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GM-CSF produced by autoreactive CD4-positive T helper cells is involved in the pathogenesis of autoimmune diseases, such as
multiple sclerosis. However, the molecular regulators that establish and maintain the features of GM-CSF-positive CD4 T cells
are unknown. In order to identify these regulators, we isolated human GM-CSF-producing CD4 T cells from human peripheral
blood by using a cytokine capture assay. We compared these cells to the corresponding GM-CSF-negative fraction, and
furthermore, we studied naïve CD4 T cells, memory CD4 T cells, and bulk CD4 T cells from the same individuals as additional
control cell populations. As a result, we provide a rich resource of integrated chromatin accessibility (ATAC-seq) and
transcriptome (RNA-seq) data from these primary human CD4 T cell subsets and we show that the identified signatures are
associated with human autoimmune diseases, especially multiple sclerosis. By combining information about mRNA expression,
DNA accessibility, and predicted transcription factor binding, we reconstructed directed gene regulatory networks connecting
transcription factors to their targets, which comprise putative key regulators of human GM-CSF-positive CD4 T cells as well as
memory CD4 T cells. Our results suggest potential therapeutic targets to be investigated in the future in human autoimmune
disease.

1. Introduction

CD4-positive T helper cells (Th) are crucial players in the
immune system which exert their effects mainly by produc-
ing cytokines. CD4 T cell subsets are usually classified based
on expression of “lineage-defining” transcription factors
(TFs) as well as the signature cytokines they secrete [1]. How-
ever, the distinction is not clear-cut, since different signature
cytokines can be expressed simultaneously and plasticity
between subsets occurs [2, 3]. In view of the “classical” dis-
tinction of CD4 T cell subsets, particularly, Th1 and Th17
subsets are involved in the establishment of autoimmune dis-

eases such as multiple sclerosis (MS) and the corresponding
rodent model experimental autoimmune encephalomyelitis
(EAE), which are thought to be driven by the T cell-
released cytokines interleukin-17 (IL-17), interferon-γ
(IFN-γ), IL-22, and granulocyte-macrophage colony-
stimulating factor (GM-CSF). Of these, GM-CSF was deter-
mined as the key cytokine in EAE pathogenesis, since only
knocking out GM-CSF (but neither IFN-γ, IL-17A, nor IL-
17F) could completely protect the animals from induced
EAE [4–6]. Furthermore, it has been demonstrated that spe-
cifically, the GM-CSF produced by autoreactive T cells was
necessary for EAE induction, while T cell-produced IFN-γ
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and IL-17 were dispensable [7–9]. In line with these results,
GM-CSF expression by Th cells was required for neuroin-
flammation in EAE, and even in the presence of IFN-γ-
and IL-17A-producing Th cells, pathogenicity vanished upon
loss of GM-CSF [10]. Importantly, in humans, the fraction of
GM-CSF-positive (and IFN-γ-positive) cells within CD4 T
cells was elevated in MS patients’ cerebrospinal fluid com-
pared to controls, while IL-17A-positive cell fractions were
not strikingly different in these reports [11, 12]. The fractions
of GM-CSF-positive and IFN-γ-positive cells were also
increased in peripheral blood of MS patients in one report
[13], but not in another [11]. A third study found a trend
of increased IFN-γ-producing peripheral blood cells in MS
patients, but among 12 different cytokines tested, only GM-
CSF-positive cells were significantly increased in MS patients
compared to controls [14]. Interestingly, the expanded Th
subset-producing GM-CSF that was found in blood and
CNS of MS patients could be diminished by disease-
modifying therapy [14], suggesting GM-CSF-producing Th
cells to be an attractive therapeutic target. Similarly,
enhanced fractions of GM-CSF-producing CD4 T cells have
been observed in synovial fluid of patients with juvenile
arthritis along with the well-known enhanced GM-CSF levels
in synovial fluid [15, 16]. Of note, targeting GM-CSF in MS
or arthritis is subject to several ongoing clinical studies,
highlighting the importance of this cytokine in these diseases
[16]. Based on this cumulative evidence of the significance of
GM-CSF-producing CD4 T cells in human autoimmune
disease, understanding the factors driving and defining
GM-CSF-positive T cells would be of utmost importance
for targeting them therapeutically.

Beyond their established pathogenic role in autoimmune
diseases, GM-CSF-producing Th cells have also been impli-
cated in other inflammatory diseases. In sepsis, enhanced
fractions of GM-CSF-producing T cells were associated with
a poor outcome [17]. Notably, GM-CSF-producing Th cells
have also been implicated in SARS-CoV-2 infection, espe-
cially in patients with a severe course of coronavirus disease
2019 (COVID-19) [18–20]. Due to the pleiotropic roles of
GM-CSF in immune disease and lung inflammation, GM-
CSF-targeting therapeutic approaches are currently explored
in clinical trials to treat COVID-19 [21].

Murine CD4 T cell populations expressing IL-17A and
GM-CSF have been observed and termed “pathogenic
Th17” cells because they have the potential to induce EAE
[22–24]. However, only one of these studies showed coex-
pression of both cytokines on the single-cell level [24].
Although a T cell can express GM-CSF simultaneously with
other cytokines such as IFN-γ, a “GM-CSF-only-producing”
murine T cell subset was also proposed and associated with
enhanced encephalitogenic activity over IL-17 and IFN-γ-
producing T cells in EAE [9]. The existence of a correspond-
ing separate “GM-CSF-only” human T cell subset has also
been proposed [25], because a substantial subset of ex vivo-
restimulated human GM-CSF-positive CD4 T cells produces
GM-CSF in the absence of any other classical Th1, Th2, and
Th17 lineage-defining cytokines (such as IFN-γ, IL-4, and IL-
17), transcription factors, or surface markers [11, 26]. Fur-
thermore, GM-CSF-producing CD4 T cells are induced by

different sets of cytokines compared to other Th cell subsets
[11, 25, 27]. In fact, GM-CSF and IL-17A expression by
human CD4 T cells has been found to be mutually exclusive
on the single-cell level [11] or at least substantially less fre-
quent than coexpression of IFN-γ and GM-CSF [11, 26,
27]; also, IL-4 coproduction with GM-CSF was negligible
[11]. A more recent study [14] has extended the analysis of
cytokine coexpression in human PBMCs upon Phorbol 12-
myristate 13-acetate (PMA) and ionomycin restimulation
to a range of 13 different cytokines by the use of mass cytom-
etry and also included MS patients along with controls. Of
these cytokines tested, cytokines typical for Th2, Th17,
Th22, or Tfh cells were not coproduced by GM-CSF-
positive Th cells, while a substantial fraction coproduced
the Th1-cytokine IFN-γ, as well as TNFα and IL-2 [14].

Despite the importance of GM-CSF-producing T cells,
there is no specific marker to distinguish such cells from
others to date. Although combinations of the presence and
absence of nonexclusive surface markers have been useful
to delineate “GM-CSF-only” cells [11], the fraction of GM-
CSF-producing cells that also produces other cytokines such
as IFN-γ is excluded by this approach. Furthermore, the driv-
ing factors for GM-CSF production remain unclear.
Together, these observations suggest that the characteriza-
tion of human GM-CSF-positive CD4 T cells isolated based
on their functional profile (GM-CSF production) rather than
using the “classical” Th1 and Th17-like phenotypic markers
may enable the identification of factors regulating GM-CSF
production in CD4 T cells. Hence, in order to understand
the regulators and molecular patterns defining human GM-
CSF-positive CD4 T cells, we isolated those cells actively
secreting GM-CSF from human peripheral blood ex vivo by
cytokine “capture” assay, starting with bulk CD4 T cells.
We then studied their transcriptome by RNA-sequencing
(RNA-seq). Studying a single data type like mRNA expres-
sion separately may not be sufficient for identification of all
regulatory factors, since TFs themselves are often regulated
by posttranscriptional modifications, intracellular transloca-
tion, or cobinding with other TFs, rather than by changes
in their gene expression. Thus, we assessed in parallel the
DNA accessibility of the same samples in order to gain a
global picture of putative TF binding patterns and enabling
integration with the expression of regulated target genes on
the RNA level. Due to the limited number of primary,
ex vivo-isolated GM-CSF-positive human T cells, we
employed a recently described highly sensitive method assay
for transposase-accessible chromatin using sequencing
(ATAC-seq) [28] to study DNA accessibility from 50,000
cells per replicate. As a control, we used the respective GM-
CSF-depleted (GM-CSF-negative) fraction derived from the
capture assay procedure. Since GM-CSF-positive cells (which
may also coproduce additional cytokines and hence may rep-
resent “activated” T cells) may differ from GM-CSF-negative
CD4 T cells merely by containing largely reduced fractions of
naïve cells, we furthermore undertook RNA-seq and ATAC-
seq profiling of several control cell populations from the
same donors, namely, naïve CD4 T cells and memory CD4
T cells. As an additional control, we studied bulk CD4 T cells
without a capture assay procedure.
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This study hence reveals molecular patterns of GM-CSF-
positive CD4 T cells as well as those shared with memory,
naïve, or bulk CD4 cells. To our knowledge, this is the first
study of global molecular signatures of GM-CSF-positive
CD4 T cells derived ex vivo without restimulation. Although
this population does not only contain “GM-CSF-only” cells,
but may include cells producing other cytokines, the ex vivo
isolation based on active GM-CSF secretion results in a pure
population of cells producing GM-CSF versus cells not pro-
ducing GM-CSF. Besides serving as a control, we further-
more provide a novel resource of ATAC-seq and RNA-seq
data of human primary naïve, memory, and bulk CD4 T cells
from several human healthy donors. A large body of knowl-
edge exists on molecular signatures and regulation of human
naïve and memory T cells [29]. This encompasses large con-
sortium efforts to map human memory and naïve CD4 T cell
subsets’ transcriptomes and epigenomes including chroma-
tin accessibility [30], albeit these authors did not use the
ATAC-seq method. Recently, few reports using ATAC-seq
for T cells have been published and the impactful results sup-
port the power of the methodology. Many of these studies
focus on murine CD8 T cell differentiation and exhaustion
[31–35], and several recent studies also comprise ATAC-
seq on CD4 T cells [10, 28, 36–40]. However, none of these
works studied all the types of CD4 T cell subsets that we
analyzed here.

