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Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers.
Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early
carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most
abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including
tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-
infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an
important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review
article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC
progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC,
proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is
suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.

1. Introduction

Breast cancer (BC) is the most frequent cancer among women
worldwide representing a global health problem. It was esti-
mated in 2018 that more than 2.1 million women were newly
diagnosed with BC, with 600,000 deaths [1] and 2.3 million
new cases are estimated by 2030 [2]. The survival rate of
patients has improved in recent decades due to early diagnosis
and better access to treatments, but it is still lower in develop-

ing regions [2]. Although early-stage and nonmetastatic BC is
curable, advanced disease with distant organ metastasis is con-
sidered incurable with current therapies [3].

BC can be classified intofive subtypes according to the expres-
sions of estrogen receptor (ER), progesterone receptor (PR), and
epidermal growth factor receptor 2 (HER2), acting as predictive
factors and guiding therapy decision-making [3]. These subtypes
are (1) luminal A-like HER2- (ER+/PR+/HER2-/Ki67-), (2) lumi-
nal B-like HER2- (ER+/PR+/HER2-/Ki67+), (3) luminal B-like
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HER2+ (ER+/PR+/HER2+/Ki67+), (4)HER2-enriched or nonlum-
inal subtype (ER-/PR-/HER2+), and (5) triple-negative BC
(TNBC) (ER-/PR-/HER2-). Most patients are luminal A-like
subtype, accounting for 60-70% of total cases, whereas the TNBC
subtype is less frequent with around 10-15% incidence [3]. Based
on histological subtypes, invasive ductal carcinoma (IDC) and
ductal carcinoma in situ (DCIS) are the most commonly studied,
with IDC the most common invasive BC, having an incidence of
around 72-80% of total BC cases, whereas DCIS is the most fre-
quent subtype of noninvasive BC accounting for a quarter of all
cases [4]. DCIS is not generally considered as a life-threatening
disease, although it can increase the risk of tumor progression
to IDC.

Physiologically, the mammary gland tissue dynamically
changes throughout a women’s life, that is, the remodeling
that occurs during pregnancy, lactation, involution (a pro-
cess triggered postweaning), and regression. The immune
system of the normal breast shares similarities with other
mucosal systems, such as the intestine or respiratory
mucosa, and plays a crucial role in protection and mainte-
nance of the normal glandular structure [5]. It is also wit-
nessed that carcinogenesis develops spontaneous breast
adenocarcinomas in immunodeficient mice compared to
immunocompetent mice [6].

It is well accepted that immune cells infiltrating into the
tumor microenvironment (TME) have opposing functions
such as T cells (cytotoxic CTLs, T helper type 1 (Th1)), natural
killer cells (NKs), B cells, andmononuclear cells (M1-classically
activated macrophages and mature dendritic cells (DCs))
contributing to tumor eradication, whereas Th2, regulatory T
cells (Tregs), myeloid-derived suppressor cells (MDSCs), and
alternatively activated macrophages (M2) or tumor-associated
macrophages (TAMs) have protumorigenic functions [7, 8].
The low immunogenicity of BC and immunosuppressive
TME limit immunotherapy benefits targeting the adaptive
immune system, such as checkpoint inhibitors [9]. To achieve
successful immunotherapy in BC, the functions of cellular
components in TME that determine tumor immune response
evasion need to be fully understood. Among these components,
cancer-associated fibroblasts (CAFs) and tumor-infiltrating
immune cells are our focus in this review. CAFs are involved
in BC initiation, proliferation, invasion, and metastasis, playing
a critical role in metabolic TME reprogramming and therapy
resistance [10–13], secreting growth factors, cytokines, and
hormones, together with extracellular matrix (ECM) paracrine
effects and mechanical stimuli determining cancer develop-
ment. Additionally, microenvironmental events including
angiogenesis, lymphangiogenesis, ECM remodeling, cancer-
associated inflammation, and metabolism reprogramming
have premalignancy potency through signaling pathway cross-
talk among CAFs, cancer cells, and ECM [13–16].

In this review article, the role of tumor-infiltrating
immune cells and CAFs in BC is examined, including basic
knowledge on immune cells and CAF phenotypes. Addition-
ally, we discuss CAF immunosuppressive effect contributing
to immune escape of BC. We hope that understanding the
interaction between tumor cells and TME components
(CAFs and immune cells) will bring forth new patient man-
agement and targeting therapies within BC.

2. Tumor Microenvironment of Breast
Cancer (BC)

In BC TME, a combination of heterogeneous cell types com-
municates with cancer cells, including tumor-infiltrating
immune cells, adipocytes, pericytes/endothelial cells, CAFs,
and noncellular components such as ECM, cytokines, and
growth factors [17–19]. The impact of cells of the immune
system and CAFs on cancer progression, drug, and immuno-
therapeutic responses is discussed.

