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Renal cell carcinoma (RCC), as one of the most common malignant tumors in the urinary system, is featured with high morbidity
and mortality. Although the improvement of clinical intervention, such as surgery technology, chemotherapy, and radiotherapy,
has been made, the outcomes of RCC patients are still poor. Novel targets for RCC treatment are urgently needed. Recently,
circRNA has been in-depth studied and is considered as a promising direction for gene target therapy. In this study, we
explored the function of circFOXP1 in RCC progression and its underlying mechanisms. Firstly, we demonstrated the
characterization and expression of circFOXP1 in RCC tissues and cells. Next, by conducting a serial experiment, we found that
downregulated circFOXP1 inhibited cell proliferation, migration, invasion, and the Warburg effect. Next, our experiments
found that circFOXP1 upregulated U2AF2 expression via sponging miR-423-5p in RCC cells. Moreover, we found that
ZNF263 induced circFOXP1 expression in RCC cells. To sum up, our study partially demonstrated that the novel
ZNF263/circFOXP1/miR-423-5p/U2AF2 axis has a role in RCC progression. Our results might provide a new direction for
RCC therapeutic target exploring.

1. Introduction

Renal cell carcinoma (RCC) is considered one of the most
common malignant tumors in urinary cancers. It has been
reported that more than 40,000 patients were firstly diag-
nosed with RCC in 2018 worldwide [1]. Although consider-
able improvements in diagnosis strategy and clinical therapy
have been made in the past decades, the morbidity and mor-
tality of RCC are still rising[2]. Most patients were diag-
nosed at a metastasis stage due to fact that the initial
symptoms of RCC are hardly being noticed [3]. Further-
more, RCC is considered chemotherapy- or radiotherapy-
resistant tumor, which brought enormous clinical interven-
tion. Finding novel therapeutic targets for RCC is urgently
needed.

Circular RNAs (circRNAs) are defined as one subtype of
noncoding RNAs characterized by their circular configura-
tion structure by connecting its 5′ and 3′ ends [4]. With
the high-throughput technology innovation in the past
decades, the function of circRNAs has been investigated in-
depth. Mechanically, circRNAs are capable of playing their
functions via transcriptionally regulating gene expression,
interacting with proteins, and encoding protein [5–7]. Bio-
logically, circRNAs were reported to participate in various
cellular progressions, including immune response, viral
infection, inflammation, angiogenesis, and tumorigenesis
[8–11]. The function of circRNAs in RCC development has
been widely investigated. Xue et al. revealed that circ-AKT3
was involved in the progression of RCC through modulating
miR-296-3p/E-cadherin signals [12]. Li et al. demonstrated
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that circTLK1 promotes RCC progression via sponging miR-
136-5p [13]. Li et al. investigated the role of circPRRC2A in
RCC progression [14]. Emerging evidences suggest the essen-
tial role of circRNAs in RCC development, which indicates
that circRNA is one promising therapeutic target for RCC.
Our group noticed that circRNA FOXP1 was involved in
multiple tumorigenesis, such as gallbladder cancer, hepato-
cellular carcinoma, and lung cancer [15–17], while whether
circFOXP1 exerts its role in RCC progression remains
uncovered.

In the current study, we hypothesized that circFOXP1
plays its role in the progression of RCC. By elucidating the
characterization and expression of circFOXP1 in RCC tis-
sues and cells, our results found that circFOXP1 expression
was upregulated in RCC tumors. By conducting a serial bio-
logical experiment, we found that downregulated circFOXP1
inhibited cell proliferation, migration, invasion, and the
Warburg effect. Furthermore, we utilized bioinformatics
analysis, RNA pull-down assay, RIP, and luciferase reporter
gene assay, and we found a novel circFOXP1/miR-423-
5p/U2AF2 axis. Moreover, the upstream regulator of cir-
cFOXP1 was verified; ZNF263 induced circFOXP1 expres-
sion in RCC cells. Collectively, our results suggested that
circFOXP1 induced by ZNF263 promotes RCC progression
through the miR-423-5p/U2AF2 axis. We might find novel
diagnostic or therapeutic targets for RCC.

