed a novel SC3 method to cluster breast
cancer patients. We have identified a 49-gene ECM signature
in breast cancer patients and eventually identified NPPA as
an independent prognostic marker with the forward
stepwise multivariate Cox regression model. Further, we
validated the proliferation suppression function of NPPA
both in vivo and in vitro. Lastly, we predicted and validated
the transcription modulation of NPPA by MZF1, at the
-318~-452 bp of the NPPA promoter. Together, our findings
identified NPPA as a prognostic marker, unveiled the bio-
logical function of NPPA, and explored the transcription
modulation of NPPA by MZF1, which we believe would
expand the horizon for breast cancer treatment.

2. Material and Methods

2.1. Data Collection. mRNA sequencing data, molecular
categories, immunohistochemistry (IHC) staining data, and
clinical information of breast cancer patients and other
cancer types were obtained from the TCGA BRCA database
(https://tcga-data.nci.nih.gov/), Human Protein Atlas
(https://www.proteinatlas.org/), IST Online (https://ist
.medisapiens.com/), GEO database (https://www.ncbi.nlm
.nih.gov/), and GEPIA (http://gepia.cancer-pku.cn/index
.html), respectively. The expression pattern of normal breast
tissues and paratumor tissues was acquired from the TCGA
database, GEO database (GES65261), and GTEx database
(https://xenabrowser.net/), respectively.

Stemness score and ssGSEA result from mRNA were
acquired from the TCGA PAN-CANCER database (https://
xenabrowser.net/datapages/). Levels of different immune

cells in breast cancer patients were acquired from GEPIA
(http://gepia.cancer-pku.cn/index.html).

Telomere length for breast cancer patients was acquired
from previous research [27].

2.2. Kaplan-Meier Analysis. Kaplan-Meier analysis was per-
formed with GraphPad (https://www.graphpad.com/), SPSS
(https://www.ibm.com/products/spss-statistics), and GEPIA
to calculate log-rank significance in different groups of
breast cancer patients. Besides, Kaplan-Meier analysis was
performedwith SPSS and visualizedwithGraphPad to stratify
patients with respect to ER status, PR status, postoperation
radiation, and PAM50 subtypes in breast cancer patients.

The overall survival (OS), disease-specific survival (DSS),
disease-free interval (DFI), and progression-free interval
(PFI) were compared in breast cancer patients.

2.3. Multiple Variate Cox Regression. Multiple variate Cox
regression was performed with SPSS. The forward stepwise
method was performed with the threshold of p < 0:05 to
include and p > 0:10 to acquire independent factors for the
prognosis of breast cancer patients.

Significant and independent factors predicting OS, DSS,
DFI, or PFI were selected in breast cancer patients. The
corresponding risk scores for OS, DSS, DFI, and PFI were
calculated and assessed, respectively.

2.4. Heatmap and Hierarchical Clustering. Heatmap and
hierarchical clustering were performed with the MeV soft-
ware (https://sourceforge.net/projects/mev-tm4/). Expres-
sion levels of all genes included in the analysis were
normalized with respect to the median of the gene across
all patients, and the color scale was normalized and set to
-2~2. Hierarchical clustering was performed with the Euclid-
ean clustering method with average linkage and optimized
gene/sample order.

Heatmap and the following hierarchical clustering
enabled us to directly visualize the expression pattern of
certain clusters of genes and samples.

2.5. Data Analysis. IHC data was analyzed with Image-Pro
Plus (https://www.totalsmart.com.tw/cn/image-pro-plus).

The correlation between two groups of samples was
performed and plotted with GraphPad. Linear regression
was performed with SPSS, and 95% CI was plotted in a
dotted line.

Student’s t-test was performed with GraphPad.
Single-cell consensus clustering (SC3) was carried out

with R package [26], and the dimension reduction method
with the t-SNE method was archived with python [28].

2.6. Statistical Analysis. Student’s t -test was performed to
compare the expression level of different groups unless
otherwise stated. Paired Student’s t-test was used to compare
the NPPA and MZF1 mRNA levels in tumor tissues and
paired paratumor tissues.