2.1. Immune Cells in BC Tissues with Their Anti- or Protumoral
Functions and Roles in Prognosis and Therapy Response. In
normal breast epithelium, the immune cell population varies
according to the reproductive state. In nulliparous mouse
models, immature DCs and RORγT+-Th17 cells are predom-
inant. During lactation, DCs acquire a tolerogenic phenotype
with decreased T cell activation, extending during weaning
by FOXP3+ Treg expansion. These activated and tolerogenic
programs seem to assure protection from bacterial and self-
antigens during epithelial cell death, occurring after lactation
and involution [5].

During acute lobulitis, an increased infiltration of CD45+

leucocyte (including CD4+-T cells, CTLs, and CD19+/-
CD20+-B cells) is seen compared to normal tissue without
DC or CD68+-monocyte/macrophage changes [20].

Diverse immune cells are recruited during tumor develop-
ment and progression in the mammary gland [20]. In benign
lesions, high monocyte/macrophage and DC infiltration is
seen, whilst decreased CTLs and absence of B cells are associ-
ated with increased risk of BC [21, 22]. In in situ transition of
carcinoma to invasive carcinoma, changes in conventional cell
populations (decreased CTLs and increased Tregs) can
promote an immunosuppressive environment with immune
escape [23]. This process is characterized by the loss of immu-
nostimulatory molecules (i.e., major histocompatibility com-
plex (MHC) class I, transporter-associated antigen processing
(TAP) subunit 1), increased expression of immunoinhibitory
molecules (i.e., programmed death-ligand 1 (PD-L1) and
human leukocyte antigen-G (HLA-G)), and altered apoptosis
component expression (i.e., Fas and FasL) [5], leading to
disease progression and treatment failure. We review in this
section the main immune cell populations and their role in
prognosis and therapy response.

2.1.1. Tumor-Infiltrating Lymphocyte Subsets. Lymphocytes
present in tumor tissues, namely, tumor-infiltrating lympho-
cytes (TILs), are highly heterogeneous playing a crucial role
in host antigen-specific tumor immune response. TILs have
pro- or antitumor properties depending on T cell subsets in
distinct cancer tissues with antitumor subsets, mainly CTLs
and Th1 cells, whereas Th2, Th17, and Treg exhibit opposing
roles.

In breast TME, TILs are predominantly activated T lym-
phocytes (CD3+/CD56-, CD4+, or CD8+-T cells) [10], with
their increase associated with good prognosis in TNBC
patients [24–26] and chemotherapy response in BC patients
[24, 27–29].
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Using TIL gene signatures in luminal A and luminal B
BC, predictive responses of immune checkpoint inhibitors,
such as anti-CTLA4 and anti-PD1 (Figure 1), allow stratifica-
tion into three subtypes: (1) Lum 1, with low TILs and
immune gene levels, (2) Lum 2, high expression of STAT1
and interferon-stimulated genes with TP53 somatic muta-
tions, and (3) Lum 3, high level of TILs and immune-relate-
d/immune checkpoint gene expression (i.e., PD-L1 and
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4)) and
chemokine genes (i.e., CXCL9 and CXCL10) and their recep-
tors [30]. Lum 1 has low TILs whilst Lum 3 has high TILs
with high immune checkpoint expressions, which may imply
that Lum 3 may have better predictive response to immune
checkpoint inhibitor (ICI), the drug that blocks immune
checkpoint molecules resulting in restoration of the immune
system function, than Lum 1. TILs recognize small peptide
presented throughMHC class I/II, with costimulatory signals
necessary to modulate T cell activation. Indeed, the interac-
tion between B7 and CD28 on TILs is a positive activation
signal; however, in Lum 3 BC, the CTLA-4 (CD28 competi-
tive receptor) and PD1/PD-L1 pathway in immune cells
and endothelial cells delivers an inhibitory signal (Figure 1).
Targeting immune checkpoints CTLA-4 and PD1/PDL-1
can be used for different cancer treatments, including BC
[31–35]. Effects of ICI or immune cell therapy are diminished
by immunosuppressive TME status. Therefore, to enhance
this immune therapy’s efficacy in breast cancer, the combina-
tion with chemotherapy is a plausible option [36].

Another important antitumor cell is CTLs, inducing
tumor cell lysis through perforin and granzyme release
inducing cell apoptosis [37, 38]; however, during cancer pro-
gression, they become dysfunctional and exhausted due to
TME immune-related tolerance and immunosuppression
[39].

It is well accepted that high intratumor CTLs and mem-
ory TILs are associated with improved prognosis [38], as with
Th1 cell in ER- and TNBCs, which secrete several cytoki-
nes/chemokines, activating and recruiting CTLs, together
with NK cells andM1macrophages to eradicate breast tumor
cells [40]. Thus, the presence of follicular Th-CXCL13+ cells
can predict good survival and prognosis in BC patients [41,
42].

