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Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis characterized by high edema in the
stroma, albumin deposition, and formation of pseudocysts. The pathogenesis of CRSwNP is not yet fully understood.
Regulatory T (Treg) cells are a subset of CD4+ T cells that play a suppressive immunoregulatory role in the process of
CRSwNP. Recent studies have found that there was a significant reduction in Treg cells in polyp tissues, which leads to the
onset of CRSwNP. An imbalance between Th17 and Treg cells can also aggravate inflammation toward the Th2 type. This
review focuses on our understanding of the function and role of Treg cells and their regulatory factors and clinical significance
in CRSwNP. We also summarize the current drug treatments for CRSwNP with Tregs as the potential therapeutic target,
which will provide new ideas for the treatment of CRSwNP in the future.

1. Introduction

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a sub-
type of chronic rhinosinusitis (CRS), which is characterized
by persistent inflammation of the paranasal sinus mucosa
[1]. It is one of the most common nasal diseases that affects
a large proportion of the world’s population and is reported
to be associated with some lower airway diseases, such as
asthma [2]. CRSwNP not only causes nasal discomfort such
as nasal congestion and purulent discharge but also causes
extranasal symptoms such as headache, ear tightness, and
sleep disorder [3]. Aside from physical symptoms, CRSwNP
can also cause mental symptoms, such as anxiety and depres-
sion, which may seriously affect the efficiency of people’s lives
and work [4, 5].

CRSwNP is characterized by high edema in the stroma,
accompanied by albumin deposition and the formation of
pseudocysts [6]. At present, it is believed that the colonization
of some pathogenic bacteria (such as Staphylococcus aureus)
and fungi (such as Aspergillus fumigatus) induces the devel-
opment of nasal polyposis in CRSwNP [7–9] which is
associated with T helper 2 (Th2) inflammation. Moreover,
previous studies have reported that the expression of interleu-
kin (IL)-4, -5, -6, and -13 mediated the inflammatory process

[10, 11]. In addition, a low frequency of CD4+ T cells and a
high frequency of CD8+ T cells were observed in patients with
nasal polyposis [12].

During the recruitment of CD4+ T cells into the nasal
mucosa, regulatory T (Treg) cells are considered to play a
key role in the formation of nasal polyps by modulating
the balance of Th1 and Th2 immunity [13, 14]. Studies have
been conducted to investigate the function of Tregs. Some of
the findings have shown that Tregs are associated with the
tolerance to autoantigens and antigens of food and commen-
sal microflora [15–17]. In addition, the reduction in the
number or function of peripheral Tregs leads to chronic
immunopathological processes, such as cancers and autoim-
mune disorders [16, 18–20]. This review was aimed at intro-
ducing the classification of Tregs, their mechanisms, and
functions in the etiology of CRSwNP and Treg as a recent
therapeutic target in CRSwNP treatment.

2. Subtypes of Treg

Tregs are identified by surface markers (such as CD4 and
CD25), intracellular markers (such as Forkhead-Box-Protein
P3 (FOXP3)), and cytokines (such as TGF-β and IL-10).
FOXP3, which is the most important transcription factor, is
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associated with Treg and CD25 expressions [21, 22]. In addi-
tion, the different FOXP3 expression stabilities are an indica-
tion to distinguish different types of Treg [23, 24]. The
phenotype of Tregs is commonly CD4+CD25+FOXP3+ T cells.
However, studies have found that CD8+ T cells have immuno-
suppressive effects in some diseases and organ transplanta-
tions [25]. A recent study showed that CD8+CD25+T cells
with immune regulatory activity can also express FOXP3,
which is later referred to as CD8 Treg [26, 27]. A study by Pant
et al. [28] showed that the reduction of CD8 Treg is associated
with the process of CRSwNP.