Log-rank analysis was utilized to compare the survival of
breast cancer patients. Pearson’s correlation coefficient was
calculated between two genes in breast cancer (such as
NPPA and MZF1).
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2.7. Prediction of the Transcriptional Modulation of NPPA.
To further explore the transcriptional modulation of NPPA
in breast cancer patients, the DNA sequence of the SMC4
promoter region (-1000 bp~-1 bp) was obtained from the
UCSC database (http://www.genome.ucsc.edu/index.html).
The binding affinity of all transcription factors to all binding
sites were predicted in both the PROMO database (http://
alggen.lsi.upc.es/recerca/frame-recerca.html) and JASPAR
database (http://jaspar.genereg.net/).

Next, the mutual transcription factors in both database:
transcription factors with dissimilarity < 5% in the PROMO
database, or with relative score > 90% in the JASPAR data-
base, were selected as potential transcription factors for the
modulation of NPPA. Lastly, we analyzed the expression
level of NPPA and candidate transcription factors and tran-
scription factors in the TCGA database and transcription
factors with Pearson’s R > 0:25 or <-0.25 were selected for
further validation.

2.8. Chromatin Immunoprecipitation (ChIP) and Dual
Luciferase Reporter Assay. ChIP experiment was performed
with the Chromatin Immunoprecipitation kit (Merck Milli-
pore, MA, USA) according to the manufacturer’s instruc-
tions. Quantitative PCR was used to measure the relative
enrichment of MZF1 on the NPPA promoter, using primers
specific for each target gene promoter. Primer sequences were
as follows: primer for -318~-452, F: 5′- GCTGGCTGCCT
GCCATTTCCTC -3′, R: 5′- CGTGCCTCAGGATTCTTTC
-3′ and primer for -889~-762, F: 5′- TCCTCCATCGGTCA
AGTTGC-3′, R: 5′- CGACCCTCCTCCAGCATGCT-3′.

Dual luciferase reporter assay was performed with firefly
plasmid carrying -300 bp~-500 bp of the NPPA promoter
and control Renilla plasmid. 10 : 1 of firefly and Renilla plas-
mid was cotransfected to breast cancer cell lines. After 2 days
of transfection, cells were harvested and lysed in lysis buffer
(Promega, Madison, WI, USA), and the activity of both plas-
mid was detected by the Dual-Luciferase Reporter Assay
System (Promega). The results were normalized to the
Renilla activities and analyzed with GraphPad.

2.9. Constructs and Transfections. Specific target shRNAs and a
nontarget shRNA were cloned into lentiviral vector pLKO.1. 2
different shRNA sequences were employed in this study:
shNPPA seq.1: 5′- GAGCTAATCCCATGTACAATG-3′ and
shNPPA seq.2: 5′- TTGTACATGGGATTAGCTCTG-3′.

The overexpression of flag-tagged MZF1 protein and
shRNA transfection were achieved with plasmid as previ-
ously reported [29].

2.10. Cell Culture. Breast cancer cells MCF-7, MDA-MB-
231, BT-20, and HCC1937 are obtained from Shanghai
Institute of Oncology. MCF-7 and MDA-MB-231 cells
were cultured in DMEM/F12 supplemented with 10%
FBS and 1% P/S. BT-20 cells were cultured in MEM
supplemented with 10% FBS and 1% P/S. HCC1937 were
cultured in the RPMI-1640 medium supplemented with
10% FBS and 1% P/S.

All cells were cultured in a humidified condition at 37
degrees with 5% CO2.

2.11. Proliferation Assay of Breast Cancer Cells. For the pro-
liferation assay of 4 breast cancer cell lines, 2000 cells were
seeded in triplicates in a 96-well plate on the first day. Cell
viability was measured for 5 consecutive days with 1 hour
incubation in the Cell Counting Kit-8 (MedChemExpress).

2.12. Invasion and Migration Analysis of Breast Cancer Cells.
Matrigel invasion assay was performed as previously
reported [30]. In brief, Matrigel was dissolved at 4 degrees,
diluted to 25% with DMEM, and coated on top of the Trans-
well (25μl per Transwell). A complete medium was added to
the lower chamber of the 24-well plate, and cells were resus-
pended in DMEM at 5∗105/ml and 100μl of the cells seeded
on top of the Matrigel. After 24~48 h, cells were fixed and
stained with crystal violet.