Through interpreted, integrative analysis of mRNA
expression and DNA accessibility data from primary human
CD4 T cell subsets, we provide novel gene regulatory net-
works underlying GM-CSF production as well as the mem-
ory phenotype in human CD4 T cells and we propose novel
key TFs regulating these cells. The enrichment of the identi-
fied genes for human immune system diseases and especially
MS for GM-CSF-positive cells underlines the clinical rele-
vance of our data, which may be exploited in a multitude of
basic and applied immunology studies in the future.

2. Materials and Methods

2.1. Ethics Statement. Peripheral blood mononuclear cells
were freshly isolated from anonymized healthy donor buffy
coats purchased from the Karolinska University Hospital
(Karolinska Universitetssjukhuset, Huddinge), Sweden.
Research was performed according to the national Swedish
ethical regulations (ethical review act, SFS number 2003:460).

2.2. Experimental Methods

2.2.1. PBMC and T Cell Isolation. Human peripheral blood
mononuclear cells (PBMCs) were isolated using Ficoll-
Paque gradient centrifugation from buffy coats according to
standard procedures. In brief, buffy coats were diluted in
PBS, layered on Ficoll-Paque (GE Healthcare), and centri-
fuged (1200 × g, 20min, without break). Subsequently, the
PBMC ring was collected. PBMCs were washed with PBS
(450 × g, 10min) and monocytes were depleted by plastic
adherence in RPMI 1640 medium containing GlutaMAX
(Life Technologies, Thermo Fisher Scientific) and 10% (v/v)
heat-inactivated fetal bovine serum (FBS) (Gibco Perfor-

mance Plus certified; Thermo Fisher Scientific) for 60–80
minutes at 37°C, 5% CO2. Platelets were removed by centrifu-
gation (200 × g, 5–10min, 20°C, 4 times). Subsequently,
human naïve, memory, and total CD4 T cells were isolated
negatively (“untouched”) in parallel by magnetic-activated
cell sorting (MACS) from each donor. The following MACS
kits were used according to the instructions from the manu-
facturer (Miltenyi Biotec): human naïve CD4+ T cell isolation
kit II, human memory CD4+ T cell isolation kit II, and
human CD4+ T cell isolation kit II. The purity of naïve, mem-
ory, and total CD4 T cells was controlled by flow cytometry
(see below). Cells were counted with the Countess Auto-
mated Cell Counter (Invitrogen), and viability (determined
by Trypan blue stain) was 96:5 ± 1:5% (mean ± SD). T cells
were cultured at 37°C and 5% CO2 in serum-free X-Vivo 15
medium (Lonza) supplemented with GlutaMAX (Gibco),
unless otherwise stated. T cells were rested overnight before
sample preparation for RNA-seq, ATAC-seq, and GM-CSF
secretion assay (see below). 6 healthy male anonymized
donors (aged 35:7 ± 8:5 years, mean ± SD; range 22–44
years) were used for molecular profiling.

2.2.2. GM-CSF Secretion Assay (Capture Assay). Total CD4 T
cells were isolated and rested as above, before capturing
GM-CSF-producing cells using the "GM-CSF Secretion
Assay-Cell Enrichment and Detection Kit (PE), human"
(Miltenyi Biotec) according to the manufacturer’s instruc-
tions with the following modifications and details.
65–150 × 106 (98:3 × 106 ± 33:7 × 106, mean ± SD) unsti-
mulated purified CD4 T cells were centrifuged (300 × g,
10min), X-Vivo 15 medium was removed completely,
and cells were washed with 15ml MACS buffer (0.5%
human serum albumin (HSA) and 2mM EDTA in PBS,
4°C). Cells were resuspended in ice-cold RPMI 1640
medium including GlutaMAX (Life Technologies, Thermo
Fisher Scientific) and 10% (v/v) FBS (Gibco Performance
Plus certified, heat inactivated; Thermo Fisher Scientific).
GM-CSF catch reagent was added, mixed, and incubated
for 5 minutes on ice. The GM-CSF secretion period was
performed by adding prewarmed (37°C) RPMI 1640
medium (containing GlutaMAX and 10% FBS) to a cell
density of 1 × 106 cells/ml, under continuous rotation
(10 rpm orbital mixing) of the cells for 45 minutes at
37°C, 5% CO2. Labeling cells with GM-CSF Detection
Antibody (Biotin) and Anti-Biotin-PE and magnetic label-
ing with Anti-PE MicroBeads UltraPure were performed
as per manufacturer’s instructions, and cells were washed
in 50ml MACS buffer. Cells were resuspended in 3ml
MACS buffer, cell suspensions were filtered with 30μm
Filcon strainer (BD Biosciences), and magnetic separation
was performed on LS columns (Miltenyi Biotec) according
to standard protocols. For donor A, the GM-CSF+ eluate
was passed over a second MS column following the LS
column procedure, but since a second column did not
increase purity but led to loss of cells (data not shown),
for all other donors, the GM-CSF+ eluate from the first
LS column was used for subsequent analyses. The GM-
CSF− fraction from the flow-through was passed over a
second column (except for donor A) to increase purity
of the negative fraction. The yield of GM-CSF+ cells was
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1:2 ± 0:6% of CD4 T cells (mean ± SD) and purity was
controlled by flow cytometry (see below).

2.2.3. Flow Cytometry. Purity of MACS-isolated naïve CD4 T
cells, memory CD4 T cells, and total CD4 T cells was verified
by surface staining using the following antibodies (all against
the human proteins): CD4-PerCP (clone SK3, BD Biosci-
ences), CD45RA-FITC (clone T6D11, Miltenyi Biotec),
CD45RO-PE (clone UCHL1, BD Biosciences), CD19-APC
(clone HIB19, BD Biosciences), and CD8-eFlour450 (clone
OKT8, eBioscience). Staining was performed in the dark with
antibody dilutions in FACS buffer (PBS with 0.5% HSA) for
15 minutes at 20°C. Single-stained PBMC or T cell samples
were used as compensation controls. Cells were washed once
with PBS, resuspended in FACS buffer, and acquired on a
CyAn ADP 9-Color Analyzer (Beckman Coulter). Compen-
sation was performed with the CyAn software (Summit) tool.
Purity of GM-CSF+ and GM-CSF− samples after GM-CSF
secretion assay from bulk CD4 T cells was assessed by mea-
suring the fraction of PE-labeled (GM-CSF-positive) cells.
Cell purities and gating strategy are shown in Figure 1 and
Supplementary Figure S1. We also confirmed in
independent experiments (including PMA and ionomycin
restimulation) that the PE label in GM-CSF-captured cells
correlated well with the GM-CSF signal based on
intracellular staining with an anti-GM-CSF antibody (clone
BVD2-21C11, APC conjugated, Miltenyi Biotec; data not
shown). Flow cytometry data analysis and visualization
were performed using the FlowJo software v7.6.5 (Tree
Star), and exported percentage values were plotted using
GraphPad Prism v7.02 (GraphPad Software Inc.).

2.2.4. ATAC-Seq Sample Preparation. Nuclear isolation, tag-
mentation, and PCR amplification was carried out according
to Buenrostro et al. [28]. In brief, 50,000 cells per replicate
were transferred to 0.2ml tubes and centrifuged (500 × g,
6min, 4°C) and the supernatant was removed. Cells were
washed with PBS (500 × g, 6min, 4°C) and lysed in lysis
buffer (10mM Tris-HCl, pH7.4; 10mM NaCl; 3mMMgCl2;
and 0.1% IGEPAL CA-630) to isolate nuclei. 3 technical rep-
licates (50,000 cells each) were processed in parallel for each
sample (except donor A, 2 technical replicates). Nuclei were
washed in PBS (500 × g, 6min, 4°C) and resuspended in
Transposase Reaction mix. Transposition was carried out at
37°C for 30 minutes, followed by clean up using the QIAGEN
MinElute Reaction Clean Up Kit according to the manufac-
turer’s instructions (QIAGEN). PCR amplification using
reagents from the Nextera DNA Sample Preparation Kit
(Illumina) and barcoding of replicates were performed with
reaction conditions and index primers as described in [28].
20 different index primers were used and distributed across
replicate samples and donors in a balanced way to control
for potential batch effects. The PCR product was cleaned
up using the QIAGEN MinElute Reaction Clean Up Kit.
Subsequently, gel size selection was performed by gel elec-
trophoresis (1.8% (w/v) certified low-melt agarose (Bio-
Rad) in 1x UltraPure Tris-Acetate-EDTA (TAE) buffer
including SYBR Safe DNA Gel Stain (Invitrogen, Thermo
Fisher Scientific), with a free well between each of the

samples) and DNA in the size range of 150–230 bp was
excised using surgical blades. Replicate samples were allo-
cated to the gels in a balanced way regarding donor and
experimental condition to control for potential batch
effects. Resulting DNA libraries were purified using QIA-
GEN MinElute Gel Extraction Kit according to the manu-
facturer’s instructions (QIAGEN).