For Treg subtypes, Tregs can be divided into two catego-
ries according to their origin. Tregs derived from the thymus
are called thymus-derived Tregs (tTregs), and Tregs that dif-
ferentiate in peripheral tissues are called peripherally derived
Tregs (pTregs) [29]. tTregs express FOXP3 and have high
self-affinity for T cell receptors [24]. They are associated
with tolerance to autoantigens [16]. pTregs, which are
derived from peripheral naive Th cells, are most commonly
found in peripheral barrier tissue and act as suppressors of
local inflammation when faced with exogenous antigens
[16, 30]. The decrease in pTregs may lead to a series of
chronic T cell-related immune diseases [30].

Based on differentiation, Tregs can be divided into naive
Tregs (nTregs), central memory Tregs (cmTregs), effector
memory Tregs (emTregs), and effector Tregs (eTregs) [24].
Each has different actions in the lymphoid or lymphoid
organs. Their differentiation and homing direction require
specific receptors and cytokines [31, 32]. Moreover, CCR7
and CD62L molecules play a key role during migration to
secondary lymphoid organs [33]. When they act in lym-
phoid organs, Tregs are identified by the expression of
inducible costimulatory (ICOS) or CD44 [34].

Different subtypes of Tregs show different states and
varying functions. However, the conversion of Treg between
different subtypes (activation) and the suppressive effect of
Treg are dependent on cytokine transmission.

3. Activation and Suppressive
Mechanism of Treg

3.1. Activation of Treg.On the surface, Tregs express the follow-
ing: CD25, ITIM domain protein (TIGIT), lymphocyte activa-
tion gene 3 (LAG-3), ICOS [35–37], cytotoxic T lymphocyte
antigen 4 (CTLA-4), tumor necrosis factor receptor (TNFR)
family-related protein (GITR), programmed death-1 (PD-1),
and its ligand (PD-L1) [38]. Tregs regulate the secretion of
cytokines and the expression of surface biomarkers by express-
ing a variety of intracellular transcription factors, such as
FOXP3 and IRF-4 [39]. They are responsible for Treg activa-
tion, function, and interaction with antigen-presenting cells
(APCs) and other immune cells (summarized in Figure 1).

With antigens as an inflammatory stimuli, naïve CD4+ T
cells can be induced and differentiated into Tregs [40]. Tregs
usually act by regulating the recruitment of effector T cells to
sites of inflammation and impairing the capacity of APCs that
induce adaptive immune responses [41, 42]. Based on the
expression of CD45RA or RO, Tregs can be divided into three
subgroups: resting Tregs (rTregs, CD4+CD25+FOXP3+-

CD45RO−RA+), activated Tregs (aTregs, CD4+CD25+FOXP3+-

CD45RA−RO+), and cytokine-secreting nonsuppressive T cells
(CD4+FOXP3lowCD45RA−RO+ T cells) [43, 44]. Tumor necro-
sis factor receptor 2 (TNFR2) is highly expressed by aTregs and
converts rTregs into an activated state [45, 46]. aTregs, which
express elevated levels of TNFR2, appear to be highly immuno-
suppressive, and an excessive and uncontrolled expression of it
may lead to cancer [47–49]. Meanwhile, cytokine-secreting
nonsuppressive T cells produce proinflammatory cytokines,
such as IL-17 [43].

The initiation and regulation of Tregs is modulated by
APCs, such as dendritic cells (DCs) and macrophages. DCs
are composed of conventional DCs (cDCs) and plasmacytoid
DCs (pDC) [50]. The capacities of cDCs and pDCs to activate
Tregs differ. pDCs usually have a poor capacity to induce
Tregs but act as strong activators of effector T cells (Teff),
which function differently from Tregs. Activated cDCs, which
express higher levels of Toll-like receptor (TLR)-2,6,8 and self-
peptide/MHC have the capacity to stimulate the proliferation
and expansion of Tregs [51, 52]. CTLA-4 of Tregs can bind
to ligands CD80 and CD86 on the surface of DCs to limit
costimulatory signals [53]; PD-1 on Tregs can bind to PD-
L1 and PD-L2, which are expressed on the surface of DCs to
suppress the function of Teff [54].

Tregs can also proliferate by direct recognition of self-
antigens and commensal microbes [55]. They can also clone
and expand in vivo and in vitro after antigen stimulation and
maintain their inhibitory function after expansion [56].