Migration assay was also performed as previously
reported [31]. In brief, a complete medium was added to
the lower chamber of the 24-well plate. Cells were then
resuspended in DMEM at 5∗105/ml, and 100μl of the cells
was seeded on top of the Transwell. After 24~48h, cells were
fixed and stained with crystal violet.

2.13. Quantitative PCR (qPCR). qPCR was performed as
previously reported.

Primers used are as follows: NPPA_F: CAACGCAGA
CCTGATGGATTT; NPPA_R: AGCCCCCGCTTCTTCA
TTC; MZF1_F: TCCAGGTAGTGTAAGCCCTCA; MZF1_
R: TCCTGTTCACTCCTCAGATCG; GAPDH_F: AAGG
TCGGAGTCAACGGATT; GAPDH_R: CTCCTGGAAGA
TGGTGATGG; ACTIN_F: CCTGGCACCCAGCACAAT;
and ACTIN_R: GGGCCGGACTCGTCATACT.

2.14. In Vivo Experiments. Nude mouse xenograft model was
established with the MCF-7 breast cancer cell line. In brief,
2∗106 MCF-7 cells transfected with shCtrl, shNPPA seq.1,
or shNPPA seq.2, respectively, were injected to 6-8 weeks
old nude mice. Tumor volume was measured every 3-4 days
once the tumor was observable. Mice were sacrificed once
the tumor volume was close to 1000mm3.

3. Results

3.1. The Landscape of ECM-Related Genes in Breast Cancer
Patients. A total of 568 extracellular matrix- (ECM-) related
genes were acquired from a Gene Ontology term, GO_
EXTRACELLULAR_MATRIX, in the GSEA database
(http://www.gsea-msigdb.org). To interpret the significance
of extracellular matrix-related genes in breast cancer patient,
we demonstrated the expression matrix of these genes from
the TCGA database (https://portal.gdc.cancer.gov/). A
nonsupervised clustering method, SC3 clustering method
(single-cell consensus matrix), was performed, and the clus-
tering results were visualized with a t-distributed stochastic
neighbor embedding (t-SNE) method (Figure 1(a)). To
determine the appropriate number of clusters, we compared
the overall survival (OS), disease-specific survival (DSS),
disease-free interval (DFI), and progression-free interval
(PFI) with Kaplan-Meier analysis in all clusters of patients.
And a significant difference in DSS, DFI, and PFI can only
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Figure 1: Continued.
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be observed in breast cancer patients when they were divided
into 2 clusters (Figure 1(b)).

To illustrate the significance of the clustering, we labeled
the pathological staging, AJCC staging, radiation treatment,
PR status, PAM50 status, new tumor events status, new
tumor anatomic site, and new tumor event types in these 2
clusters of breast cancer patients (Figure 1(c) and Suppl.
Figure 1A-1C). As shown in Figure 1(c), there is no