2. Methods and Materials

2.1. Tissue Samples. Renal cell carcinoma tissue samples
(thirty cases) and their adjacent normal tissues came from
patients who experienced operation at Huai’an Second Peo-
ple’s Hospital and the Affiliated Huai’an Hospital of Xuzhou
Medical University from 2018 to 2019. Tissues were frozen

at -80°C immediately in liquid nitrogen for further investiga-
tion. Before surgery, patients had not received any chemo-
therapy, radiotherapy, or gene target therapy. Informed
consent was obtained from patients before this study. All tis-
sues were confirmed by three pathologists independently.
The Ethics Committee of Huai’an Second People’s Hospital
and the Affiliated Huai’an Hospital of Xuzhou Medical Uni-
versity approved all approaches in this study.

2.2. Cell Culture and Transfection. All cells applied in this
research (HK-2, 293 T, ACHN, 786-O, OSRC-2, A 498,
and CAKI-1) were commercially acquired from American
Type Culture Collection (ATCC, USA). Cells were cultured
in a humid environment with 5% CO2 at 37

°C. Medium con-
taining Dulbecco’s modified Eagle’s medium (DMEM, USA)
and 10% fetal bovine serum (FBS, USA) was used to culture
cells. All shRNAs, lentiviruses, plasmids, and probes used in
the current study were synthesized and procured from Gen-
eChem company (Shanghai). Transfection was performed
using Lipofectamine 3000 kit (Invitrogen, USA) according
to the manufacturer’s protocol.

2.3. RNA Isolation and Real-Time PCR. According to the
producer’s protocol, total RNAs were harvested using TRI-
zol reagent (Invitrogen) and bred with RNAse R (Epicentre
Technologies, USA) at 37°C for half an hour. PrimeScript
RT reagent Kit (Takara, Shiga, Japan) was used to accom-
plish reverse transcription of RNAs following the manufac-
turer’s protocol. Quantitative RT-PCR was conducted
applying a real-time PCR system (Applied Biosystems) and
T.B. Green Premix Ex Taq II (Takara, Japan). GAPDH or
U6 normalized relative expression of RNAs by using the 2-
ΔΔCTmethod. Primers used in this study are as follows
(Table 1).

Table 1

Gene Sequence

circFOXP1
Forward 5′-CTCCTCTGCACCTTCCAAGA-3′
Reverse 5′-ATCATAGCCACTGACACGGG-3′

mFOXP1
Forward 5′-CTTGCTCAAGGCATGATTCC-3′
Reverse 5′-CCTTGGTTCGTCAGCCAGTA-3′

miR-423-5p
Forward 5′-CGAAGTTCCCTTTGTCATCCT-3′
Reverse 5′-GTGCAGGGTCCGAGGTATTC-3′

miR-3184-5p
Forward 5′-TGAGAAACCTCAGATTGAGCTTTT-3′
Reverse 5 ′-CTCTACAGCTATATTGCCAGCCA-3′

miR-138-5p
Forward 5′-GCGAGCTGGTGTTGTGAATC-3′
Reverse 5′-AGTGCAGGGTCCGAGGTATT-3′

U2AF2
Forward 5′-TATGTGCCTGGGGTTGTGTC-3′
Reverse 5′-TGGCATTCTTGGCTCCCAC-3′

GAPDH
Forward 5′-TTCCGTGTCCCCACTGCCAACGT-3′
Reverse 5′-CAAAGGTGGAGGAGTGGGTGTCGC-3′
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Figure 1: Continued.
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2.4. Cell Proliferation Detection. The proliferation rate of
cells was assessed by the CCK-8 reagent purchased from
Dojindo (Kumamoto, Japan). Cells were inoculated into
each well of a 96-well plate, and 10 liters of CCK-8 reagent
was attached to each well at the set time (24 hours, 48 hours,
72 hours, and 96 hours). After 2 h incubation, absorbance
was estimated using a microplate reader (BioTek, USA) at
450nm.

2.5. Cell Migration and Invasion Detection. The migration
and invasion ability of cells was determined by transwell
assay. We put the crosshole analytical insert (Millipore,
USA) in a 24-well plate. All medium and reagents were incu-
bated at 37°C. In the above transwell chamber, the normal
layer was used to perform the migration assay, while the
Matrigel-coated membrane (BD Biosciences) was applied
to test the invasion ability. First, we put 600μl of serum-
free RPMI 1640 (containing 10% fetal bovine serum) into
the bottom container. After that, we inoculated 10,000 cells
into the upper chamber of 200 L RPMI 1640. After culturing
in an incubator for 48 hours, cells were fixed within the
membrane with methanol and applied with crystal violet
for 15 minutes. Subsequently, cells were visualized under a
microscope, and cell counts were calculated in five different
areas.