In opposition, Th2 mainly produces interleukin (IL-10),
modulating the TME immunosuppressive profile to inhibit
antigen-presenting cells (APCs) and effector cell function
[40, 43]. Th17 is another subset promoting tumor growth
and angiogenesis [44, 45], although whilst priming CTLs
with antitumor activity and favorable prognosis [46–49],
their role in cancer remains controversial [50]. Infiltration
of IL-17/IL-17A-secreting cells is associated with poor prog-
nosis in BC patients [51–53], enhancing tumor migration,
invasion, and chemotherapy resistance [54, 55]; the IL-
17B/IL-17 B receptor (IL-17RB) axis is associated with poor
prognosis and chemoresistance [56, 57], through the NF-
κB/Bcl-2 antiapoptotic signaling pathway [58], becoming an
attractive therapeutic target [59].

Tregs represent a minor CD4+-T cell population, main-
taining immune homeostasis by inhibiting effector T cells
[60], being increased in nearly all cancers associating with

metastasis, tumor recurrence, and treatment resistance [61].
FOXP3+ is an indicator of Treg activity, tumor progression,
and metastasis [62], with its suppression, together with pro-
grammed death 1 (PD1), T cell immunoglobulin mucin-3,
and CTLA-4, assuring the increased immunotherapy
response [61] (Figure 1), relapse-free survival (RFS), and
overall survival (OS) in BC patients [63]. Treg-enriched
TME potentiates immunosuppressive cells, i.e., CAFs, cancer
cells, TAMs and MDSCs, whilst suppressing immunostimu-
latory cells, i.e., CTLs and NKs [61]. Nonetheless, Th2-
derived IL-4 mediates Treg conversion to Th9 subset [64]
with antitumor function increasing DC survival [65]. Finally,
tumor-infiltrating B lymphocytes regulate cancer progres-
sion via IL-10 production, although no consensus at present
exists on their benefit as a prognosis marker [66].

2.1.2. Mononuclear Infiltrating Cells. Mononuclear myeloid
cells are a heterogeneous population of bone marrow-
derived cells which include monocytes, terminally differenti-
ated macrophages, and DCs. Myeloid cells promote cancer
progression by either directly interacting with tumor cells
or supporting a tumor stroma that promotes tumor growth,
angiogenesis, migration, invasion, and metastasis [67] and
additionally suppressing tumor immunity [68]. The com-
bined expression of high IL-1β and IL-6, but low IL-10 in
stromal mononuclear inflammatory cells, associates with
good prognosis and long relapse-free survival in breast carci-
noma patients [69].

TAMs are a major constituent of TME in BC, mostly dis-
playing the M2 phenotype with immunosuppressive activity,
directly correlating with poor prognosis, activating cancer
stem cells, cancer cell invasion, and tumor angiogenesis,
and suppressing antitumor CTL functions [70].

Another important cell present in BC is DCs, classified
into two major subsets: conventional DCs (cDCs, also known
as myeloid DCs or classical DCs (cDCs)) and plasmacytoid
DCs (pDCs) producing type I interferon (IFN) in response
to nucleic acids [71]. As the conventional type 1 DC
(cDC1) subset is superior in antigen cross-presentation (a
process of exogenous antigen presentation on MHC class
I), cDCs control tumor progression, resulting in CTL prim-
ing and activation. Moreover, the cDC1 subset is important
in the immune control of tumor by enhancing local cytotoxic
T cell function, making them significant in immune check-
point blocking therapy [72, 73]. In TNBC, cDCs expressing
activation marker CD11c+ directly correlate with TILs,
CD4+, and CD8+ T cell counts, highlighting the potential
therapeutic options to modulate their recruitment and func-
tion [74]. DCs from human primary luminal and TNBC
tissues are enriched in vascular wound healing/ECM path-
ways and immunological IFN pathways, respectively. Addi-
tionally, the type of tumor impacts on the diversity of DC
subset correlating with disease outcome [75], therefore pro-
viding potential targets and biomarkers to evaluate immune
status of BC TME.

Unlike cDCs, pDCs migrate to lymphoid organs and
peripheral blood upon development. Infiltration of pDCs
into cancer tissues is associated with poor prognosis correlat-
ing with BC lymph node metastasis, with participation of the
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CXCR4/CXCL12 chemokine axis or stromal cell-derived
factor 1 alpha (SDF-1α) [76]. High CXCL12/SDF-1 level is
seen in metastatic lymph nodes and CXCR4 upregulation
in cancer cell lines exposed to pDC conditioned media.
Finally, the immunosuppressive TME alters DC differentia-
tion into tolerogenic regulatory DCs [77], characterized by
decreased DC maturation marker content and promoting
Treg expansion [78–80].