difference in the pathological and AJCC staging,
postoperation treatment, and the molecular subtypes of the
patients (Suppl. Figure 1A-1B), yet we observed a dramatic
increase in the relapse of the tumor (Suppl. Figure 1C).
Further bioinformatics analysis unveiled that the new
tumor events after initial treatment were most commonly
distant metastasis, most commonly observed in bones
(Suppl. Figure 1C).
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Figure 1: The landscape of ECM-related genes in breast cancer patients. (a) t-SNE method showing the SC3 clustering result. 2 to 4 groups
of patients were demonstrated and labeled. (b) Kaplan-Meier analysis comparing the OS, DSS, DFI, and PFI of different clusters of breast
cancer patients in (a). (c) The labeling of pathological stages, AJCC stages, radiation therapy condition, PR status, PAM50 subtypes,
postoperative new tumor events, new tumor event anatomic site, and new tumor event types in breast cancer patients. (d) Volcano plot
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Figure 2: Identification of NPPA as an independent prognostic marker for breast cancer patients. (a) Heatmap showing the marker genes in
SC3 clustering results. (b) Volcano plot showing the significance of genes in Cluster 1 vs. Cluster 2 and in SC3 clustering result. Mutually
significant genes were defined as marker genes and were labeled in red. (c) Heatmap showing the expression of ECM marker genes in breast
cancer patients. Three major clusters of patients were identified as high, medium, and low ECM levels. (d) Kaplan-Meier analysis comparing
the DSS and PFI of the high-, medium-, and low-ECM breast cancer patients. (e) Multivariate Cox regression results showing the
independent marker genes and clinical features for the prognosis of breast cancer patients. Risk factors for OS, DSS, DFI, and PFI were
calculated with respect to the Cox regression results. (f) Kaplan-Meier analysis comparing the high vs. low risk scores in OS, DSS, DFI,
and PFI was demonstrated in breast cancer patients. (g, h) Kaplan-Meier analysis comparing the high vs. low NPPA in OS, DSS, DFI,
and PFI was demonstrated in breast cancer patients (g) or in breast cancer patients stratified by postoperative radiation therapy.
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With the single-sample gene set enrichment analysis
(ssGSEA), we observed the most significantly altered path-
ways in Cluster 1 and Cluster 2 (Figure 1(d)). And pathways
correlated with the tumor recurrence, such as regulation of
telomerase pathway, SMAD2/3/4 heterotrimer-regulated
transcription pathway and the activation of NIMA kinases
pathway, were significantly activated, while the pathways
involved in the DNA damage repair pathways, such as rec-
ognition and association of DNA glycosylases pathway and
the cleavage of the damaged purine pathway, were inhibited.

3.2. Identification of NPPA as an Independent Prognostic
Marker for Breast Cancer Patients. We collected the most
altered genes between Cluster 1 and Cluster 2 as potential
markers for breast cancer patients (Figure 2(a)), and the
significance between the mRNA level of all ECM genes in
Cluster 1 and Cluster 2 patients was calculated. Eventually,
49 marker genes with p < 10−10 in SC3 method and with
p < 10−5 between Clusters 1 and 2 were further selected
as the signature of ECM-related genes (Figure 2(b)).

With hierarchical clustering, breast cancer patients
were further categorized into 3 different levels with respect
to the expression pattern of ECM marker genes, termed as
the low-, medium-, and high-ECM groups, respectively,
(Figure 2(c)). Kaplan-Meier analysis showed patients with
higher ECM level showed impaired DSS and a tendency
to reduce PFI in breast cancer patients (Figure 2(d)).

To further explore the prognostic significance of these
marker genes in breast cancer patients, we performed a mul-
tivariate Cox regression model to select the independent
markers for DFI, DSS, PFI, and OS (Figure 2(e)). Clinical
features, including CN clusters, ER status, PAM50 status,
PR status, TNM staging, surgical procedure name, histolog-
ical type, and pathological staging together with 49 ECM

markers were included in the model. Results showed that
PR status, pathological staging, and the expression of
ADAMTS13 and NPPA correlated with the DFI; pathologi-
cal staging and the expression of SEMA3B and GDF15
correlated with the DSS; PR status, pathological staging,
and the expression of EDIL3 and MFAP4 correlated with
the PFI; and pathological staging and the expression of
SEMA3B, COL17A1, EDIL3, and GDF15 correlated with
the OS of the breast cancer patients (Figure 2(e)).

Risk scores for the OS, DSS, DFI, and PFI were calculated
with results in Figure 2(e), respectively, and the significance of
these risk scores was demonstrated (Figure 2(f)). Then, we
assessed the prognostic value of all these independent genes
and results showed only SEMA3B and NPPA could signifi-
cantly predict the DFI, PFI, and DSS of breast cancer patients
(Figure 2(g) and Suppl. Figure 2A). Considering the fact that
the biological function of SEMA3B has been proposed, we
seek to unveil the function of NPPA in breast cancer.