2.6. Warburg Effect Level Detection. For lactate assessment,
the lactate concentration in cell lysis was assessed using a
lactate assay kit (BioVision, USA) following the manufac-
turer’s instructions. For glucose uptake testing, the treated
cells were cultured with 100M NBDG (11,046, Cayman)
for 30 minutes before washing with ice-cold PBS. After that,
we accounted for the fluorescence of FL-1 in accordance
with the manufacturer’s instructions. As for ATP detection,

an ATP detection kit (ab113849, ABCAM) was applied to
measure ATP inside the treated cells by measuring the lucif-
erase activity.

2.7. Western Blotting. According to the manufacturer’s
scheme, a protein extraction kit (Key Gene, China) was used
to isolate protein from stably transfected cells. The protein
qualification was detected by a BCA kit (Pierce, USA). Pro-
teins were isolated by electrophoresis exerting polyacryl-
amide gels with SDS and separated by polyvinylidene
fluoride (PVDF) membrane. Then, 5% skimmed milk pow-
der was used to block the membrane in TBST buffer for
90min, and the membrane was incubated with the primary
antibody at 4°C overnight. Then, the membrane was washed
using TBST buffer solution three times and then subjected to
secondary antibodies for 2 hours at room temperature.
Results were visualized using an enhanced chemilumines-
cence system (Millipore, USA). The Image Lab Software
was used to analyze the related data. The antibodies used
in this study are as follows: U2AF2 (Proteintech; 1 : 2000;
#15624) and actin (Abcam; 1μg/ml; ab8226).

2.8. RNA Pull-Down. A total of 107 RCC cells were collected,
dissolved, and ultrasonically treated. Probe-coated beads
were formatted by subjecting C-1 magnetic beads (Life
Technologies) to probes at 25 degrees for 100min. Cell
lysate with the indicated probe was cultured at 4°C for 12
hours. After washing with washing buffer, the RNA mixture
bound to the beads was isolated by RT-qPCR with RNA
mini kit (QIAGEN).

2.9. AGO2-RIP. RIP assay was conducted using an RNA-
binding protein immunoprecipitation kit (Millipore)
according to the manufacturer’s instructions. Results were
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Figure 1: Characterization of circFOXP1 in RCC. (a) The exonic information about circFOXP1 was elucidated using the circBase dataset
(http://www.circbase.org/). (b) Expression level of circFOXP1 in thirty pairs of RCC tissue samples was measured. (c) Expression level of
circFOXP1 in RCC cell lines and normal renal cell HK-2 was tested. (d, e) Random hexamer primers were applied, and the results were
analyzed using qRT-PCR in ACHN (d) and 786-O cells (e). (f, g) ACHN (f) and 786-O (g) cells were under actinomycin D treatment;
relative circFOXP1 and liner FOXP1 (m-FOXP1) expression was detected using qRT-PCR. (h, i) Expression levels of circFOXP1 in the
cytoplasm or nucleus of ACHN (h) or 786-O (i) cells were detected by qRT-PCR after cellular RNA fractionation. All experiments were
repeated in triplicate, ∗∗P < 0:01 and ∗∗∗P < 0:001.
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Figure 2: Continued.

5Journal of Immunology Research



analyzed using the qRT-PCR assay. The experiment was
conducted in triplicate.

2.10. Luciferase Reporter Gene Assay. The wild type (wt) or
mutant type (Mut) of RNA sequences were constructed by
GeneChem company (Shanghai) and then inserted into
indicated luciferase reporter gene plasmids. We transfected
the reporter plasmid into RCC cells using lipofectamine
3000. Subsequently, mimics and treated luciferase reporter
gene plasmids were coinfected into cells as indicated. Results

were detected using a Dual-Luciferase Reporter System Kit
(Promega, USA) following the manufacturer’s protocol.
The experiment was performed at least three times.

2.11. Statistical Analysis.We conducted these experiments in
triplicate, and the data were expressed using the standard
deviation of the mean value. Data analysis was utilized using
an SPSS 22.0 (SPSS, USA) system. The difference between
groups was analyzed by Students’ T-test. The difference
among three or multiple groups was calculated using one-
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Figure 2: Downregulated circFOXP1 inhibited RCC proliferation, migration, and invasion and decreased Warburg effect. (a) Cells were
treated with Sh-NC, Sh-FOXP1#1, or Sh-FOXP1#2 as indicated; the expression level of circFOXP1 and mFOXP1 was measured by qRT-
PCR. (b, c) Cell proliferation levels were measured using CCK-8 assay in ACHN (b) and 786-O (c) cells. (d, e) Cell migration levels were
detected using transwell migration assay (d); a comparative analysis was shown (e). (f, g) Cell invasion levels were assessed by transwell
invasion assay (f); a comparative analysis was calculated (g). (h–j) Expression change of glucose (h), lactate(i), and ATP (j) in ACHN
and 786-O cells was detected. Experiments were repeated three times, ∗P < 0:05 and ∗∗P < 0:01.
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Figure 3: Continued.
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way ANOVA test. P < 0:05 was considered statistically
significant.