2.1.3. Myeloid-Derived Suppressor Cells (MDSCs). MDSCs
are a heterogeneous population of myeloid cells, contribut-
ing to an immune suppressive/anergic and tumor permis-
sive environment [81] through inhibitory cytokines and
other substances [82], thus promoting cancer progression
and metastasis [81, 83], although there is no consensus for
MDSC expression markers in tumor [84, 85]. MDSCs are
usually absent in healthy individuals, appearing only in can-
cer and pathological conditions associated with chronic
inflammation or stress [86]. This occurs in surgical removal
of primary tumor in a xenograft mammary cell carcinoma
murine model, demonstrating that MDSC infiltration is cru-
cial to promote lung metastasis [87], by secreting transform-
ing growth factor-β1 (TGF-β1), vascular endothelial growth
factor (VEGF), and IL-10 inducing epithelial-mesenchymal
transition (EMT). Thus, biological MDSC depletion therapy
is a promising treatment strategy to prevent immune eva-
sion after mastectomy in BC. Elevated circulating MDSCs
in peripheral blood of BC patients was found directly corre-
lated with cancer stage and metastasis [88, 89], but informa-
tion on the role of MDSCs in human BC is limited and
requires more studies.

2.1.4. Mast Cells (MCs) and Natural Killer Cells (NKs). Mast
cells (MCs) are granulocyte-derived myeloid cells, containing
histamine and heparin-rich granules, classically associated

with allergic disorders. They display 2 phenotypes producing
different mediators with opposite roles in tumorigenesis
(antitumorigenic MC1 and protumorigenic MC2), depend-
ing on the biochemical milieu of the TME and tumor cells
themselves [90, 91]. MCs are recruited by several cancer
cell-derived cytokines and chemokines (i.e., osteopontin,
CXCL8, CCL2, CXCL1, and CXCL10) into TME and can
directly interact with infiltrated immune cells, tumor cells,
and ECM [90]. MC1 are cytotoxic producing granzyme B,
IL-9, and histamine, which induces DC maturation and
inhibits tumor growth in murine models. In contrast, MC2
produces a variety of angiogenic and metastatic substances,
i.e., VEGFs, fibroblast growth factor (FGF), matrix
metalloproteinase-9 (MMP-9), TGF-β, and cytokines (i.e.,
IL-1β, IL-6, and IL-13) [90].

Peripheral to mammary adenocarcinoma [92], MCs
contribute to tumor invasiveness andmetastatic spread through
the secretion of MMPs and tryptase which promote ECM dis-
ruption [91, 93–96] and differentiation of myofibroblast [97,
98]. Additionally, MCs contribute to neovascularization by
releasing classical (i.e., VEGF, FGF-2, platelet-derived growth
factor (PDGF), and IL-6) and nonclassical proangiogenic
factors (mainly tryptase and chymase) [99]. Tryptase and chy-
mase are suggested to be involved in cancer progression [100].
However, the infiltration of chymase-positive and tryptase-
positive MCs in BC tissues is significantly higher in luminal A
and luminal B subtypes compared to TNBC and HER2+ sub-
types [101]. This study showed that higher MC numbers are
associated with a less aggressive cancer type, suggesting that
these MCs relate with more favorable cancer immunopheno-
type and might be beneficial prognostic indicators. The con-
troversial findings may be due to the variation in the
subpopulation ofMCs and location of the cells in cancer tissue.

Natural killer cells (NKs) are a major antitumor compo-
nent of the innate immune response. Similar to CTLs, NK-
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Figure 1: Targeting checkpoints of T cell in Lum 3 breast cancer. TILs recognizing small peptide presented through MHC class I/II, with
costimulatory signals necessary to modulate T cell activation. Indeed, the interaction between B7 and CD28 on TILs is a positive
activation signal; however, in Lum 3 BC, the CTLA-4 (CD28 competitive receptor) and PD1/PD-L1 pathway (immune and endothelial
cells) delivers an inhibitory signal. Targeting immune checkpoints CTLA4 and PD1/PDL-1 can be used for different cancer treatments,
including BC [31–35].
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mediated tumor cell cytotoxicity depends on stimulatory and
inhibitory signaling balance, such as cytokines (i.e., IFN and
IL-2), affecting activating (i.e., NKG2D and CD161), inhibi-
tory NK receptors (i.e., CD158a and CD158b), and signaling
molecules [102]. As demonstrated in chronic viral infection,
autoimmunity, and transplantation, NKs limit T cell func-
tion by cytokines, interactions with NKG2D and NKp46
receptors, or perforin-mediated T cell death [103]. In BC,
NKs could enhance the activity of HER2 therapeutic antibod-
ies by coupling NK cell antitumor function with immune
checkpoint blocking, stimulatory antibodies, cytokines, or
toll-like receptor (TLR) agonists [104]. The expression of a
high proportion of ligands for NK-activating receptors posi-
tively correlates with survival indicators; however, a restricted
number of ligands associate with worse prognosis, becoming
potential biomarkers of BC progression [105].