Next, we observed that the NPPA was significantly
correlated with the DSS of breast cancer patients stratified
by postoperative radiation therapy condition (Figure 2(h)),
but not in breast cancer patients stratified by ER status
(Suppl. Figure 2B), PR status (Suppl. Figure 2C), and
PAM50 subtypes (Suppl. Figure 2D).

3.3. The Expression of NPPA Was Impaired in Breast Cancer
Tissues.We compared the expression pattern of NPPA in both
normal and malignant tumor tissues with IST Online. As
shown in Figure 3(a), NPPA was highly expressed in the nor-
mal endocrine system, myeloma lung carcinoid tumor, and
glioma, yet NPPA was significantly reduced in breast cancer
(Figure 3(b)). Consistently, we observed that the expression
of NPPA was suppressed in various tumor tissues and was
only overexpressed in lower grade glioma (Figure 3(c)).
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Figure 3: The expression of NPPA was impaired in breast cancer tissues. (a–c) The expression pattern of NPPA in IST Online (a), GEPIA
(b), or in TCGA (c). (d) The expression of NPPA mRNA in tumor and paratumor tissues (A), in different PAM50 subtypes (B), and in
GSE65216 database (C). (e, f) The expression (e) and quantification (f) of NPPA protein level in the Human Protein Atlas with
immunohistochemistry. Average optical density (AOD) was used to determine the protein level of NPPA. For the data in (d), (A) was
analyzed with paired Student’s t-test and the rest were analyzed with Student’s t-test. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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Further, we showed NPPA was decreased in breast can-
cer in the TCGA and GSE65216 databases, especially in the
basal group (Figure 3(d)). Next, we collected the NPPA
immunohistochemistry (IHC) staining in the normal and
breast cancer tissues from the Human Protein Atlas database
(Figure 3(e)) and consistently impaired NPPA level were
observed in breast tumor tissues (Figure 3(f)).

However, the expression of NPPA was not altered in
patients with/without radiation therapy (Suppl. Figure 3A)
and in patients with different ER status (Suppl. Figure 3B)
or histological staging (Suppl. Figure 3C). Further, we

observed a weak correlation of NPPA with stemness score
(Suppl. Figure 3D), relative telomere length (Suppl.
Figure 3E), and various T cells (Suppl. Figure 3F) in breast
cancer patients.

3.4. NPPA Silencing Promotes the Malignant Behavior of
Breast Cancer Cells. Breast cancer patients were further
divided into three different groups according to their sepa-
rate proliferation potential (Figure 4(a)), and the expression
level of NPPA was gradually decreased in patients with
higher proliferation potential (Figure 4(b)).
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Figure 4: NPPA silencing promotes the malignant behavior of breast cancer cells. (a) Heatmap showing the proliferation potential of breast
cancer patients in the TCGA database. The top three clusters of patients were identified as the high, medium, and low proliferation groups.
(b) Quantification of NPPA mRNA level in the high, medium, and low proliferation breast cancer patients. (c) The proliferation curve of
NPPA depleted or control cells. Experiments were performed in 4 different breast cancer cell lines. (d, e) The typical figure (d) and the
quantification (e) of MCF-7 cells and MDA-MB-231 cells in the Transwell experiments. Migration (A) and invasion (B) were assessed,
respectively, in NPPA depleted or control cells. (f, g) The proliferation curve (f) and the tumor image (g) of MCF-7 nude mouse
xenograft. Tumor growth and tumor volume were assessed in NPPA depleted or control MCF-7 cells. Data are represented as
mean ± SEM, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. The data were analyzed using Student’s t-test.
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To validate our findings with the bioinformatics analysis,
we established 4 different breast cancer cell lines with stably
NPPA knockdown with two different sequences of shRNA
(Suppl. Figure 4A). The NPPA knockdown with two
different shRNAs could significantly enhance the
proliferation potential of 4 different breast cancer cells,
despite their subtypes or ER status (Figure 4(c)).

To confirm whether NAAP also has a critical role in the
migration and the invasion of breast cancer cells, we
performed Transwell experiments with MCF-7 and MDA-
MB-231 cells. Results showed NPPA knockdown could sig-
nificantly enhance the migration and the invasion of breast
cancer cells (Figures 4(d) and 4(e)). However, the necrosis

and the apoptosis of MCF-7 and MDA-MB-231 cells were
not affected by NPPA knockdown (Suppl. Figure 4B-4C).