Size distribution of ATAC-seq sequencing libraries was
determined on a 2100 Bioanalyzer Instrument (Agilent Tech-
nologies) using the Agilent DNAHigh Sensitivity Kit accord-
ing to the manufacturer’s instructions. Libraries were
quantified by real-time PCR on a StepOnePlus detector sys-
tem (Applied Biosystems) using the KAPA Library Quantifi-
cation Kit (KAPA Biosystems). Sequencing was performed
on an Illumina HiSeq 2500 instrument (Illumina) with a
single-read setting and read length of 42 bp.

2.2.5. RNA-Seq Sample Preparation. Cells were centrifuged
(1000 × g, 5min, 20°C), washed with PBS, and lysed in QIAzol
Lysis Reagent (QIAGEN) by vortexing and incubating for 5
minutes at 20°C. Lysates were stored at −80°C until RNA
extraction. RNA was extracted with the miRNeasy Micro Kit
(QIAGEN) according to the manufacturer’s instructions.
RNA concentration was determined on a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific), and RNA qual-
ity was controlled on a 2100 Bioanalyzer Instrument (Agilent
Technologies) using an Agilent RNA 6000 Pico Kit. RNA
integrity numbers (RIN) were 8:5 ± 0:3 (mean ± SD). Librar-
ies were prepared in one batch with the TruSeq Stranded
mRNA HT Kit (Illumina) with Dual Index Adapters and
Ambion ERCC Spike-In Control (Thermo Fisher Scientific).
Samples were allocated to sequencing indexes and lanes in a
balanced fashion to control for potential batch effects (7–8
samples/lane). Library concentration was determined on a
Qubit 2.0 Fluorometer (Thermo Fisher Scientific). The library
size and quality were measured on a 2100 Bioanalyzer Instru-
ment (Agilent Technologies) using an Agilent High Sensitivity
DNA Kit. Libraries were quantified with the KAPA Library
Quantification Kit (KAPA Biosystems). Sequencing was per-
formed on a HiSeq 2500 Sequencing Platform (Illumina; High
Output Run) with 76nt paired-end reads.

2.3. Computational Methods

2.3.1. Preprocessing of Sequencing Data. BCL base call files
were demultiplexed and converted to FASTQ files using
bcl2fastq version 2.17.1.14. For quality control, FastQC ver-
sion 0.11.5 was used.

FASTQ files from the ATAC-seq experiments were
trimmed from adapters, and low-quality bases using scythe
version 0.991. and sickle version 1.33. FASTQ files from the
ATAC-seq experiments were aligned to the human genome
version hg38 using bowtie version 2.3.0 with the ‘–very-sen-
sitive’ option. After alignment, BAM files of ATAC-seq
experiments were filtered to eliminate: duplicates (samtools
rmdup), alignments with a mapping score below 10, and
alignments that are not mapped to chromosome 1-22, chro-
mosome X, or chromosome Y. ATAC-seq peaks were called
using the ‘findPeaks’ script from the HOMER suite (version
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4.9.1) with the ‘-style factor’ option [41]. ATAC-seq peaks
were assigned to a gene using the ‘annotatePeaks’ script from
the HOMER suite.

FASTQ files from the RNA-seq experiments were aligned
using STAR version 2.5.2b. Indexes for RNA-seq alignment
were created using the gencode version 25 annotation file.
RNA-seq alignment was run with STAR’s built-in adapter
trimming option (‘–clip3pAdapterSeq AGATCGGAAGA
GCACACGTCTGAACTCCAGTCAC AGATCGGAAGA
GCGTCGTGTAGGGAAAGAGTGTA’) and its built-in
counting option (‘–quantMode’). Only genes with more than

1 count per million in at least 3 samples were included in the
downstream RNA-seq analysis.

2.3.2. Generation of Consensus Peak Set. In order to generate
a set of comparable features (genomic regions) for read
counting and quantifying differential accessibility from the
ATAC-seq data, a set of consensus peaks was generated in
two subsequent steps: (1) generation of consensus peaks on
the technical replicate level: first, the peaks that appeared in
at least two technical replicates (out of a total of three, except
one donor with a total of two technical replicates) with at
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Figure 1: Experimental setup and quality control for human CD4 T cell transcriptome and chromatin accessibility analysis. (a) Human
PBMCs for each donor were split in three fractions, and memory CD4 T cells, naïve CD4 T cells, and bulk (total) CD4 T cells were
isolated in parallel by negative (untouched) magnetic isolation (cell purities; see Supplementary Figure S1). From bulk CD4 T cells, GM-
CSF-secreting cells (GM-CSF positive) were captured and the negative fraction was used as the corresponding GM-CSF-negative
population. The five indicated cell populations were used for molecular profiling by ATAC-seq and RNA-seq. Differentially accessible
DNA regions (DAR) and differentially expressed genes (DEG) were determined for the comparison of memory versus naïve CD4 T cells
and for GM-CSF-positive versus GM-CSF-negative CD4 T cells, respectively. (b, c) High purity of isolated (captured) GM-CSF+ CD4 T
cells was confirmed by flow cytometry. The histograms show the signal of the GM-CSF capture construct for the indicated cell
populations, pregated on live singlet lymphocytes based on forward scatter, side scatter, and pulse width. Here, bulk CD4 T cells represent
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grey). Each donor is represented by a symbol; same symbol shape (but filled or unfilled) indicates donors processed within the same
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least 75% reciprocal overlap were selected. Then, these
selected regions were partitioned into disjoint nonempty
subsets so that each element is contained in precisely one
subset. Only the partitions appearing in at least two replicates
were retained, and afterwards, adjacent regions were merged.
A bed file resulting from these steps is herein referred to as a
sample and (2) next, all bed files containing each set of tech-
nical replicate level consensus regions were concatenated and
the presence of each region was counted within each experi-
mental sample; one occurrence corresponds to one donor
(biological replicate) and one cell type (experimental condi-
tion). Only the regions appearing in at least four samples
were kept (n = 5 is the number of biological replicates in
the smallest group regarding experimental condition).
Regions having a distance of 42 bases or less between them
were subsequently merged (the number 42 corresponds to
the sequencing read length in bases). Afterwards, reads were
counted using the featureCounts tool [42] with the criterion
that at least half of the read had to overlap with a feature to
be assigned to that feature.

2.3.3. Calculation of Differential Expression and Differential
Accessibility.Differential expression and accessibility was cal-
culated using the edgeR [43] library version 3.18.1 from Bio-
conductor. Donors (biological replicates) and cell types
(experimental conditions) were used as explanatory variables
in the generalized linear models. ATAC-seq data were nor-
malized to length and GC content by conditional quantile
normalization (CQN) [44]. Comparisons were made
between GM-CSF-positive CD4 T cells and GM-CSF-
negative CD4 T cells or between memory and naïve CD4 T
cells (see Figure 1(a)). The cutoff to call differentially
expressed genes (DEGs) or differentially accessible regions
(DARs) was FDR < 0:05 and >25% fold change (in the direc-
tion of either up- or downregulation, that is either 1.25 or
0.75 fold change).

2.3.4. Footprinting. Footprinting was carried out using the
Wellington algorithm [45], i.e., the wellington_footprints.py
script from the pyDNase library version 0.2.5 with the fol-
lowing settings: -fp 6,41,1 -sh 7,36,1 -fdr 0.01 -fdriter 100
-fdrlimit -30 -A. The footprint occupancy score (FOS) for
each footprint was calculated using the pyDNase library as
described in [46]. For subsequent network reconstruction,
we considered only footprints with a FOS smaller than the
following threshold: median ðFOSÞ + ½median ðFOSÞ –
minimum ðFOSÞ�.

2.3.5. Network Reconstruction. A directed network was recon-
structed by combining information from the ATAC-seq and
RNA-seq data in two subsequent steps: (1) identifying source
nodes: peaks were ranked based on their combined measure
of significance and direction of differential accessibility ½−
log10 ðFDRÞ × sign ðlog2 ðfold changeÞÞ�. Peaks containing
footprints were scanned for TF binding motifs using the
TRANSFAC database [47]. An enrichment score was calcu-
lated to identify TFs with binding sites enriched in differen-
tially accessible peaks, using tools similar to gene set
enrichment analysis (GSEA) [48]. In detail, random permuta-

tion was performed on the ranked list of peaks to assess how
probable it is to observe at least the same enrichment by
chance (P value) [49]. After multiple testing correction, TFs
with FDR < 0:05 were selected and the normalized enrich-
ment score (NES) was obtained. Only those source nodes
(TFs) that were detectably expressed on the RNA level
(according to a minimal RNA-seq filtering rule) were consid-
ered. Of these, most fell into the class of highly expressed genes
(HEGs) according to [50]. (2) identifying target nodes: target
nodes are defined as peaks with an assigned gene. The selec-
tion criteria were that (i) the peak contains a footprint with a
binding motif of the source node (TF) and (ii) the peak or
the assigned gene has to be differentially accessible or differen-
tially expressed, respectively.