2.2. Tumor Microenvironment and CAFs in BC. CAFs are
derived from normal resident fibroblasts, cancer cells, adipo-
cytes, and endothelial cells [18] with cancer stem cells differen-
tiated into BC CAFs, via a paracrine effect of cancer cell-
derived osteopontin [106]. CAFs are critical cells in metabolic
TME reprogramming and therapy resistance in BC as they
promote tumor proliferation, invasion, and metastasis [10–13].

2.2.1. CAF Markers and Their Important Impact in BC
Progression. Breast CAFs differentially express genes com-
pared to normal fibroblasts, accounting for BC occurrence
and progression [107], thus becoming predictive CAF
molecular markers in tumor progression. In BC, CAFs are
heterogeneous and divide into 4 population groups: CAF-
S1 to CAF-S4, according to differential activation marker
expression mainly including α-smooth muscle actin
(ASMA), fibroblast activation protein (FAP), PDGF receptor
β (PDGFRβ), fibroblast-specific protein-1 (FSP-1), caveolin-
1 (CAV-1), and CD29, with all correlating with poor prog-
nosis (Table 1). All CAF subsets have low CAV-1 levels.
The CAF-S1 subset mostly expresses all 6 markers, with
especially FAP and ASMA highly expressed; the CAF-S2
subset expresses low levels of the 6 markers; the CAF-S3
subset is ASMA- and FAP-negative, but positive for the
remaining 4 markers; and the CAF-S4 subset is character-
ized with no FAP, but high ASMA and CD29 [108]. Regard-
ing localization, CAF-S1 and CAF-S4 are mainly in TNBC
tumors, with HER2+ tumors additionally presenting CAF-
S4. CAF-S3 has juxtatumoral localization in HER2+ and
TNBC tumors. Lastly, CAF-S2 is in both tumor and juxtatu-
mor compartments, mainly in the luminal A subtype [108].
Meta-analysis showed that increased number of activated
tumor-infiltrating fibroblasts significantly correlated with
poor clinical outcome of BC patients [109]. Additionally,
CAFs with high ASMA and low high-mobility group box 1
(HMGB1) expression in cancer cells predict OS of invasive
ductal BC patients [110]. Therefore, tenascin (TNC) overex-
pression (an ECM glycoprotein) is a poor prognosis factor
[111], with FSP-1+ or podoplanin+ CAFs also associated
with poor OS in BC patients [109]. Furthermore, CD10+

and GPR77+ CAFs promote tumor formation and chemore-
sistance by providing a survival niche for cancer stem cells

[112]. CD44 is another cancer stem cell marker in CAFs,
related to cancer cell survival and drug resistance [113].
Finally, CAFs expressing PDGFRβ associate to metastasis
and reduced tamoxifen response [114]. The vimentin-
(VIM-) positive fibroblasts showed spindle cells in cytology
of BC tissues [115]. Additionally, glucocorticoid receptor
(GR) was observed in most of the fibroblasts in BC, espe-
cially luminal A subtype [116]. Since TME participates in
several processes of tumor progression, the CAF tumori-
genic functions highlight the importance of their targeting
as a useful strategy to overcome BC.

2.2.2. Secreted Substances from CAFs in BC. The most signif-
icant effect of CAFs is the secretion of tumor-promoting
cytokines and chemokines, many of them playing a role in
BC (Figure 2). One of them, CXCL12/SDF-1, shows strong
expression in IL-7-producing fibroblasts, with the
CXCL12/CXCR4 axis impacting tumor cell stemness pro-
moting BC growth [117]. CAF-derived IL-6 and hepatocyte
growth factor (HGF) induce androgenic enzymes contribut-
ing to intratumoral androgen metabolism in ER- BC patients
[118]. The matricellular protein periostin (PN), secreted
mainly by CAFs, binds to cancer cell surface receptors
activating progression in invasive ductal breast carcinoma
(IDC), showing increased PN levels compared to ductal car-
cinoma in situ (DCIS) [119]. Interestingly, high CAF-derived
PN levels in IDC correlate with increased tumor malignancy
grade and shorter patient OS, suggesting PN participation in
IDC progression [119]. CAF-secreted microfibrillar-
associated protein 5 (MFAP5) promotes cancer cell EMT
marker upregulation, migration, and invasion via the Notch1
pathway [120, 121]. Prometastatic chemokines CXCL8 (IL-
8), CCL2 (monocyte chemoattractant protein-1 (MCP-1)),
and CCL5 (RANTES) are upregulated in TNBC cell lines
cocultured with primary CAFs from BC patients, acquiring
invasive properties mediated by tumor necrosis factor-alpha-
(TNF-α-) induced Notch1 activation [122, 123]. Moreover,
MMPs expressed by the BC stroma correlate with metastasis
[124], such as CAF-derived MMP-9, MMP-11, and tissue
inhibitor of metalloproteinases-2 (TIMP-2) associating with
poor prognosis in luminal A tumors [125].