Next, we sought to validate our findings in nude mouse
xenograft model. As expected, we observed the enhanced
proliferation of NPPA knockdown MCF-7 cells, as com-
pared with the control groups (Figures 4(f) and 4(g) and
Suppl. Figure 4D-4E).

3.5. NPPA Was Transcriptionally Modulated by MZF1 in
Breast Cancer Cells. We further tried to explore the tran-
scription modulation of NPPA in breast cancer cells. With
PROMO and JASPAR, we predicted the binding of all
human factors on the -1000 bp promoter region of NPPA.
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Figure 5: NPPA was transcriptionally modulated by MZF1 in breast cancer cells. (a) Veen plot showing the mutual transcription factors
identified by both PROMO and JASPAR. (b) Dot plot showing the Pearson correlation between mRNA level of NPPA and 11
transcription factors. MZF1 was labeled in red. (c) Dot plot showing the correlation between NPPA and MZF1 mRNA levels in breast
cancer patient. (d) The binding motif of MZF1. (e) The binding site of MZF1 to the promoter region of NPPA with PROMO and
JASPAR. Binding sites in PROMO and JASPAR were labeled in red and blue, respectively. (f, g) Quantification of MZF1 and NPPA
mRNA in MZF1 overexpressed MCF-7 (f) and MDA-MB-231 (g) cells. (h, i) ChIP result showing the binding of MZF1 to the -381~-
452 bp of the NPPA promoter region in MZF1 overexpressed MCF-7 (h) and MDA-MB-231 (i) cells. (j, k) Dual luciferase assay showing
the relative transcription activity of -300~-500 bp (Firefly/Renilla, RLU) in MZF1 overexpressed MCF-7 (j) and MDA-MB-231 (k) cells.
Data are represented as mean ± SEM; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001. The data were analyzed using Student’s t-test.
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With dissimilarity < 5% in PROMO and relative profile
score > 90% in JASPAR, we identified 11 mutual transcrip-
tion factors with both methods (Figure 5(a)). Then, we
estimated the Pearson correlation between the mRNA level
of these genes with NPPA, respectively (Figure 5(b)), and
we observed that only MZF1 is highly correlated with the
NPPA (Figure 5(c)). Consistently, we identified the reduced
MZF1 level in tumor tissues, especially in the basal subtype
of breast cancer tissues (Suppl. Figure 5A-5B).

The binding motif of MZF1 is shown in Figure 5(d), and
the corresponding binding site of MZF1 in PROMO and
JASPAR was mainly clustered in the -750 bp and -350 bp
regions of the NPPA promoter (Figure 5(e)). Consistently,
we observed that the expression of NPPA was elevated in
MCF-7 and MDA-MB-231 cells overexpressed with flag-
tagged MZF1 (Figures 5(f) and 5(g)). To validate our find-
ings, we explored the binding of MZF1 in the promoter
region of NPPA with ChIP experiments. We observed the
binding of MZF1 to the -318~-452 bp, but not the -889~-
762 bp, of the NPPA promoter in both cell lines
(Figures 5(h) and 5(i)). Further, we performed the dual lucif-
erase assay with the -300~-500 bp of the NPPA promoter
and observed a enhanced transcription activity of NPPA in
MZF1 overexpressed MCF-7 and MDA-MB-231 cells
(Figures 5(j) and 5(k)).

4. Discussion

Breast cancer is one of the leading cause of tumor-related
death worldwide, whose incidence rate has been increasing
for decades. While various approaches of treatment as well
as multiple molecular subtypes of breast cancer have been
proposed, the recurrence of breast cancer remains high and
the biological significance of ECM-related genes, especially
the function and role of NPPA in breast cancer patients,
have not been discussed.