To assign an importance measure to the source nodes in
networks generated as above, the PageRank [51] of the net-
work nodes was calculated after inverting the directionality
of all edges in the network (only for the purpose of this com-
putation). After this computation, the nodes with high
PageRank values (higher than the 99th percentile of all node
values within a given network) were selected from both the
GM-CSF and memory network, and afterwards, their values
were investigated in each of the two networks.

3. Results and Discussion

GM-CSF-positive CD4 T cells are enriched in MS patients
and play a crucial role in EAE; nevertheless, the factors driv-
ing and markers defining those cells are largely unknown. To
better understand the features and regulatory networks of
GM-CSF-positive CD4 T cells, we therefore studied the tran-
scriptional profiles and chromatin accessibility of these cells.
In vitro-differentiated GM-CSF-producing cells comprise
several subsets [27] and are likely to differ from those gener-
ated in vivo. Further, ex vivo restimulation with strong artifi-
cial stimuli such as PMA and ionomycin—which is usually
necessary to reach sufficient signal strength for detection by
intracellular cytokine staining—drastically alters the tran-
scriptome of T cells [52–54]. Hence, we aimed to isolate
GM-CSF-producing cells ex vivo in an as much as possible
unmanipulated state by GM-CSF secretion assay, “capturing”
and isolating those cells that actively secrete GM-CSF (exper-
imental setup; see Figure 1(a)), here defined as GM-CSF-
positive cells. The capture assay was performed starting from
highly purified CD4 T cells derived from human peripheral
blood (purity 97:3 ± 0:6%, mean ± SEM, Supplementary
Figure S1A). As controls, we used the respective GM-CSF-
negative fraction from the isolation procedure, as well as
the bulk CD4 T cells before any capture assay procedure.
The latter should, given the low fraction of GM-CSF-
positive cells, be very similar to the GM-CSF-negative
fraction and hence allows for estimation of the effects
arising from the capture assay procedure. The purity of
GM-CSF-positive and GM-CSF-negative fractions was
assessed by flow cytometry (Figures 1(b) and 1(c)) and the
yield of isolated GM-CSF-positive cells was 1:2 ± 0:6%
(mean ± SD) of CD4 T cells. To measure the transcriptome
and DNA accessibility from limited cell numbers, we
employed highly sensitive next-generation sequencing
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(NGS) methods (RNA-seq and ATAC-seq, respectively).
Since cytokine-secreting cells may differ from naïve cells
due to a memory-like phenotype and a large fraction of
CD4 T cells are naïve (mean ± SEM, 42:3 ± 5:8% in the
donors used here; see Supplementary Figure S1A), we
further profiled highly purified naïve and memory CD4 T
cells from the same donors (Figure 1(a) and Supplementary
Figure S1B-D).

Altogether, we obtained DNA accessibility and tran-
scriptome data from highly purified ex vivo-derived human
naïve CD4 T cells, memory CD4 T cells, bulk CD4 T cells,
and GM-CSF-positive and the corresponding GM-CSF-
negative CD4 T cells. To enable paired analysis within a
donor, these cell populations were isolated in parallel within
a donor, for 6 donors in total. DNA accessibility and mRNA
data were obtained in parallel from the same samples allow-
ing for matched integration of the data.

3.1. Unique and Shared DNA Accessibility and Gene
Expression Signatures of GM-CSF-Positive and Memory
CD4 T Cells. We studied the above-described five different
CD4 T cell populations by RNA-seq and ATAC-seq. To min-
imize potential batch effects due to technical factors, the
library preparations and sequencing runs were designed in
such a way that donors, cell populations, and (for ATAC-
seq) technical replicates were distributed in a balanced fash-
ion. It is also worth noting that only donors of the same gen-
der were studied here (male, aged 35:7 ± 8:5 years,
mean ± SD), which may be important since it was recently
shown that gender was the largest source of variation
explaining chromatin accessibility in primary human CD4
T cells measured by ATAC-seq [36]. That study further dis-
covered novel elements escaping X chromosome inactivation
and affecting immune genes [36]. To assess which factors
explained most of the variability between the samples under
study here, we performed principle component analysis
(PCA). Indeed, for both data types, there was a grouping of
the samples based on the cell subset, outweighing donor or
experimental variation (Figures 2(a) and 2(b)) and confirm-
ing the quality of our samples and data. Notably, for RNA
data, the cell populations were generally more distinct from
each other than for DNA accessibility data. However, the
GM-CSF-positive and corresponding GM-CSF-negative
fractions appeared relatively similar to each other in the
PCA performed on RNA data, while PCA results from
ATAC-seq data were closer to the expected pattern, that is,
bulk CD4 T cells appearing “between” GM-CSF-positive
and GM-CSF-negative populations (Figures 2(a) and 2(b)).
The difference between RNA-seq and ATAC-seq data with
respect to separation of GM-CSF-positive and negative cells
may indicate that the capture assay procedure imposes dis-
tinct changes on the transcriptome, highlighting the impor-
tance of using correspondingly treated controls to
determine differential expression. In contrast, changes in
DNA accessibility appeared more robust towards changes
due to the experimental procedure at least within the exper-
imental time frame under study, although the distinction of
the other groups was generally less apparent with ATAC-
seq data. The advantage of PCA is that the displayed dis-

tances between samples along the axes can directly be inter-
preted but it is not suited to reduce all the data variability
to only two dimensions. Indeed in our analysis, the first
two PCs in the two-dimensional space only explained about
50% of the variation in the data. Therefore, we also used
another dimensionality reduction method to explore the
sample-to-sample relationships, namely, t-distributed sto-
chastic neighbor embedding (t-SNE) [55]. t-SNE allows for
visualization of sample-to-sample similarity in two dimen-
sions, and furthermore, in contrast to PCA, it is a nonlinear
dimensionality reduction algorithm and it is especially suited
for capturing local relationships. The t-SNE results
(Figures 2(c) and 2(d)) generally confirmed the results of
the PCA analysis (Figures 2(a) and 2(b)), that is, the groups
(cell types) being more distinct in RNA data than ATAC-
seq data, with the exception of GM-CSF-positive and GM-
CSF-negative cells.

We defined significantly differentially accessible DNA
regions (DARs) and significantly differentially expressed
genes (DEGs) in GM-CSF-positive CD4 T cells or in memory
CD4 T cells. To do so, we specifically analyzed the signatures
of GM-CSF-positive versus GM-CSF-negative CD4 T cells,
as well as the profiles of memory versus naïve CD4 T cells
(Figures 1(a), 3(a), 3(b), 3(c), and 3(d)). We used generalized
linear models based on the negative binomial distribution
(edgeR) [43] to determine differential expression and accessi-
bility, and we called DEGs and DARs, respectively, based on
combined FDR and fold change cutoffs. We called 16571
DARs in GM-CSF-positive CD4 T cells (compared to corre-
sponding GM-CSF-negative cells; Figure 3(b)) and 13705
DARs in memory CD4 T cells (compared to naïve CD4 T
cells; Figure 3(a)). On the transcriptome level, we called 124
DEGs in GM-CSF-positive and 5383 DEGs in memory
CD4 T cells (Figures 3(c) and 3(d)). The relatively low num-
ber of DEGs in GM-CSF-positive cells is in agreement with
the PCA and t-SNE data (Figures 2(b) and 2(d)) and may
suggest that combination with ATAC-seq data drastically
improves the possibility to define molecular signatures spe-
cific to GM-CSF-positive ex vivo-captured cells.

Next, we studied the DARs and DEGs in more detail. We
first focused on the signatures of memory CD4 T cells, which
are well studied in the literature [29] and hence enabled to
assess the biological quality of our data, besides providing a
new NGS dataset of human primary memory and naïve
CD4 T cells. DARs and DEGs defined in memory cells are
shown in Supplementary Figure S2, along with their
molecular patterns in the other cell types under study.
Accessible regions (consensus peaks) were annotated to the
major categories promoter-TSS (46.6% of all peaks), intron
(26.8%), and intergenic (18.7%), followed by exon (4.1%)
and TTS (3.8%). Regions differentially accessible (DARs) in
memory cells showed a similar distribution across
annotated categories (44.7% in promoter-TSS, 26.9%
intron, 20.4% intergenic, 3.9% exon, and 4.1% TTS). We
next extracted those memory-specific DARs that were
assigned to a gene from a list of genes known to be
involved in T cell memory as compiled by Durek and
colleagues [30]. Several of the DARs in memory cells were
assigned to such known memory-associated genes, about
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half (12 of 23) of those selected regions were falling in the
promoter-TSS region and about a quarter (6 of 23) were
assigned to intronic regions (Figure 3(e)). Furthermore, we
assessed a selected subset of memory-related genes that
were shown to be up- or downregulated on the RNA level
in memory T cells [30]. The majority of these genes were
DEGs in memory cells in our data, notably up- or
downregulated almost exclusively (36 of 37 studied genes;
97%) in the expected direction (Figure 3(f)), validating our
data. In addition, we confirmed the quality of the memory
T cell data by performing gene set enrichment analysis
(GSEA) using several published transcriptome datasets
comprising naïve and memory T cell subsets. Indeed, genes

described to be up- or downregulated in memory (versus
naïve) CD4 T cells in these published datasets were
significantly enriched on the expected ends of the ranked
gene list from our novel memory versus naïve T cell dataset
(Figure 3(g) and Supplementary Figure S3).