3. Results

3.1. Expression and Characterization of circFOXP1 in RCC.
To explore whether circFOXP1 was involved in the progres-
sion of RCC, firstly, we verified the characterization and
expression of circFOXP1 in RCC tissues and cells. The
exonic information about circFOXP1 was acquired
(Figure 1(a)). Next, we found that circFOXP1 expression
was significantly upregulated in tumor tissues compared
with adjacent normal tissues (Figure 1(b)). The upregulation
tendency was also found in RCC cell lines (Figure 1(c)). Pre-
vious studies indicated that dysregulation of circFOXP1
might be involved in the progression of tumorigenesis.
Therefore, we presumed that circFOXP1 plays its role in
RCC development. Circular RNA characterizations of cir-
cFOXP1 in RCC cells were tested. As shown in
Figures 1(d) and 1(e), circFOXP1 expression was obviously
decreased in cells upon random hexamer primer treatment,
but not oligo (dT)18 primer, suggesting that circFOXP1
has no poly-A-tail. Moreover, we found that circFOXP1
was resistant to RNase R digestion, but not its liner form
mFOXP1 (Figures 1(f) and 1(g)). Subsequently, we found
that circFOXP1 was mainly located in the RCC cell
cytoplasm.

3.2. Downregulated circFOXP1 Inhibited RCC Proliferation,
Migration, and Invasion and Decreased Warburg Effect.
Here, we explored the biological functions of circFOXP1 in
RCC cellular progression. Firstly, we generated circFOXP1
knockdown cell models as indicated (Figure 2(a)). Expres-

sion level of circFOXP1 in ACHN and 786-O cells was effi-
ciently downregulated; the liner form of FOXP1 remained
the same. As shown in Figures 2(b) and 2(c), downregulated
circFOXP1 suppressed ACHN and 786-O cell proliferation
levels. Additionally, downregulated circFOXP1 inhibited cell
migration (Figures 2(d) and 2(e)) and invasion (Figures 2(f)
and 2(g)) levels. Furthermore, we found that the Warburg
effect in circFOXP1 knockdown ACHN and 786-O cells
was inhibited (Figures 2(h)–2(j)).

3.3. circFOXP1 Sponges miR-423-5p. The molecular mecha-
nisms underlying the function of circFOXP1 in RCC pro-
gression were investigated. RIP assay with anti-AGO2 and
anti-IgG antibodies was conducted to assess the miRNA
binding ability of circFOXP1. As shown in Figures 3(a)
and 3(b), circFOXP1 was abundantly enriched in anti-
AGO2-bound antibodies. Next, the bioinformatics analysis
result showed us three potential downstream targets for cir-
cFOXP1. Biotinylated RNA pull-down experiments showed
us that miR-423-5p was abundantly enriched in bio-
circFOXP1 probes (Figures 3(c) and 3(d)). Predicted binding
sequences were presented (Figure 3(e)). The interaction
between circFOXP1 and miR-423-5p was confirmed by uti-
lizing luciferase reporter gene assay (Figures 3(f)–3(h)).
Next, expression levels of miR-423-5p in thirty pairs of
RCC tissues were determined; we found that miR-423-5p
was decreased in tumor tissues compared with normal
healthy tissues (Figure 3(i)). Furthermore, the expression
level of miR-423-5p in ACHN and 786-O cells was nega-
tively regulated by circFOXP1 (Figure 3(j)).