Here, in this study, we performed a novel SC3 clustering
method of breast cancer patients with respect to the expres-
sion pattern of ECM-related genes and identified a cluster of
breast cancer patients with much lower recurrence rate
(Figure 1). We collected the marker genes for this cluster
of breast cancer patients and assessed the correlation
between the expression level of ECM-related genes and their
prognosis with integrated bioinformatics analysis. We even-
tually identified NPPA as a novel prognostic marker for
breast cancer patients. Also, NPPA remains a significant
prognostic in breast cancer patients stratified by postopera-
tive radiation condition, but not by ER status, PR status,
and PAM50 subtypes.

The expression pattern of NPPA across various human
tissues and cancer types has been demonstrated, and NPPA
is simultaneously downregulated in cancer tissues. Further,
we observed the reduced NPPA in mRNA and protein levels
and the knockdown of NPPA result in the enhanced prolif-
eration, migration, and invasion of breast cancer cells both
in vivo and in vitro. However, the expression of NPPA in
breast cancer is based on a computational study and further
validation in patients is needed.

Eventually, we explored the transcription modulation of
NPPA in breast cancer cells. We identified MZF1 as a key
transcription factor for NPPA and predicted the binding of
MZF1 to the two different domains of the NPPA promoter
region. With the chromatin immunoprecipitation (ChIP)
experiment as well as the following dual luciferase assay,
we identified that the binding of MZF1 to the -300~-
500 bp of the NPPA promoter could promote the transcrip-
tion of NPPA.

Together, we plotted the expression pattern of ECM-
related genes in breast cancer patients and identified a novel
independent prognostic factor, NPPA, in the breast cancer
patients. With both bioinformatics and experimental
approaches, we established the expression pattern of NPPA
and explored its biological function in breast cancer cells.
We believe our findings would provide a novel insight into
the prevention of breast cancer recurrence and provide a
new approach in the treatment of breast cancer.
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Supplementary Figure 1: (A) quantification of pathological
stages, AJCC stages, and postoperative radiation therapy
condition in Cluster 1 and Cluster 2 breast cancer patients.
(B) Quantification of PR status and PAM50 subtypes in
Cluster 1 and Cluster 2 breast cancer patients. (C) Quantifi-
cation of postoperative new tumor events, new tumor event
anatomic site, and new tumor event types in Cluster 1 and
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Cluster 2 breast cancer patients. Supplementary Figure 2:
(A) Kaplan-Meier analysis comparing the prognostic value
of ADAMTS13, SEMA3B, GDF15, EDIL3, MFAP4, and
COL17A1 in breast cancer patients. DSS, DFI, and PFI were
analyzed. (B–D) Kaplan-Meier analysis comparing the DSS
and PFI of breast cancer patients with high or low NPPA
level. Patients were stratified by ER status (B), PR status (C),
or PAM50 subtypes (D). Supplementary Figure 3: (A–C)
the expression pattern of NPPA in breast cancer patients with
different postoperative radiation conditions (A), ER status
(B), and AJCC staging (C). (D, E) Dot plot showing the corre-
lation between NPPA mRNA and stemness score (D) and
relative telomere length (E). (F) Dot plot showing the correla-
tion between NPPA mRNA with the tumor infiltration T cell
subtypes. The data were analyzed using Student’s t-test,
∗p < 0:05. Supplementary Figure 4: (A) quantification of
NPPA mRNA level in 4 NPPA depleted or control breast
cancer cell lines. (B, C) Quantification of necrosis and
apoptosis cell percentage with flowcytometry in NPPA
depleted or control MCF-7 (B) and MDA-MB-231 (C) cells.
(D, E) Quantification of body weight (D) and tumor weight
(E) in nude mouse xenograft model with NPPA depleted or
control MCF-7 cells. Data are represented as mean ± SEM,
∗∗p < 0:01. The data were analyzed using Student’s t-test.
Supplementary Figure 5: (A) the expression pattern of MZF1
in the TCGA breast cancer database. The data were analyzed
using paired Student’s t-test; *p < 0:05. (B) The expression
pattern of MZF1 in different subtypes of breast cancer in the
GSE65216 database. The data were analyzed using Student’s
t-test; ∗∗∗∗p < 0:0001. (Supplementary Materials)
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