3.2. The Molecular Signature of GM-CSF-Positive CD4 T
Cells. Next, we focused on the signatures of GM-CSF-
positive cells by studying the respective DARs and DEGs in
more detail. All the DARs in GM-CSF-positive cells are dis-
played in Figure 4(a) with the color scale representing acces-
sibility. A substantial fraction of DARs in GM-CSF-positive
cells displayed a similar pattern in memory cells, while naïve
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Figure 2: Explorative analysis of ATAC-seq and RNA-seq samples. (a) Principal component analysis (PCA) was carried out on CQN-
normalized ATAC-seq data given as log2ðRPKM + 1Þ centered by mean subtraction for each feature (genomic region). PC1 and PC2 are
shown, along with the % variation explained. Symbol colors indicate the given cell populations and symbol shapes and fillings represent
individual donors (n = 5–6 donors) as in Figure 1(c). Data from technical replicates were pooled before analysis. (b) PCA for RNA-seq
data given as log2ðFPKM + 1Þ centered by mean subtraction for each feature (gene). Labels as in (a). (c, d) t-SNE dimensionality reduction
visualization of (c) ATAC-seq and (d) RNA-seq data, processed and labeled as in (a) and (b), respectively.
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cells and GM-CSF-negative cells were most distinct from
GM-CSF-positive cells (Figure 4(a)). In bulk CD4 T cells,
DARs defined in GM-CSF-positive cells showed heterogene-
ity between donors (Figure 4(a)), which may reflect the vari-

ability in the fraction of memory and naïve cells within bulk
CD4 T cells depending on the donor (Supplementary
Figure S1A). Importantly, several DARs displayed a unique
accessibility pattern in GM-CSF-positive cells distinct from
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Figure 3: Differential chromatin accessibility and gene expression in memory versus naïve CD4 T cells as well as in GM-CSF-positive versus
negative cells. (a, b) ATAC-seq data were CQN normalized and differential accessibility between the indicated cell population comparisons
was calculated ((a) memory vs. naïve CD4 T cells; (b) GM-CSF-positive vs. negative CD4 T cells). Volcano plots show each consensus peak as
a single dot, and lines indicate the threshold for calling a DAR (FDR < 0:05 and >25% fold change); DARs are depicted in black. (c, d)
Differential gene expression was calculated from RNA-seq data for cell population comparisons as in (a, b). Lines indicate the threshold
for calling a DEG (FDR < 0:05 and >25% fold change); DEGs are depicted in black. (e) A selection of DARs in memory vs. naïve was
studied for being assigned to genes known to play a role in T cell memory. log2(fold change (memory/naïve)) for selected DARs are
plotted, and colors indicate the category that the respective region is assigned to (TSS: transcription start site; TTS: transcription
termination site). (f) Known T cell memory “up” (black) or T cell memory “down” (grey) genes based on previous literature were selected
if differentially expressed (DEG in memory vs. naïve) in the present data. log2(fold change (memory/naïve)) for these selected DEGs is
plotted; values > 0 represent upregulation and values < 0 represent downregulation in memory T cells. Colors indicate whether the gene
was previously described to be “up” or “down” in memory T cells. (g) Gene set enrichment analysis (GSEA) using gene sets from
published transcriptome data featuring naïve and memory T cell subsets (GSE accession numbers as displayed) and a ranked gene list of
our memory versus naïve T cell data. Ranking was based on −log10ðP valueÞ × sign ðlog2(fold change (memory/naïve))). Gene sets
containing both human naïve and memory T cell data were retrieved from the MSigDB database [48]. NES: normalized enrichment score;
pval: P value; padj: FDR.
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other cell populations under study (Figure 4(a)). These data
show that GM-CSF-positive cells can be assigned a specific
pattern of accessible DNA regions that distinguish them
from other CD4 T cell subsets, and that may contribute
important information about regulation of GM-CSF-
positive cells. Different DNA accessibility can functionally
affect the status of a cell by, for example, modifying
expression of genes regulated through these regions.

Next, we studied the DEGs defined in GM-CSF-positive
cells by analyzing their expression in GM-CSF-positive cells
along with the other CD4 T cell subsets under study. Like it
was observed for the DARs, DEGs in GM-CSF-positive cells
shared a large part of the RNA signature with memory cells
but also displayed distinct patterns and differed largely from
naïve cells and GM-CSF-negative and bulk CD4 T cells
(Figure 4(b)). Despite the general similarity of cells treated
with the capture assay regarding the global transcriptome
(Figures 2(b) and 2(d)), subsetting on the DEGs defined
between GM-CSF-positive and negative cells with stringent
statistical cutoffs visualized clearly the differences in these
“signature genes” for those cell types (Figure 4(b)). Impor-
tantly, subsetting on these genes that were defined as
DEGs in GM-CSF-positive versus corresponding negative
cells (that is, without considering the bulk CD4 T cell
samples) also clearly showed the expected similarity of
bulk CD4 T cells and GM-CSF-negative CD4 T cells
(Figure 4(b)) that was not apparent in the RNA-seq PCA
or t-SNE using all genes (see above; Figures 2(b) and
2(d)), confirming that the selected GM-CSF-positive cell
“signature” DEGs are likely not affected by the capture
assay and column procedure.

DEGs in GM-CSF-positive cells comprised several genes
with a well-known role in T cells such as EGR2, CXCL8, and

CXCR5 along with multiple genes with an unknown role in T
cells and potentially regulating GM-CSF-positive cells
(Figure 4(b)). CSF2RB (encoding for the high-affinity recep-
tor subunit for IL-3, IL-5, and GM-CSF) was not among
the DEGs in GM-CSF-positive cells, and CSF2RB expression
being lower (albeit not passing the significance threshold) in
GM-CSF-positive than negative cells makes a technical arti-
fact of isolation of cells binding GM-CSF through this recep-
tor unlikely (Figure 4(b)).

It should be mentioned that while captured GM-CSF-
positive cells displayed high purity regarding captured
secreted GM-CSF and CD4 T cell marker positivity
(Figures 1(b) and 1(c) and Supplementary Figure S1), this
represents an enrichment of GM-CSF-producing cells
versus cells not producing GM-CSF but it does not mean
that the cells do not coexpress other cytokines typical for
other Th subsets. Albeit not passing the significance
threshold for being called a DEG in GM-CSF+ cells,
relatively higher expression of IFNG mRNA in GM-CSF-
positive cells versus GM-CSF-negative cells (Supplementary
Figure S4A) is in accordance with our and others’ previous
findings from flow or mass cytometry of T cells from
healthy donors as well as MS patients demonstrating
coexpression of IFN-γ and GM-CSF on the single-cell level
in some, but not all, GM-CSF-producing human CD4 T
cells or clonal populations thereof [11, 14, 15, 26, 27, 56].
Also in line with the majority of these studies on human T
cells regarding a lack of coexpression of GM-CSF and IL-
17, IL17A and IL17F expression was below the detection
limit in GM-CSF-positive cells (but also in any other cell
population under study; Supplementary Figure S4A).
Besides IFN-γ, TNFα and IL-2 proteins have also been
found to be frequently coexpressed in GM-CSF-positive Th
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Figure 4: Expression profile and DNA accessibility signatures of human GM-CSF-positive CD4 T cells. (a) Differentially accessible DNA
regions (DARs) in GM-CSF-positive versus GM-CSF-negative CD4 T cells are plotted as a heat map showing their accessibility in all the
five cell populations studied. CQN normalized log2ðRPKM+ 1Þ is represented by the color scale, indicating accessibility (blue: low, red:
high). Data were row scaled and clustered (Euclidean distance, complete linkage clustering). (b) Differentially expressed genes (DEGs) in
GM-CSF-positive versus GM-CSF-negative CD4 T cells are plotted as a heat map showing their expression in all the five cell populations
studied. Gene expression is displayed as log2ðFPKM + 1Þ with blue indicating low and red indicating high expression according to the
color scale. Data were row scaled and clustered (Euclidean distance, complete linkage clustering). (c) The mean of log2ðfold changeÞ of
GM-CSF+/GM-CSF− cell populations using the median intensity values from CyTOF measurements are shown, using CD4 T cell-gated
PBMC data from Wong et al. [64] and designated as “CyTOF” (grey bars). For the genes corresponding to the proteins measured in
CyTOF, the log2ðfold changeÞ of GM-CSF+/GM-CSF− cell populations from the RNA-seq data of this study is plotted and labeled as
“RNA” (red).
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cells upon PMA + ionomycin restimulation [14], and as for
IFNG, also TNF was slightly higher expressed in GM-CSF-
positive versus negative cells, although not statistically
significant (Supplementary Figure S4A). Importantly, it has
to be noted that in human T cells restimulated ex vivo with
PMA and ionomycin to detect cytokines by intracellular
staining and cytometry as in the above studies, the fractions
of TNFα-, IL-2-, and IFN-γ-producing Th cells are
generally high (for example, up to 90% of all Th cells
producing TNFα, up to 75% of Th cells producing IL-2,
and up to 40% of Th cells producing IFN-γ) while
cytokines typical for Th2, Th17, Th22, or Tfh cells are
generally low (<5% of Th cells being positive for the
respective cytokines) [14]. Consequently, coproduction of
IL-2, TNFα, or IFN-γ protein is generally likely for any T
cell subset restimulated with PMA and ionomycin.
Nevertheless, due to the importance of IFN-γ and GM-CSF
in the context of MS, we studied intracellular protein
expression of GM-CSF and IFN-γ (requiring PMA and
ionomycin restimulation) in bulk CD4 T cells of the donors
used in this study. 49:98 ± 4:61% (mean ± SEM) of the GM-
CSF-positive CD4 T cells coexpressed IFN-γ (Supplementary
Figure S4B), although it remains unknown how this is
influenced by the PMA and ionomycin restimulation needed
for this analysis procedure per se. In this context, it is notable
that strong restimulation by PMA and ionomycin, as needed
in single-cell cytokine protein studies, may cause expression
of abundant T cell cytokines such as IL-2 protein even in
purified naïve Th cells after only 3 to 5 hours of stimulation
(unpublished observation and [57]) that may not be truly
present in vivo without artificial restimulation, as naïve Th
cells are not expected to actively produce cytokines. Also on
the global transcriptome level, PMA and ionomycin
stimulation for only 30 minutes to 3 hours was shown to
drastically alter the T cell gene expression signature [52–54].
Hence, to identify the ex vivo gene expression signature of
GM-CSF-positive cells, we isolated GM-CSF-producing CD4
T cells without PMA and ionomycin restimulation in all our
NGS profiling studies, which results in a low yield of cells yet
represents cells in a state without artificial restimulation and
hence preserving their gene signature as much as possible in
the ex vivo state. While the low cell yield did not allow for
parallel capture of other cytokines or protein analysis in the
captured cells in these donors, the above-described cytokine
mRNA analyses as well as parallel intracellular cytokine
staining in bulk CD4 T cells from the same donors suggest
that IFNG may be expressed in GM-CSF-positive, but also
GM-CSF-negative, Th cells. However, it is noteworthy that
expression of many cytokines on the mRNA level is rather
low if the cells are not artificially restimulated ex vivo. Along
these lines, many cytokine mRNAs were below or close to
the detection limit and, hence, excluded from further
differential expression analysis (Supplementary Figure S4A).
Although many cytokine mRNAs were lowly expressed and
did not pass the detection threshold, we nevertheless
analyzed mRNA counts of relevant T cell cytokines in the
cell populations under study even when expressed very lowly
(Supplementary Figure S4A). Of the cytokines passing the
detection threshold (IFNG, TNF, IL13, IL17C, CXCL8, and