3.2. Cytokines Related to Treg. The activation of Tregs
depends not only on surface biomarkers but also on cyto-
kines. Further, Tregs are regulated by various networks of
cytokines, such as IL-2, IL-7, IL-15, and TGF-β, to exert
their immunosuppressive effects on T cells, B cells, NK cells,
DCs, and macrophages.

IL-2 is important in regulating the development, function,
and stability of Tregs [57]. IL-2 binds to CD25 of conventional
T cells (Tconv) and activates three intracellular signaling path-
ways: mitogen-activated protein kinase (MAPK), phosphoino-
sitide 3-kinase, and signal transducer and activator of
transcription 5 [58]. These pathways regulate the proliferation
and memory formation of Tconv as well as the immunosup-
pressive function of Tregs [58]. IL-2 directly upregulates
FOXP3 and CD25, and when it binds to CD25, it lowers the
threshold of effect on the development and homeostasis of
Tregs [59–61]. Studies have also found that IL-7 can maintain
the expression of CD25 and potentially enhance the responses
of Tregs to IL-2, especially during cutaneous immunosuppres-
sion [32, 62, 63].

TGF-β is associated with the direction of differentiation of
CD4+ T cells toward Tregs or Th 17 [57, 64]. TGF-β secreted
by APCs or Treg itself can promote FOXP3 gene expression
and lead to the differentiation of CD4+ T cells toward Tregs
[57]. The downstream targets of TGF-β aremainly Smad family
transcription factors, which interact with one another to form
different types of DNA-binding complexes [65]. When exposed
to lower concentrations of TGF-β, T cells can be induced to
differentiate toward Th17 [40]. Despite the dual ability of
TGF-β, some other cytokines (such as IL-2 and IL-6) are
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needed to further induce either FOXP3 or the transcription fac-
tor RORγt [66–68]. For example, FOXP3 expression can be acti-
vated in the presence of TGF-β and IL-2 with TCR affinity and
APC interaction [57].

IL-15 contributes to antigen presentation and the pro-
duction of type I cytokines (IL-12 and IFN-γ) in APCs
[69]. It is also involved in the stability and memory forma-
tion of CD4+ T cells [70]. In addition, IL-15 can promote
FOXP3 expression via the STAT5 pathway [71]. Moreover,
IL-15 acts as a supplement to IL-2 during the development
of Tregs, but it cannot rescue the function of Treg in the
absence of IL-2 [16]. Marshall et al. reported that IL-5 may
provide an alternative pathway for CD4+ T cells to differen-
tiate into Tregs, but this requires clarification [72].

In addition to the cytokines mentioned above, many other
cytokines also regulate the function and behavior of Tregs.
Tumor necrosis factor (TNF) can promote the proliferation
of Tregs and regulate their suppressive function [73, 74]. IL-
33, which promotes Th2-polarized immune responses, medi-
ates the proliferation of Tregs and enhances their immune
regulatory functions [75, 76]. IL-6 regulates the balance
between Tregs and Th 17 by inhibiting the differentiation of
Tregs and promoting Th 17 generation [77, 78].