3.4. U2AF2 Is a Downstream Target of miR-423-5p. Subse-
quently, bioinformatics prediction found us eleven putative
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Figure 3: circFOXP1 sponges to miR-423-5p. (a, b) AGO2-RIP was utilized in ACHN (a) and 786-O (b) cells; relative circFOXP1 was
measured by qRT-PCR. (c, d) Bioinformatics prediction of circFOXP1 targets was performed using the ENCORI dataset (http://starbase
.sysu.edu.cn/) with CLIP Data: medium stringency (≥2), and Degradome Data: low stringency ≥1). Results were tested using biotinylated
RNA pull-down; relative RNA expression was measured by qRT-PCR in ACHN (c) and 786-O cells (d). (e) Predicted circFOXP1 wild
type (wt) or mutant type (Mut) bind sequences with miR-423-5p. (f–h) Relative luciferase activities in reporter vector-treated 293T (f),
ACHN (g), and 786-O (h) cells were measured as indicated. (i) Expression level of miR-423-5p in thirty pairs of RCC tissues was
determined by qRT-PCR assay. (j) Expression level of miR-423-5p in circFOXP1 downregulated ACHN, and 786-O cells were measured
by qRT-PCR. All assays were conducted at least three times, ∗∗P < 0:01 and ∗∗∗P < 0:001.
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9Journal of Immunology Research



targets for miR-423-5p. RNA pull-down using bio-miR-423-
5p and bio-NC probes showed us that NACC1 and U2AF2
were abundantly enriched in bio-miR-423-5p probes com-
pared with others in ACHN and 786-O cells (Figures 4(b)
and 4(c)). The interaction between miR-423-5p and NACC1
was per published researches [18, 19]. Here, we aimed to
investigate the relation between miR-423-5p and U2AF2.
Predicted binding sequences between miR-423-5p and
U2AF2 are presented in Figure 4(d). Luciferase reporter
gene assay performed in 239T, ACHN, and 786-O cells con-
firmed that miR-423-5p directly targets U2AF2
(Figures 4(e)–4(g)). Subsequently, we found that U2AF2
expression in RCC tumor tissues was increased compared
with normal healthy tissues (Figure 4(h)). Moreover, we
found that miR-423-5p overexpression inhibited U2AF2
expression in RCC cells (Figures 4(i) and 4(j)).

3.5. circFOXP1 Regulates U2AF2 Expression to Promote RCC
Progression through Sponging miR-423-5p. According to the
above results, we found that circFOXP1 modulated RCC cel-
lular progression and Warburg effect and a novel cir-
cFOXP1/miR-423-5p/U2AF2 axis. To determine whether
circFOXP1 plays its role through the miR-423-5p/U2AF2
axis, as shown in Figure 5(a), it was indicated that cell
models were constructed. By conducting CCK-8
(Figures 5(b) and 5(c)), transwell migration (Figures 5(d)
and 5(e)), and transwell invasion assays (Figures 5(f) and
5(g)), we found that the inhibitive effects of circFOXP1
knockdown on RCC cellular behavior were reversed by
U2AF2 overexpression. Furthermore, downregulated cir-
cFOXP1 inhibited the RCC cell Warburg effect but was res-
cued by U2AF2 overexpression (Figures 5(h)–5(j)). Our
results suggested that circFOXP1 promoted U2AF2
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Figure 4: U2AF2 is a downstream target of miR-423-5p. (a) Downstream targets for miR-423-5p were predicted using the DIANA tool
microT (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index), PITA (https://genie.weizmann.ac.il/pubs/
mir07/mir07_data.html), and TargetScan (http://www.targetscan.org/mamm_31/) datasets with CLIP Data: strict stringency (≥5), and
Degradome Data: medium stringency (≥2); results were presented by Venn diagram. (b, c) Putative targets of miR-423-5p were
examined by biotinylated RNA pull-down in ACHN (b) and 786-O (c) cells; results were measured using the qRT-PCR assay. (d)
Predicted U2AF2 wild type (wt) or mutant type (Mut) bind sequences with miR-423-5p. (e–g) Relative luciferase activities in indicated
reporter vector-treated 293T (e), ACHN (f), and 786-O (g) cells were measured. (h) Expression levels of U2AF2 in thirty pairs of RCC
tissues were measured by qRT-PCR assay. (i, j) Expression levels of U2AF2 mRNA (h) or protein (i) in miR-423-5p overexpression
ACHN and 786-O cells were measured by qRT-PCR and western blot. All assays were conducted in triplicate, ∗∗P < 0:01 and ∗∗∗P <
0:001.
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expression to accelerate RCC progression through sponging
miR-423-5p.