GZMB), only CXCL8 (encoding for IL-8) was differentially
expressed in GM-CSF-positive versus negative cells, while all
except IL13 were differentially expressed in memory versus
naïve T cells. It should be noted that CSF2 mRNA, which
encodes for GM-CSF, was lowly expressed in all samples
(RNA-seq counts close to the detection limit), which may be
explained by rapid mRNA decay conferred by the adenine-
and uridine-rich elements (ARE) in the GM-CSF
promoter—AREs in fact have been discovered in the CSF2
gene which codes for a particularly unstable transcript [58–
60]. Importantly, considering the instability of CSF2 mRNA
and relatively low expression levels, our approach of
isolating GM-CSF protein–secreting cells is likely to be more
suitable to define signatures of ex vivo-derived GM-CSF-
positive cells, as opposed to, for example, single–cell RNA-
seq of mixed T cell populations. Strikingly, a recent study
[61] performing single-cell RNA-seq of immune cells from
MS patients confirmed that, despite the known importance
of GM-CSF-producing Th cells in MS pathogenesis [11, 13,
14], CSF2 mRNA was not detectable in that study, neither in
the blood nor in cerebrospinal fluid samples [61]. Hence,
signatures derived from our study designating GM-CSF-
positive human T cells may be useful to identify such cells
based on their signature in RNA studies where CSF2 cannot
be used as a suitable marker.

To our knowledge, there is no other comparable dataset
available that studied the signatures of purified GM-CSF-
secreting cells without PMA/ionomycin restimulation. Thus,
the RNA expression signatures defined in the GM-CSF-
positive cells in this study could not be directly validated
externally in an independently published transcriptome data-
set. Nevertheless, we strived to confirm the expression signa-
ture from GM-CSF-positive captured cells by comparing
with a completely independent dataset and experimental
setup. A recent report [62] provides RNA-seq data of GM-
CSF-, IFN-γ-, and IL-17-producing captured cells from
healthy donors; however, PMA and ionomycin restimulation
renders it difficult to directly compare these data to ours.
Interestingly, the authors [62] observed a large overlap of the
gene expression signature between the cells producing either
cytokine and, importantly, also to (PMA + ionomycin-stimu-
lated) naïve CD4 T cells. This suggests that the strong stimu-
latory effect of PMA and ionomycin may largely dominate
the gene expression signatures, which is supported by sev-
eral studies that showed a large influence of even short
(30 minutes to 3 hours) PMA plus ionomycin stimulation
on the global transcriptome of human Th cells [52–54].
In addition, capture assay and flow cytometry-based cell
sorting as used by Al-Mossawi et al. [62] may cause rapid
changes to the transcriptome. Indeed, studies of the tran-
scriptome after diverse cell isolation procedures have
revealed that different isolation procedures have an impact
on the global transcriptome [54, 63]. Nevertheless, we com-
pared the published data with our transcriptome data to
determine whether GM-CSF-positive cells may be closely
related to cells producing GM-CSF or other cytokines in
that study. However, PMA and ionomycin restimulation
(or other differences in experimental setup) seemed to
largely determine the sample-to-sample similarity, as all
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the samples correlated more strongly based on dataset than
based on cell type (data not shown). Thus, we compared
the similarity of the different cell types after batch normal-
ization, and while naïve T cells were similar between the
two datasets, the overall transcriptome patterns were not

distinguishable based on cytokine expression, neither within
the published dataset nor across datasets (Supplementary
Figure S4C). This suggests that cytokine-producing CD4 T
cell subsets have a largely similar transcriptome and that
cell restimulation and isolation procedures dominate the
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Figure 5: GM-CSF-positive CD4 T cell signatures are associated with autoimmune diseases, especially MS. (a) Gene set enrichment analysis is
shown using genes ranked by the –log10ðFDRÞ × sign ðlog2ðGM − CSF+/GM − CSF − ÞÞ function, and the Open Targets database [68] was
used to provide gene sets associated with diseases. NES: normalized enrichment score; pval: P value; padj: FDR. (b) The heat map
represents the row-scaled log2ðRPKM + 1Þ expression values from RNA-seq data of CD4 T cells from MS patients or healthy controls
(data from [26]). Groups are separated based on disease status (MS or healthy) and myelin antigen reactivity (reactive: tetramer+). Genes
are selected as those identified in the current RNA-seq study as differentially expressed between GM-CSF-positive versus GM-CSF-
negative cells and having detectable expression ðlog2ðRPKM + 1Þ > 0Þ in at least 4 samples in the data from [26]. (c) Of the 110 established
non-MHC MS susceptibility variants [70], two SNPs mapped to consensus peaks from the current ATAC-seq study. Information about
these SNPs is shown in the table, along with the differential accessibility analysis in GM-CSF-positive versus GM-CSF-negative CD4 T cells.
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global gene expression patterns and render it difficult to
compare between studies. To further confirm the DEGs in
GM-CSF-positive cells in external data and their relevance
on the protein level, we asked whether the RNA
expression pattern of captured GM-CSF-positive T cells
generally agreed with the respective proteins in GM-CSF-
positive T cells defined by intracellular cytokine staining.
To explore overlap of as many as possible markers, we
studied a mass cytometry (CyTOF) dataset [64] which
comprises staining of human PBMCs with CD4 and GM-
CSF along with other markers measured on the protein
level. In pregated CD4-positive T cells of this CyTOF
dataset, we gated on GM-CSF+ cells and GM-CSF− cells
and determined the relative expression of other available
protein markers in these populations. We compared the up-
or downregulation of these protein markers in gated GM-
CSF+ versus GM-CSF− cells ½log2 ðfold changeÞ of the
median signal intensity of the two cell populations� with the
up- or downregulation of the corresponding protein-coding
transcripts of these markers in isolated GM-CSF-positive
versus GM-CSF-negative cells from our data ½log2 ðfold
changeÞ of mRNAexpression�. As a result, 16 of the 24
markers (two-thirds) had a fold change with identical
directions in the CyTOF and RNA-seq data (Figure 4(c)).
According to a binomial distribution, the probability of
observing this or greater concordance between the two
datasets by chance is 7.6%. This needs to be acknowledged
considering that those markers that do not concur might be
regulated by protein internalization from the surface, such as
the well known for CD3 [65] that was downregulated in the
CyTOF data but barely affected in the mRNA data. Also, the
total abundance of certain proteins may be regulated on the
posttranscriptional level, as transcript levels cannot always
predict protein abundance [66, 67]. In addition, PMA and
ionomycin stimulation prior to intracellular cytokine
staining may have affected some of these markers. Overall,
we concluded that the expression profile of the GM-CSF-
positive captured T cells matches well with the profile of
independently characterized human GM-CSF-positive T cells.