4. Tregs in CRSwNP

CRSwNP, the most common type of CRS, is thought to be
associated with the Th2 immune response. It is usually charac-
terized by the accumulation of eosinophils, T cells, neutro-
phils, and increased levels of IL-5 and IgE and decreased
TGF-β1, which is in contrast to those of chronic rhinosinusitis
without nasal polyps (CRSsNP) with elevated TGF-β1 and
IFN-γ [79–81] (interactions between cells are shown in
Figure 2; changes in cytokine levels from different studies are
shown in Table 1). Studies have compared the differences
between tissues from nasal polyps and the nasal sinus mucosa.
The results showed that there was no significant difference in
Tregs and CD4+ T cells between the two groups; however, ele-
vated levels of pDCs and activated CD8+ T helper cells were
observed in the nasal polyp tissue [82, 83]. Ickrath et al. [12]
demonstrated that there was a significantly higher proportion
of aTregs and memory T cells (CD3+ CD4+ CD45RA- FOX-
P3low) in polyp tissues than in peripheral blood. Sharma
et al. [30] conducted an immunohistochemical analysis of
Tregs in the affected sinonasal tissues and found a large num-
ber of both CD25+ FOXP3+ and CD4+ FOXP3+ cells in the
CRSwNP group than in the CRSsNP group (p < 0:05). Mann
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Figure 1: Cytokines and surface biomarkers of Treg and its interactions with APC. TCR binds to MHC-II/Ag and activates Treg
differentiation, and LAG-3 negatively regulates it; CTLA-4, produced through activation of transcription factor IRF-4, binds to CD80/86
to suppress Th2 inflammation; PD-1 binds to PD-L1/PD-L2 to inhibit Teff cells and meanwhile enhance the transcriptional activation of
Smad3 by TGF-β; TIGIT regulates the production of IL-10 and IL-12 by binding to CD155; CD25, receptor of IL-2, enables Treg to
compete with Teff for IL-2 to proliferation.
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et al. reported that although there was a large proportion of
Tregs in the polyp tissues, a lower proportion of aTregs was
also observed in the CRSwNP group [84]. This explains why
a larger number of Tregs result in a decreased immunosup-
pressive effect.

Impaired Treg function and differentiation play an impor-
tant role in the onset and deterioration of CRSwNP. Treg
exerts its suppressive effect mainly through its surface mole-
cules, as well as the proteins (such as CD25 and CTLA-4)
and cytokines it secretes (such as IL-10 and TGF-β). Treg dys-
function leads to the imbalance of Th1/Th2 and Treg/Th17
[85]. The hyperimmune response of Th2 results in IgE-
mediated eosinophil infiltration and cellular edema, which
promotes remodeling of the nasal sinus mucosa. Further,
Treg/Th17 imbalance results in the imbalance between matrix
metalloproteinases and tissue inhibitors of metalloproteinases
via TGF-β1, and this causes the deposition of albumin, colla-
gen, and other extracellular matrix proteins [86, 87]. More-
over, the decrease in Treg and downregulation of FOXP3
expression weaken the inhibition of Th17 differentiation, lead
to the aggregation of neutrophils in the nasal sinus mucosa,
and aggravate the inflammation characteristic of CRSwNP
[88, 89].

However, there were geographical differences in the
immune processes of CRSwNP. Studies from different regions
have suggested that different races and geographical environ-
ments have an impact on the immune process of CRSwNP
[93–96]. Some studies found that patients with CRSwNP from
Western countries show more Th2-skewing inflammation,
while patients from Southeast Asia tend to show Th1/Th17
inflammation [91, 97]. Cao et al. claimed that Chinese patients
with CRSwNP showed reduced Tregs and decreased TGF-β1
production compared to healthy controls [79]. Similar conclu-
sions were also observed by Li et al. [98] and Wang et al. [99].

The pathogenesis of CRSwNP is usually due to an imbal-
ance of microbial flora (dysbacteriosis) in the nasal sinuses
or the invasion of pathogenic microorganisms [100, 101],
caused by many bacteria, such as Corynebacterium tubercul-
stearicum, Staphylococcus aureus, and Haemophilus influen-
zae [102–104]. Studies have reported that colonization by
Staphylococcus aureus or Haemophilus influenzae potentially
contributes to the development of nasal polyps [105, 106].
Studies have demonstrated that leukocidin ED, which is
secreted by Staphylococcus aureus and acts as a cytolytic
toxin, can result in the depletion of most effector memory
T cells, leading to the impairment of Th1 and Th17 immune
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Figure 2: Interaction of different cytokines between cells in CRSwNP. In CRSwNP, Tregs secrete TGF-β to promote Th17 differentiation.
Th17 inhibits Treg through IL-17 and IL-21, resulting in an imbalance between Treg and Th17 cells. APCs (such as DCs) activate Th17 cells
via IL-6. SEB, secreted by Staphylococcus aureus, downregulates the number of Tregs. Meanwhile, Tregs produce IL-10 to inhibit the
function of DCs and activate eosinophil/neutrophils by IL-2, and Treg cells also proliferate by autocrine IL-2 and TGF-β.