Elevated CXCL1 in BC stroma correlates with increased
tumor grade, disease recurrence, and poor patient survival
[126] and inversely correlates with TGF-β signaling compo-
nent expression. Additionally, CAF-inhibited TGF-β signaling
in vitro increases CXCL1 expression, suggesting a contribution
in BC progression [126]. Another CAF-derived cytokine pro-
moting BC cell invasion is IL-32, binding to cell membrane
integrin β3 to activate downstream p38 MAPK signal trans-
duction [127]. The adipocyte-derived cytokine, leptin, influ-
ences BC cell proliferation [128] enhancing ER signaling and
mediated tumor-stroma interaction by short autocrine loop.
Finally, CAFs secrete leptin and express its receptor, enhanc-
ing BC cell motility and invasiveness [129].

Autophagy, a self-degradative process, regulates tissue
homeostasis and intracellular energy source and participates
in tumor recurrence/prognosis [130]. Autophagic CAFs, with
increased LC3II (autophagosome protein) expression, release
HMGB1 activating TLR4 in luminal BC cells, enhancing
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stemness and tumorigenicity, and predicting increased
relapse rate and poor prognosis [131]. In TNBC, CAF
autophagy enhances cell proliferation and the EMT process
(migration, invasion), through the Wnt/β-catenin pathway
[132].

All the above has led our group to study breast CAFs
isolated from fresh cancer tissues [133] and their secreted sub-
stances. Utilizing two-dimensional gel electrophoresis (2DGE),
followed by liquid chromatography mass spectrometry (LC-
MS), we found annexin A10 (ANXA10) and FGF receptor
(FGFR) upregulation (Figure 3). Accordingly, ANXA are a
family of closely related calcium- and membrane-binding pro-
teins playing important roles in calcium signaling, cell division,
apoptosis, and cell differentiation [134]. In prostate cancer,
ANXA1 stimulates cell proliferation and dedifferentiation of
cancer cells to stem-like cells [135]. ANXA3 is overexpressed
in lung cancer CAFs, playing an important role in chemoresis-
tance [136]. By interacting with cancer cells, extracellular CAF
vesicles (containing ANXA6) induce aggressive pancreatic duc-
tal carcinoma [137]. Additionally, ANXA10 correlates with the
progression of pancreatic early lesions towards ductal adeno-
carcinoma [138]. In serous epithelial ovarian cancer, high
ANXA10 level was found and correlated with chemotherapeu-

tic response [139]. It has also been proposed as the poor prog-
nostic marker in several cancers, i.e., serous epithelial ovarian
carcinoma, papillary thyroid cancer, and perihilar and distal
cholangiocarcinoma [139–141]. Though no information is
available on ANXA10 in BC to date, it possibly plays critical
roles in disease aggressiveness.

Upregulation of FGFR can undergo shedding from CAFs,
although FGF5 (a receptor ligand) is released from CAFs
inducing FGFR2 expression in HER2+ BC cells resulting in
HER targeted therapy resistance [142]. FGFR1 amplification
occurs most frequently in patients with luminal B-like BC
and appears to correlate with patient’s poor prognosis,
although with no statistical significance [143]. FGF overpro-
duction may autocrinally activate FGFR expression rendering
its shedding out into the TME; thus, the FGF/FGFR axis in BC
offers target molecules to attenuate cancer progression [144].
Potentially, the combinations of anti-FGFR or anti-FGF
therapies with checkpoint inhibitors can improve survival
and quality of life of BC patients with novel and increasingly
accurate therapeutic strategies.

Studies reveal a paracrine effect of CAF secreted factors
over tumor cells enhancing therapeutic resistance through
the evasion of apoptotic cell death [145]. HMGB1, a CAF-

Table 1: Markers of CAFs and the correlated biological function and function of CAFs on tumor promotion and immunosuppression in BC.