3.3. GM-CSF-Positive CD4 T Cell Transcript Signatures and
Chromatin Accessibility Are Associated with Autoimmune
Diseases, Especially MS. Next, we asked whether the gene
expression pattern of GM-CSF-positive cells was enriched
for any diseases by exploring the Open Targets Platform
[68]. We ranked the detected genes based on their differential
expression in GM-CSF-positive versus negative cells using
the −log10 ðFDRÞ × sign ðlog2 ðfold changeÞÞ function for
ranking and calculated enrichment scores for diseases.
Indeed, among the few significantly enriched diseases
(FDR < 0:05), the autoimmune diseases MS and rheumatoid
arthritis were represented (Figure 5(a)). Notably, for both
diseases, GM-CSF targeting is in clinical trials [16], support-
ing the relevance of our data. The data also showed enrich-
ment for several other diseases related to the immune
system, infection, or metabolism, although it should be noted
that some of these disease gene sets contained only few ele-
ments (genes) and may thus be less relevant thanMS or rheu-
matoid arthritis, which comprised a large number of genes

(Figure 5(a) and Supplementary Table S1A). When
performing the same enrichment analysis for the ranked
gene list from memory versus naïve CD4 T cells, a large
number of diseases were significantly enriched including
many diseases involving the immune system, as expected
(Supplementary Table S1B).

Due to the relevance of GM-CSF-positive T cells in
MS, we studied in more detail whether DEGs identified
in GM-CSF-positive cells displayed altered expression in
MS patients’ T cell samples. T cells recognizing peptides
derived from myelin proteins as autoantigen and being
activated and migrating to the CNS are thought to be cru-
cial mediators of inflammation in MS [69]. Cao and col-
leagues have performed RNA-seq of expanded CD4 T
cells derived from MS patients and healthy controls, with
two subsets of samples each containing those autoreactive
to antigenic peptides derived from myelin (tetramer-posi-
tive) versus tetramer-negative T cells [26]. The authors
discovered that myelin-reactive T cells from patients with
MS displayed strongly enhanced production of IFN-γ,
IL-17, and GM-CSF compared to those isolated from
healthy controls, which instead secreted more anti-
inflammatory IL-10 [26]. We studied whether these cells
would also display altered expression of the genes we
defined as signature genes of GM-CSF-positive cells.
Indeed, a subset of these genes was down- and another
subset was upregulated in myelin-reactive T cells from
MS patients (Figure 5(b)), potentially identifying genes rel-
evant to the disease pathogenesis. Here, the T cells dis-
played detectable CSF2 mRNA encoding for GM-CSF,
perhaps due to the in vitro stimulation and expansion of
these T cells. Remarkably, only myelin-reactive cells from
MS patients expressed high levels of CSF2 (Figure 5(b)).
Interestingly, this CSF2 expression pattern strongly resem-
bled the expression patterns of several of the GM-CSF-
positive T cell signature DEGs defined here, namely,
DUSP5, IL1R1, KDM6B, EGR1, and EGR2 (Figure 5(b)),
which may be interesting candidates to explore in the
future regarding their role in GM-CSF-positive T cells
and MS. While this analysis confirmed the relevance of
the GM-CSF-positive T cells’ RNA-seq data in MS, we
next analyzed whether also the ATAC-seq data could
reveal information on those DNA regions most relevant
for GM-CSF-positive T cells in the context of MS. To do
so, we asked whether the peaks called from our ATAC-
seq analysis contained any SNPs associated with MS.
Interrogating a list of non-MHC MS susceptibility variants
comprising 110 established risk variants from the Interna-
tional Multiple Sclerosis Genetics Consortium [70, 71], we
identified two SNPs mapping to the accessible DNA peaks
(considering all consensus peaks) from our study. These
SNPs were assigned to the protein-coding genes Regulator
Of G Protein Signaling 1 (RGS1) and Engulfment And Cell
Motility 1 (ELMO1) genes (Figure 5(c)). Importantly, the
regions containing these SNPs were significantly differen-
tially accessible (FDR < 0:05) in GM-CSF-positive versus
GM-CSF-negative cells (Figure 5(c)), suggesting a putative
role of these regions in T cell-mediated MS pathogenesis.
It is tempting to speculate that the epigenetic signature
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defined here may be useful as a surrogate signature to
define GM-CSF-producing cells, especially in the context
of recently available single-cell ATAC-seq methodologies

[72, 73] and the instability of CSF2 mRNA leading to fail-
ure to detect GM-CSF-producing cells based on CSF2
mRNA expression in single-cell RNA-seq studies [61].
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Figure 6: Enrichment of ATAC-seq peaks in regions representing certain genomic features and relationship of ATAC-seq and RNA-seq data.
(a) The enrichment of ATAC-seq consensus peaks in different types of genomic regions is shown with bars representing the enrichment
significance × direction of enrichment ð−ln ðP valueÞ × sign ðenrichmentÞÞ. (b, c) Genes that were detected on the RNA-seq level and were
also assigned to ATAC-seq peaks were ranked using the –log10ðFDRÞ × sign ðlog2ðfold changeÞÞ function based on both RNA-seq and
ATAC-seq (using values of the assigned peaks) within a given cell type comparison ((b) GM-CSF+ vs. GM-CSF−; (c) memory vs. naïve).
The ranks of genes using ATAC-seq vs. RNA-seq for ranking are visualized for both cell type comparisons; lines indicate FDR cutoff 0.05
in the respective comparison. P value represents the probability of observing this or more directional agreement between the two data
types by chance, using only genes significantly differential (FDR < 0:05) in both data types. P values were calculated by Fisher’s exact test
with Monte Carlo simulation. (d, e) Dot plot representation as in (b, c), but using log2ðfold changeÞ for ranking and visualizing only
(assigned) genes that are significantly differential in both data types.
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Figure 7: Continued.
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3.4. Relationship of Differential Gene Expression and
Chromatin Accessibility. Since chromatin accessibility can
directly affect gene expression, we next combined the
ATAC-seq and RNA-seq data, aiming to identify TFs that
may bind to open chromatin regions and hence affect the
expression of their target genes. The methods for calling con-
sensus peaks are not trivial. Therefore, we first confirmed
that the genes assigned to the consensus peaks defined in this
study were enriched for several pathways involved in
immune regulation including T cell receptor signaling and
Th subset differentiation, as well as for immune-related dis-
eases including MS, RA, and other autoimmune diseases
(Supplementary Table S2A, B). Furthermore, the
distribution of the consensus peaks (open chromatin
regions) defined in our data showed an enrichment for
being located in CpG islands, promoters, 5′ UTRs, exons,
and protein-coding regions (Figure 6(a)), suggesting that
the ATAC-seq data generated here should be well suited to
identify TF binding and the expression of corresponding
target genes. We first studied the relationship of RNA and
chromatin data on a global level: We considered the genes
that were both detected on the RNA level and also had an
ATAC-seq peak assigned to them. We ranked these genes
using the –log10 ðFDRÞ × sign ðlog2 ðfold changeÞÞ function
separately for the RNA-seq and ATAC-seq data. Next, we
visualized the correlation between these two ranks for each
contrast (Figures 6(b) and 6(c)). Considering only the genes
significantly changing (FDR < 0:05) in the given contrast
and assigning them to up- and downregulated categories,
we detected more than random coincidence in the direction
of the change between the RNA-seq and ATAC-seq data
(using Fisher’s exact test with Monte Carlo simulation;
Figures 6(b) and 6(c)). Increased openness of the chromatin
was associated with increased expression of the corresponding
gene’s RNA for the majority of genes. Less accessible
chromatin also coincided with low expression of the

corresponding gene in many cases, although a substantial
fraction of lowly accessible regions also displayed high
expression of the corresponding gene (Figures 6(d) and 6(e)).

3.5. Identification of Key TFs Linked to the Signatures of GM-
CSF-Positive and Memory CD4 T Cells. To identify potential
TFs that may establish the gene signatures of GM-CSF-
positive (versus GM-CSF-negative) and memory (versus
naïve) CD4 T cells, we scanned the consensus peaks for foot-
prints, and subsequently, we scanned the identified foot-
prints for TF binding motifs. For motif scanning, we used
the TRANSFAC database [47] that contains experimentally
validated binding sites, consensus binding sequences (posi-
tional weight matrices), and regulated genes of eukaryotic
TFs. Confirming the methodology used to identify footprints,
they were enriched on the expected ends of the ranked peak
lists for the corresponding cell type comparisons (Supple-
mentary Figure S5). Next, we defined the TFs whose
binding sites were most enriched in peaks of GM-CSF-
positive or memory cells (ranked based on differential
accessibility) and identified about 20 TFs each that passed
the significance threshold (FDR < 0:05) for enrichment
(Figures 7(a) and 7(b)). These lists contained several TFs
with a well-known role in T cells, such as SATB1, YY1,
ETS, and EGR family TFs, among other factors with a less
defined role. Notably, there was only little overlap between
the key TFs in GM-CSF-positive and memory cells,
suggesting that our strategy may have identified key factors
to specifically define the GM-CSF-positive T cell
phenotype. The majority of these TFs were highly expressed
on the RNA level (Figures 7(c) and 7(d)), falling within the
class of highly expressed genes (HEGs) that were suggested
to be more likely to be functional than lowly expressed genes
[50]. Interestingly however, most of these TFs were not
differentially expressed themselves in the cell population
comparisons under study (Figures 7(e) and 7(f)), suggesting
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Figure 7: Identification of key TFs with global regulatory effect. (a, b) Rank-based enrichment analysis of TF binding motifs in footprints
within peaks that were ranked based on differential accessibility using the –log10ðFDRÞ × sign ðlog2ðfold changeÞÞ function. The analysis
was performed separately for the GM-CSF+/GM-CSF− and memory/naïve cell comparison ((a) and (b), respectively). NES: normalized
enrichment score. (c, d) Average expression levels of identified key TFs for both cell comparisons are shown as log ðcount permillion reads
Þ. To indicate the relative expression level of these TFs (bars) in view of the spectrum of lowly and highly expressed genes, the scaled
kernel density estimate is shown based on the distribution of the average expression of all genes. (e, f) Volcano plots show the differential
expression (effect size vs. significance) of the TFs identified as key regulators in each of the cell type comparisons (GM-CSF+/GM-CSF−
and memory/naïve cell comparison; (e) and (f)). Key TFs are indicated as black dots, and those which are DEGs are labeled with their
gene symbol.
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that they may be regulated on posttranscriptional levels such
as protein phosphorylation and intracellular localization
which is well known for many TFs. Hence, with a strategy
exploring solely the transcriptome (or even proteome)
without integrating ATAC-seq data, several key TFs would
likely be missed, while our integrative strategy combining
RNA-seq and ATAC-seq data successfully identified such
TFs from limited amounts of primary human T cells.