Table 1: Changes of cytokines in patients with CRSwNP in different studies.

Upregulated Downregulated Reference

Cho et al. IL-2, IL-4, IL-6, IL-10, IL-17, and IFN-γ nm [90]

Ba et al. IL-1β, IL-6, and IL-8 IL-5 [91]

Cao et al. IFN-γ, IL-5, IL-17A, IL-22, and IL-23 nm [79]

Li et al. TGF-β, IL-10, and IL-18 IFN-γ [92]

König et al. IL-5, IL-17 IL-10, IL-12, IL-13, and IFN-γ [81]

nm: not mentioned.
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responses and disruption of balance between Th17 and Treg
[107–109]. Staphylococcal enterotoxin B can trigger the sig-
nificant elevation of IFNγ, IL-2, IL-13, etc. [110], which can
also affect the differentiation and function of Tregs. In a
study by Cho et al. [90], T cells that expressed retinoic acid
receptor-related orphan receptor c (RORc) in peripheral
blood mononuclear cells (PBMCs) significantly increased
after treatment with Staphylococcal enterotoxin B in patients
with eosinophilic polyps. Upregulation of RORc+ T cells can
also downregulate Tregs [111]. Yang et al. also revealed the
negative regulation of Tregs by Haemophilus influenzae after
a long-term and low-dose exposure [112]. Rai et al. [113]
investigated the changes in Th17, Treg, and various cyto-
kines in patients with Aspergillus flavus-infected CRSwNP
and found an immune imbalance with increased Th17,
reduced Tregs, elevated levels of IL-10 and IL-17, decreased
levels of TGF-β in PBMCs, and an elevated expression of
TLR-2 in patients.

In patients with CRSwNP, the expression of FOXP3 is sig-
nificantly lower than that in healthy controls [114]. FOXP3
acts as a biomarker of CD4+ Tregs and is important in regu-
lating its function and development [115, 116]. In a study by
Roongrotwattanasiri et al. [88], there was a decrease in the
number of CD4+ Tregs; however, no difference was detected
between the epithelia and lamina propria of nasal polyps and
no difference between atopic and nonatopic CRSwNP
patients. They inferred that the reduced expression of FOXP3
may lead to the enhancement of Th2 inflammation in both
atopic and nonatopic patients and the high level of IgE based
on the study by Pérez Novo et al. [117]. Ba et al. [118] also
compared the inflammatory profiles between atopic and non-
atopic patients with CRSwNP and found a decreased expres-
sion of FOXP3 and lower levels of Tregs irrespective of the
atopic status. In addition, atopic CRSwNP patients produced
more IL-5, IL-2, IL-10, IL-17A, and prostaglandin D2 in polyp
tissues than nonatopic CRSwNP patients. Although the role of
allergy in the process of CRSwNP is still in dispute, studies
have found that CRSwNP caused by IgE sensitization to aller-
gens can be an atopic disease [119–121].

The balance between Th17 and Treg cells plays a vital role
in CRSwNP pathology [122]. These two subsets of T cells have
opposite effects regarding autoimmune and inflammatory dis-
eases [123–126]. However, the development of Th17 and Treg
cells also shares reciprocal pathways: TGF-β can simulta-
neously activate the differentiation of both cells [77, 127,
128]; their transcription factors RORγt/RORα and FOXP3
can inhibit each other’s expression [129, 130]. A study by Li
et al. [92] had pointed out that the expression level of RORγt
was downregulated in patients with nasal polyposis, while
the expression level of FOXP3 mRNA increased. Shen et al.
also investigated the imbalance between Th17 and Treg and
found a similar phenomenon to Li’s study [122]. In patients
with allergic fungal rhinosinusitis, Th17/Treg balance was also
observed to be inclined toward Th17, which indicated atopy
and aggravation of nasal polyposis [131].