(a)

Category Markers (Ref)

Characteristic of CAFs ASMA/CAV-1/CD29/FAP/FSP-1/PDGFRβ [108], VIM [115], CD10 [112]

Poor prognostic CAFs
ASMA/HMGB1 [110], COX-2 [159], CXCL-1 [126], FSP-1/podoplanin [109], HDAC6 [159],

LC3/Snail1/TLR-4 [131], TNC [111], VIM [115]

Chemoresistance
induction CAFs

CD10 [112], CD44 [113], GPR77 [112], IL-6 [118], PDGFRβ [114], HMGB1 [133], IL-7 [117]

Immune cell suppression
CAFs

IL-10 [40, 43], IL-12/IL-23 [160], Chi3L1 [161], CXCL12/SDF-1 [108], CXCL16 [162]

(b)

CAF-derived substances Target cells Effects Ref

CXCL1 Cancer cells Decrease TGF-β signaling, promote tumor progression [126]

CXCL8/IL-8 Cancer cells Mediate the prometastatic activities [123]

CXCL12/SDF-1α
CD4+CD25+ Tregs

Attract, increase survival and promote differentiation to a regulatory
phenotype

[108]

MDSCs Recruit and exert tumor-promoting effects [163]

CXCL16 Monocytes Promote stroma activation in TNBC [162]

Chi3L1
CD8+CD4+ T
lymphocytes

Enhance tumor infiltration and promote Th1 phenotype [161]

Macrophages Recruit and differentiate into M2-like phenotype [161]

TNF-α, IL-1β, IL-6, and IL-
12p70

T lymphocytes Secrete IFN-α and IFN-γ, induce CTL responses [164]

IL-6 Cancer cells Induce EMT and promote tumor progression [165]

IL-32 Cancer cells Promote cancer cell invasion [127]

Leptin Cancer cells
Promote cancer growth and progression

Enhance cancer cell motility and invasiveness
[128, 129]

MCP-1, SDF-1 Macrophages Recruit and differentiate into M2-like phenotype [166]
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mediated protein, induces doxorubicin (a chemotherapeutic
used to treat BC) resistance through autophagy induction
[133]. Moreover, CAF-derived IL-6 secretion induces resis-
tance to trastuzumab (a monoclonal antibody against HER2)
by cancer stem cell expansion and apoptosis reduction via
NF-κB, JAK/STAT3, and PI3K/AKT signaling pathways
[146]. Therefore, a novel strategy reverting trastuzumab resis-
tance in HER2+ BC could be the combination of an anti-IL-6
antibody with these specific pathway inhibitors [146]. When
cancer cells are cocultured with CAFs, tumor cells show
chemoinsensitivity typical of aggressive BC [147], partly due
to chemotherapy-induced metabolic and phenotype transfor-
mation of healthy fibroblasts into CAFs. This generates a
nutrient and inflammatory cytokine-enriched environment,
activating stemness in adjacent BC cells [148]. A combined
drug approach, bortezomib (a proteasome inhibitor) and
panobinostat (a histone deacetylase inhibitor), synergistically
decreases patient-derived CAF viability by inducing caspase-
3-mediated apoptosis [149].

Other important mediators of intracellular communica-
tion currently emerging are exosomes, which affect BC pro-
gression by horizontally transferring microRNAs (miRs),
mRNAs, and proteins [150]. Differential expression profile
analysis identified three miRs (miR-21, miR-378e, and miR-
143) increased in exosomes from breast CAFs compared to
normal fibroblast, proposing their role in stemness and
EMT induction in BC cell lines [151]. Breast stromal fibro-
blasts can secrete the proangiogenesis protein vascular endo-
thelial growth factor A (VEGF-A) which can be repressed by
p16(INK4A) [152]. The above evidence supports the poten-

tial therapeutic strategies targeting breast CAFs, offering
new tools in BC therapy [153, 154].

3. CAF Immunosuppressive Effect in BC

Immune modulation in breast TME plays a central role in
determining disease outcome and immunotherapy response,
in particular immune checkpoint modulators [155]. Accord-
ingly, CAFs are key modulators of TME and immune
response, secreting soluble molecules, such as cytokines/che-
mokines (refer to Table 1, Figure 2). This process allows
CAFs to create immunological barriers against CD8+ T cell-
mediated antitumor immune responses [39]. Targeting CAFs
with an on-shelf antifibrotic agent, TGF-β antagonist, com-
bined with doxorubicin, inhibits tumor growth and metastasis
synergistically [156]. Additionally, elimination of FAP+ CAFs
in vivo shifted the immune microenvironment from Th2 to
Th1 polarization, suggesting CAFs as attractive targets in met-
astatic BC [157]. Several clinical trials are ongoing concerning
the role of the immune system in BC editing, with potential
impact of immunotherapy [36]. Specifically, the CAF-S1 sub-
type in BC increases recruitment and differentiation of CD4+-

CD25+ Tregs in TME, through CXCL12/SDF1-α leading to
the inhibition of effector T cell function [108].