3.6. Integration of RNA-Seq and ATAC-Seq Data Identifies
Gene Regulatory Networks of GM-CSF-Positive and Memory
CD4 T Cells. Having identified key TFs in GM-CSF-positive
and memory CD4 T cells, we were interested whether these
factors regulated certain groups of target genes and whether
several TFs may act together in a concerted fashion. Some
TFs regulated a large number of target genes, and clusters
of TFs were grouping together (Supplementary Figure S6A,
B). Exploring the cobinding between TFs in more detail
showed that certain groups of TFs bound together to the
same targets (Supplementary Figure S6C, D). These
included the TCF3:LEF1 pair that was always cobinding the
same regions, as evident from the memory/naïve CD4 T
cell contrast (Supplementary Figure S6B, D). TCF/LEF
family proteins act downstream of the Wnt pathway, and it
is well known that they often display overlapping
expression patterns and functional redundancy [74]. In
accordance with our data on human memory and naïve
CD4 T cells, binding motifs for TCF family members were
recently also determined to be depleted in murine memory
CD8 T cells as well as human memory CD4 T cells using
ATAC-seq [35, 39].

Finally, by connecting the TFs to the genes assigned to
their target regions, we generated a directed gene regulatory
network representing GM-CSF-positive (versus negative)
and memory (versus naïve) CD4 T cells, respectively
(Figure 8). The source nodes were represented by the key
TFs as selected above (key TFs from Figures 7(a) and 7(b)),
and target nodes were selected when the region was either
differentially accessible and/or the mRNA of the assigned
gene was differentially expressed in the respective cell popu-
lation comparisons. Both the GM-CSF and the memory com-
parisons led to similarly sized networks; however, only some
of the target and source nodes were shared between both net-
works (Figures 8(a)–8(d)).

To quantify the importance of the source nodes in each
individual network and to enable comparison of importance
between both networks, we calculated scores based on the
PageRank algorithm [51]. To do such a calculation on a net-
work where the outgoing edges from a TF reflect its impor-
tance, rather than the incoming edges like in the original
application of the algorithm, the edges in our networks were
inverted (solely for the purpose of calculating the PageRank
values). The obtained PageRank values give information on
the importance of a node based on the number of other nodes
it influences (directly or indirectly). Some of the key TFs that
were shared between both networks also had a relatively high
PageRank in both networks, such as the TFs E2F3, SPIB, and
GABPA (Figures 8(a)–8(d)), and may be general regulators
of T cell activation or differentiation. Importantly, we also

identified key TFs with a relatively high PageRank in the
GM-CSF T cell regulatory network whose PageRank value
in the memory/naïve network was 0. These TFs, namely,
ZNF35, SP2, SATB1, YY1, TEF, and ZNF333, may, thus, be
novel regulators specifically controlling the molecular signa-
tures of GM-CSF-positive CD4 T cells (Figures 8(a)–8(d)).

4. Conclusions and Future Perspectives

In summary, we here provide interpreted high-quality novel
RNA-seq and ATAC-seq data from primary human CD4 T
cells, with a focus on GM-CSF-positive cells that are known
to play an important role in the autoimmune disease MS.
We provide a network of key TFs and their targets represent-
ing GM-CSF-positive cells and memory CD4 T cells. To our
knowledge, this is the first study providing signatures of GM-
CSF-secreting cells isolated by capture assay without restim-
ulation, which are likely as similar as currently possible to the
state in vivo in humans. Recently, others have used a similar
approach, capturing IFN-γ, IL-17, and IFN-γ/IL-17 double-
positive cells from human donors by cell sorting [75].
Although the authors used restimulation with PMA and
ionomycin for 3 hours, the data are especially interesting as
they include samples from MS patients [75]. The authors
studied only a limited set of 418 genes in the captured IFN-
γ- and IL-17-secreting cells, and unfortunately, they did not
include GM-CSF-producing cells, while the methods
employed in the present work enable genome-wide studies
of DNA accessibility and RNA expression patterns in these
cells. Nevertheless, the authors obtained important results
on the transcriptional signatures of IFN-γ- and IL-17-
secreting cells in MS patients, including genes distinguishing
clinically stable versus active MS patients. This raises inter-
esting prospects for studying GM-CSF-positive cells specifi-
cally from MS patients as well by the methods and
comparing to the data resource provided here. This may have
important clinical implications given the likely important
contribution of GM-CSF-positive CD4 T cells to MS. Future
work should also address what distinguishes patterns and
contributions of GM-CSF versus IFN-γ- and IL-17-
producing T cells, as well as those coproducing GM-CSF
and IFN-γ, particularly in MS patients, and ideally even from
the affected tissue such as cerebrospinal fluid. However, this
is technically challenging due to limitations in the amount
of sample. Furthermore, analysis of cytokine producing cells,
unfortunately, usually requires artificial restimulation or
lengthy cell isolation procedures that may affect the gene sig-
nature drastically. Even in our dataset where we avoided arti-
ficial restimulation with PMA and ionomycin,
dimensionality reduction analysis revealed that the capture
assay and column procedure by itself had an effect on the
transcriptome, as GM-CSF-positive and negative cells
appeared more similar to each other than the GM-CSF-
negative cells were to bulk CD4 T cells (which should largely
overlap and which also underwent a negative selection for
CD4 T cell isolation). On the contrary, ATAC-seq data
seemed more robust against such effects, suggesting that the
epigenetic signature may be especially suited to reflect
in vivo patterns less influenced by procedures related to cell
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Figure 8: Gene regulatory network of GM-CSF+/GM-CSF− or memory/naïve CD4 T cells. (a, b) Gene regulatory network reflecting the
signatures of GM-CSF-positive versus GM-CSF-negative CD4 T cells. (a) A directed network representing binding from source TFs to
target peaks assigned to the indicated gene is shown. Source nodes were selected as described (Figure 7, key TFs), and target nodes were
selected to be either differentially accessible (as a peak assigned to the respective node gene) and/or to be differentially expressed on the
mRNA level in the GM-CSF+/GM-CSF− contrast. To calculate the PageRank [51] as a measure of importance of the TFs (with TFs
influencing more genes being more important), the edges were first inverted (not displayed), and the computed PageRank value is
represented by the color scale (light to dark green for lower to higher PageRank). (b) Those TFs having a PageRank value higher than the
99-percentile in either the GM-CSF and/or the memory cell network and their corresponding PageRank value in the GM-CSF network are
displayed. (c, d) Same as (a, b), but for the memory/naïve CD4 T cell contrast.
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sample preparation. Hence, studies on cytokine-producing
Th subsets fromMS patients should in the future be extended
to ATAC-seq and to the GM-CSF-producing Th subset.
Interestingly, recent ATAC-seq data from murine GM-CSF
versus IFN-γ- and IL-17-producing T cells upon in vitro
stimulation suggests that while all subsets showed distinct
epigenetic profiles, GM-CSF-producing cells were more
related to IFN-γ- than to IL-17-producing T cells [10]. With
an elegant fate mapping system, that study [10] could also
demonstrate that murine GM-CSF-producing T cells display
a stable epigenetic imprint. While such fate mapping studies
are not possible with human cells, our study provides data
from ex vivo-isolated human cells that may be most rele-
vant for human diseases and it is tempting to speculate
that such epigenetic signatures could be reflected in T cells
isolated from MS patients. Together, our data on naïve,
memory, and GM-CSF-positive CD4 T cells (and corre-
sponding controls) can be exploited for a multitude of
future studies for basic and translational immunology con-
cerning autoimmune diseases. Beyond that, the results
may have important implications for other diseases with
involvement of GM-CSF-producing cells, such as sepsis
and COVID-19. Further, our data can be a testbed for bio-
informatics method development for the integration of
RNA-seq and ATAC-seq data from the same samples,
which may help understanding the basic principles of gene
regulation in primary eukaryotic cells.
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