In addition, the number of Tregs in PBMCs is negatively
correlated with Th1- and Th2-related cytokines (such as
INF-γ, IL-4, and IL-5) in polyp tissues. Although these
changes appear in both atopic and nonatopic patients, they

were more severe in atopic patients [122]. Chang et al. found
that the adoptive transfer of Tregs can locally reduce the levels
of proinflammatory cytokines and eosinophil cationic protein
in nasal sinus mucosa to restore the balance between immune
tolerance and effect in atopic patients [132]. Zheng et al. inves-
tigated the inflammatory profiles of pediatric antrochoanal
polyps (ACP) and the effect of atopy on its pathogenesis and
discovered that IL-10, a Treg-related cytokine, increased in
patients with ACP and was positively correlated with IL-4
and IL-13. This indicated the regulatory role of Tregs in the
inflammatory pathophysiological process of ACP [133]. Simi-
lar results were also observed in adult Chinese patients with
ACP [134].

As for the reduced infiltration of Tregs in nasal polyp tis-
sues, a study by Kim et al. demonstrated that there is no sys-
temic defect in number but a defect in the migration
capability of Tregs toward nasal epithelial cells [13]. Nasal epi-
thelial cells can express CCL1 and CCL17, which can trigger
chemotactic responses of Treg [135, 136]. However, in patients
with CRSwNP, Tregs show low chemotactic responses to
CCL1, decreased expression of CCL17, and altered levels of
various cytokines that account for the reduction in the migra-
tion potential of Tregs toward nasal polyp tissues [137, 138].

5. Treg as Therapeutic Target in CRSwNP

Since the role of Treg in the pathogenesis of CRSwNP has
been extensively studied, the study of Treg as a therapeutic
target has also been widely investigated. Here, we list three
nonsurgical treatments targeting Treg.

5.1. Steroid Therapy. In the treatment of CRSwNP, systemic or
local administration of glucocorticoids (GCs), such as predni-
sone, which can suppress NF-κB and MAPK pathways and
alleviate tissue edema and nasal polyp size, was thought to
be effective [139–141]. GCs have strong anti-inflammatory
and immunomodulatory effects on immune cells and nonlym-
phoid tissues [142–145]. However, the effects of GCs on Tregs
remain controversial. In terms of the impact on the number of
Tregs, previous studies found that nonactivated Treg cells
underwent apoptosis after administration of GCs [146].
Meanwhile, others reported of the relatively lower sensitivity
of nonactivated Tregs to GC treatment that induced less apo-
ptosis than other nonTreg cells [147, 148]. In addition, GC
treatment can increase CTLA-4 cells and decrease CD69+ cells
in the CD25+ cell population, which results in the expansion
of Treg cells [149, 150]. Lin et al. investigated the effect of
budesonide nasal spray treatment on CD8+ Tregs in patients
with CRSwNP and found no increase in the percentage of
CD8+ Treg cells in polyp tissues, although TGF-β and its
mRNAwere upregulated [151]. Edward et al. treated CRSwNP
patients with oral prednisone and found an expansion of over-
lapped Treg cells in nasal polyp tissues via CCL4 chemotaxis
without a significant increase in adjacent ethmoid sinus
mucosa and PBMCs [152]. This conclusion confirms the
results of earlier studies that Treg cells expanded locally in
polyp tissues [153, 154]. However, in terms of the impact on
the function of Tregs, some in vitro studies found that
although the number of Treg cells significantly increased, their
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suppressive properties were not enhanced accordingly [155].
Nevertheless, it is still debatable whether the same results
can be obtained in in vivo experiments. In the study by Kou
et al., the nasal administration of GCs promoted the function
of Tregs via the TGF-β1-Smad2 signaling pathway [154].

In terms of the impact on the differentiation of Tregs, the
nasal administration of GCs was found to enhance TGF-β1
production to activate FOXP3 expression, which promoted
the differentiation of T cells toward Tregs [154]. Moreover,
TGF-β1 can drive IL-10 production, which can also main-
tain the expression of FOXP3, thus regulating the differenti-
ation of Tregs [156].