3.6. Expression of circFOXP1 Is Induced by ZNF263. Utilizing
the bioinformatics method (NCBI: https://www.ncbi.nlm
.nih.gov/, UCSC: http://genome.ucsc.edu/, and JASPAR:
http://jaspar.genereg.net/), we found that ZNF263 is one
promising upstream regulator of FOXP1 mRNA. After we
generated ZNF263 knockdown cell models (Figure 6(a)),
we found that FOXP1 circRNA was negatively regulated by
ZNF263 in RCC cells (Figure 6(b)). Bioinformatics predic-
tion results suggested that the FOXP1 promoter has two
putative binding sites to ZNF263 (Figures 6(c) and 6(d)).
The prediction results were verified using the AGO2-RIP
assay (Figures 6(e) and 6(f)). Furthermore, we conducted a
luciferase reporter assay to confirm the interaction between
FOXP1 promoter and ZNF263 in RCC cells. It was found
that ZNF263 was able to interact with two splices (P3 and
P4 as indicated) of the FOXP1 mRNA promoter. Our results
suggested that ZNF263 could regulate circFOXP1 expression
in RCC cells.

4. Discussion

The incidence of RCC accounts for about 3% of malignan-
cies worldwide [20]. Unfortunately, even if patients received
surgical resection and radiotherapy, 30% of patients develop
into metastatic stage [21, 22]. In recent years, emerging evi-
dence suggests that multiple gene mutations contribute to
the initiation and progression of RCC, while the underlying
molecular mechanisms of RCC progression are not fully
understood.

In this study, we focused on the role of circFOXP1 in
RCC progression. The characterization and expression of
circFOXP1 were verified. circFOXP1 was found to be upreg-

ulated in RCC tissues and cell lines. Based on that, we gener-
ated circFOXP1 knockdown cell models and investigated
their cellular functions. By conducting CCK-8 and transwell
assays, we found that downregulated circFOXP1 inhibited
RCC cell proliferation, migration, and invasion. Our results
suggest that circFOXP1 acts as one oncogene in RCC
progression.

As we knew, during tumorigenesis, cancer cells have to
rewire its metabolism to keep themselves alive and repro-
ducing. The phenomenon that cancer cells change their
glucose uptake and fermenting into lactate is called the
Warburg effect [23–25]. In the past decade, the role of
the Warburg effect has been investigated in-depth. The
Warburg effect contributes to the cellular progression of
cancer cells [26], relates to the initiation and progression
of inflammation diseases [27], participates in immunologic
response [28], and is involved in drug resistance [29]. The
essential roles of the Warburg effect in various cellular
progressions have been verified. One published research
has demonstrated that circFOXP1 exerts its function in
tumorigenesis via regulating the Warburg effect [16]. Here,
our results found that downregulated circFOXP1 inhibited
the Warburg effect in RCC cells, which might partially
elucidate the impact of circFOXP1 on RCC cell prolifera-
tion, migration, and invasion.

Next, by utilizing bioinformatics analysis and a serial
experiment, we found that miR-423-5p is one downstream
target for circFOXP1, and circFOXP1 promoted U2AF2
expression in RCC cells via sponging miR-423-5p. Li et al.
have elucidated that U2AF2 contributes to non-small-cell
lung cancer partially via modulating the Warburg effect
[30]. Our study found that circFOXP1 modulates RCC cell
proliferation, migration, invasion, and Warburg effect
through the miR-423-5p/U2AF2 axis. Furthermore,
ZNF263 was found to be an upstream regulator of cir-
cFOXP1 in RCC cells.
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Figure 5: circFOXP1 regulates U2AF2 expression to promote RCC progression through sponging miR-423-5p. (a) ACHN and 786-O cells
were upon different treatment as indicated; the expression level of U2AF2 was measured. (b, c) CCK-8 assay was applied to measure cell
proliferation levels of treated as indicated ACHN (b) and 786-O (c) cells. (d, e) Transwell migration assay was performed to evaluate cell
migration abilities (d); results were statistically analyzed (e). (f, g) Transwell invasion assay was conducted to measure cell invasion levels
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cells was measured. All assays were conducted in triplicate, ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Although the role of ZNF263/circFOXP1/miR-423-
5p/U2AF2 axis has been partially elucidated in RCC pro-
gression, our study still demands further investigation. For
example, we need more tissue samples to further to confirm
the expression tendency of circFOXP1 in RCC. Moreover,
the downstream pathway of U2AF2 in RCC cellular progres-
sion and the Warburg effect phenomenon need to be
elucidated.

Collectively, our study partially demonstrated the role of
circFOXP1 in RCC progression and demonstrated its under-
lying molecular mechanisms. Our results suggest that cir-
cFOXP1 is one promising diagnosis and therapeutic target
for RCC.
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