Alternatively, CAF activation positively correlates with
increased CD163+ TAM infiltration and lymph node metas-
tasis in TNBC patients [158], being prognostic factors for
disease-free survival.

An interesting epigenetic mediator is fibrotic histone
deacetylase 6 (HDAC6), programming an immunosuppressive

PDGF-𝛽

FSP-1
CD29FAP

ASMA
VIM GR

TNC
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Figure 2: CAF markers, CAF-derived substances, and their tumor-promoting functions of aggressive CAFs in BC, CAF-S1, with positive
stains of ASMA and FAP. CAFs can also produce a variety of cytokines/chemokines into TME, promoting cancer aggressiveness by direct
effect on tumor cells to induce tumorigenic properties, i.e., stemness, EMT/invasion/metastasis, cell growth, and angiogenesis. Lastly, some
substances can indirectly activate cancer progression through immune cells, thus modulating the immunosuppressive condition in BC tissues.
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TME that reduces antitumor immunity, possibly a good target
enhancing BC immunotherapy [159]. Genetic or pharmacologic
disruption of HDAC6 in CAFs delays tumor growth, inhibits
tumor recruitment of MDSCs and Tregs, alters macrophage
phenotype switch, and increases CD8+ and CD4+-T cell activa-
tion in vivo [159]. Prostaglandin E2/cyclooxygenase-2 (COX2)
is the main target of HDAC6 in CAFs, and COX2 overexpres-
sion in HDAC6-knockdown CAFs reinstates fibroblast immu-
nosuppressive properties.

Finally, TME-secreted substances also affect DC function
in some cancers [160]. Accordingly, cervical cancer cells reg-
ulate DC production of IL-23 and IL-12 in DC/fibroblast
cocultures through IL6/C/EBPβ/IL1β promoting Th17 cell
expansion, although reducing antitumor Th1 differentiation
during cancer progression [160].

4. Conclusion and Future Perspectives

A successful cancer therapeutic strategy using the immune
system as a target requires understanding of cellular compo-
nents in TME. Characteristics of CAFs and their secreted
substances in each BC type are not only useful for being
targets of treatment but also prognostic and predictive

factors. According to secretory substances, cytokines/chemo-
kines, together with exosomes containing miRs, mRNAs, and
proteins, CAFs become key modulators for cancer progres-
sion and immune cell polarization, resulting in protumoral
or immunosuppressive status in the TME. The use of appro-
priate biomarkers, resulting from cancer cell-immune cell-
CAF crosstalk, will identify promising cases responding to
therapy, enabling a suitable therapeutic strategy. Lastly,
understanding the molecular mechanisms of complex inter-
actions between CAFs and immune cells is needed to fill
the knowledge gap, thus providing potential targets for
improved cancer therapy.
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Figure 3: Two-dimensional gel electrophoresis (2DGE) and liquid chromatography mass spectrometry (LC-MS) of breast CAF conditioned-
medium (BCF-CM). (a) The primary culture fibroblasts including 7 BCF-CM and 1 breast normal fibroblast-conditioned medium (BNF-
CM). 100 μg of each CM was prepared and applied to a 7 cm linear pH3-10, immobilized pH gradient (IPG) (GE Healthcare) strip. The
first dimensional separation was performed at 20°C for 14 h in 3 steps including (1) 500V for 1 h, (2) 1,000V for 1 h, and (3) 5,000V for
2-3 h. The second dimensional separation was performed by 12.5% SDS-PAGE at 150V for 2 h. Gels were stained with silver (PlusOne
staining kit, GE Healthcare) for 5 h. The gels were scanned by a Typhoon Laser Scanner (GE Healthcare). Protein spots were detected and
percentages of the spot volume were calculated with Image Master 2D platinum program. (b, c) The representative gels of BNF-CM and
BCF-CM, respectively. Spots no. 223 and 298 are found in only BCF-CM but not in BNF-CM. (d) Potential cancer-associated substances
from breast CAFs determined by LC-MS. The protein spots in the gels from (b) and (c) were digested with trypsin. 100μl of 3% H2O2 was
added, removed, and dehydrated with 100 μl of 100% acetonitrile (ACN). Reduction was performed by adding 10mM DTT in 10mM
NH4HCO3 and incubated at 56°C for 1 h. The solution was removed and replaced by adding 100mM iodoacetamide in 10mM NH4HCO3
and then dehydrated with 100% ACN. Digestion was performed by incubating with 20 ng/μl trypsin (Promega Corporation). 10mM
NH4HCO3 was added on gel pieces and incubated at 37°C overnight. The proteins were extracted from gels by adding 0.1% formic acid
(FA) in 50% CAN and resuspended with 0.1% FA in LC-MS water before injection into the LC-MS (SYNAPT™ HDMS Mass
Spectrometer, Water Corp, UK) (lab data).
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