5.2. Biological Therapy. Biologic therapy is becoming a novel
and promising treatment for CRSwNP [157, 158]. Biologic
drugs (monoclonal antibodies) can precisely block the effect
of specific chemokines that control the Th2 inflammatory
endotype when conventional therapy fails [159, 160]. Recently,
many monoclonal antibodies targeting various cytokines have
been developed, including omalizumab [161] (anti-IgE), mepo-
lizumab [162, 163], reslizumab [164] (anti-IL-5), and dupilu-
mab [165] (anti-IL-4 and IL-13). These targeted chemokines
play key roles in the differentiation, chemotaxis, activation,
and survival of eosinophils, basophils, mast cells, etc. [158].
Monoclonal antibodies targeting these chemokines have the
ability to block different receptor-binding actions in patients
with CRSwNP [157, 166, 167], which may alleviate the type 1
or type 2 inflammation response.

In addition to the monoclonal antibodies mentioned
above that have been tested in patients with CRSwNP, other
monoclonal antibodies targeting the Treg/Th17 balance
have also been studied [168]. Some target Th17-related cyto-
kines and receptors (such as IL-17, IL-23, and IL-6) that
affect the expression level of RORγt indirectly increase Tregs
in order to correct the imbalance [169–174]. Although no
clinical trials have been conducted in CRSwNP patients,
these still have the potential to improve CRSwNP symptoms
by correcting the Treg/Th17 balance.

5.3. Probiotic Therapy. Based on the hypothesis of dysbacter-
iosis, probiotics are also used in the treatment of CRSwNP.
Studies have investigated the therapeutic mechanisms of
various bacteria, such as Lactobacillus and Bifidobacterium,
as probiotics [175]. Previous studies have shown that Lacto-
bacillus could regulate the differentiation of Th17 and Treg
cells in peripheral lymphoid organs by mediating the pro-
duction of several cytokines (such as IL-4 and IL-17) [176,
177]. Although the mechanisms of action of probiotics in
CRSwNP treatment are not fully understood, Treg should
be further studied as a medium for probiotics to modulate
the immune response in CRSwNP.

6. Conclusion

Treg cells, a suppressive immunoregulatory T cell subset,
play a vital role in the process of CRSwNP. CRSwNP, which
is thought to be associated with the Th2 immune response, is
characterized by Treg/Th17imbalance (decreased level of
Tregs and increased level of Th17) in polyp tissue. Dysbac-

teriosis in the nasal sinuses or invasion of pathogenic micro-
organisms also contributes to the onset of CRSwNP. For
example, Staphylococcus aureus can break the balance between
Th17 and Treg cells, and Staphylococcal enterotoxin B can
trigger the upregulation of RORc expression and downregula-
tion of FOXP3 expression. However, further studies are
needed to investigate the specific mechanism of dysbacteriosis
interaction with Treg and other immune cells in order to bet-
ter understand the immune modulation and disease progres-
sion of CRSwNP.

Th17 and Treg cells have opposite effects; however, their
development also shares reciprocal pathways. The number
of Tregs is negatively associated with Th1- and Th2-related
cytokines (such as INF-γ, IL-4, and IL-5) in polyp tissues
in both atopic and nonatopic patients. Future efforts should
be made to understand the influence of atopy on the Treg/
Th17 and Th1/Th2 balance in CRSwNP and their cytokine
communication.

In the treatment of CRSwNP, glucocorticoids are consid-
ered a traditional and effective therapeutic drug because they
potentially promote the expansion and function of Tregs.
However, its effects on Tregs in different kinds of CRS need
to be further studied. Monoclonal antibodies are a promising
therapeutic option because they can block specific chemo-
kines. However, at present, this therapy is relatively expensive,
and monoclonal antibodies against Treg-related cytokines
have not been confirmed to be effective in the clinical setting,
which is still the direction of future efforts. Probiotics, such as
Lactobacillus, are also used in the treatment of CRSwNP, but
their effects on Tregs are not fully understood. Moreover, little
is known about the effect of other probiotics in regulating Treg
in CRSwNP. In the future, we should further investigate the
role of probiotics in Treg immune regulation and identify
more probiotics for Treg for the treatment of CRS. Addition-
ally, through a deeper understanding of Treg and its related
immune cells, safer and more effective novel therapeutic strat-
egies need to be explored.
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