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Background. Globally, non-small-cell lung cancer (NSCLC) is one of the most prevalent tumors. Various studies have investigated
its etiology, but the molecular mechanism of NSCLC has not been elucidated. Methods. The GSE19804, GSE118370, GSE19188,
GSE27262, and GSE33532 microarray datasets were obtained from the Gene Expression Omnibus (GEO) database for the
identification of genes involved in NSCLC development as well as progression. Then, the identified differentially expressed
genes (DEGs) were subjected to functional enrichment analyses. The protein-protein interaction (PPI) network was built after
which module analysis was conducted via the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) and
Cytoscape. There were 562 DEGs: 98 downregulated genes and 464 upregulated. These DEGs were established to be enriched
in p53 signaling pathway, transendothelial leukocyte migration, cell adhesion molecules, contractions of vascular smooth
muscles, coagulation and complement cascades, and axon guidance. Assessment of tumor immunity was performed to
determine the roles of hub genes. Results. There were 562 dysregulated genes, while 12 genes were hub genes. NUF2 was
established to be a candidate immunotherapeutic target with potential clinical implications. The 12 hub genes were highly
enriched in the p53 signaling pathway, the cell cycle, progesterone-associated oocyte maturation, cellular senescence, and
oocyte meiosis. Survival analysis showed that NUF2 is associated with NSCLC occurrence, invasion, and recurrence.
Conclusion. The NUF2 gene discovered in this study helps us clarify the pathomechanisms of NSCLC occurrence as well as
progression and provides a potential diagnostic and therapeutic target for NSCLC.

1. Background

Due to the increase in personal stress, lifestyle changes, the
decline in environmental quality, exposure to secondhand
tobacco smoke, and a series of other reasons, the incidence
of tumors is high, and NSCLC is a very prevalent tumor type
[1]. The NSCLC-associated mortality rate is among the

highest among all malignancies, and its 5-year survival rate
is low, relative to that of other tumors [2]. The development
of NSCLC is a great burden to patients and their families.
Thus, is it important to determine how to reduce the inci-
dence of NSCLC. First, maintaining a healthy lifestyle is
important, and second, high-quality and precise treatment
methods are essential. The development and progression of
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NSCLC are linked to various factors, including genetic aber-
rations and immune infiltration [3]. Despite extensive stud-
ies on the pathomechanisms of its occurrence and
progression, the clinical etiology of NSCLC is unclear [4].
Through bioinformatics analysis tools and major database
data, we can efficiently search for a target to combat tumors
and achieve early detection and prompt intervention in the
early stages of tumors to avoid further development of
tumors [5].

The histological forms of NSCLC are lung adenocarci-
noma (LUAD), large cell carcinoma, and lung squamous cell
carcinoma (LUSC). Its development is multistep, with
abnormal gene expression as the main feature; this aberrant
gene expression leads to phenotypic cell transformation

[6–8]. Genetic changes within the genome have been evalu-
ated by ribonucleic acid sequencing (RNA-Seq) [9]. Com-
pared to traditional methods, systematic and
comprehensive studies of interactions between differentially
enriched pathways and protein-coding genes can precisely
establish the carcinogenic effects of changes that occur in
the course of NSCLC progression and development. Thus,
the analysis of RNA-Seq data using bioinformatics tools
can help us understand the pathomechanisms and identify
important tumor biomarkers [10]. RNA-Seq is important
for identification of key genes that play important roles in
disease progression that may help clarify gene expression
variations that occur in the course of NSCLC progression.
To date, the principal driving force for carcinogenesis is still
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Figure 1: Venn diagram, PPI network, and the most significant module of DEGs. (a) DEGs were selected with a fold change > 1 and P value
< 0.01 among the mRNA expression profiling set GSE19804, GSE118370, GSE19188, GSE27262, and GSE33532. The 5 datasets showed an
overlap of 562 genes. (b) The most significant module was obtained from PPI network with 12 nodes and 66 edges. (c) The PPI network of
DEGs was constructed using Cytoscape. Upregulated genes are marked in light red; downregulated genes are marked in light blue.
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unclear, which limits the development of NSCLC-targeted
therapy [11–14]. Thus, elucidation of NSCLC pathogenesis
is still a major challenge, with various key genes yet to be
established.

Current microarray technologies and biotin morphology
analysis have begun to approach this scope of coverage in
almost all tumors. Their applications in screening key gene
changes have helped us identify the carcinogenesis-related
functions of DEGs and the pathways that are activated in
the development of NSCLC [15]. Nevertheless, the true pos-
itive rate in independent microarray analysis is not very

high, so there are often false positives or false negatives.
Therefore, to decrease the false positive rate, we chose five
gene sets (GSE19804 [16], GSE118370 [17], GSE19188
[18], GSE27262 [19], and GSE33532 [20]). Then, we used
R package from the Bioconductor project [21] and Venn’s
“LIMMA” graphic software to acquire sets of DEGs between
tumor and normal samples in the above five datasets. Third,
the Database for Annotation, visualization and comprehen-
sive Discovery (DAVID) was used. Enrichment analysis of
the DEGs revealed their related molecular functions (MFs),
cell components (CCs), and biological processes (BPs) as

Table 1: GO and KEGG pathway enrichment analyses of DEGs in NSCLC samples.

Term Pathway description P value Count in gene set

Downregulated

GO:0030198 Extracellular matrix organization 9.08e-08 12

GO:0043062 Extracellular structure organization 3.96e-07 12

GO:0000280 Nuclear division 2.06e-06 11

GO:0140014 Mitotic nuclear division 2.88e-06 9

GO:0048285 Organelle fission 5.27e-06 11

GO:0000793 Condensed chromosome 7.48e-07 9

GO:0030496 Midbody 1.33e-05 7

GO:0000779 Condensed chromosome, centromeric region 1.57e-05 6

GO:0098687 Chromosomal region 2.82e-05 9

GO:0000794 Condensed nuclear chromosome 8.57e-05 5

GO:0035173 Histone kinase activity 9.26e-07 4

GO:0004222 Metalloendopeptidase activity 1.09e-04 5

GO:0030020 Extracellular matrix structural constituent conferring tensile strength 8.69e-04 3

GO:0008237 Metallopeptidase activity 0.001 5

hsa04115 p53 signaling pathway 8.85e-04 4

Upregulated

GO:0031589 Cell-substrate adhesion 3.11e-13 34

GO:0034329 Cell junction assembly 4.04e-13 28

GO:0034330 Cell junction organization 6.79e-12 29

GO:0003018 Vascular process in circulatory system 2.33e-11 22

GO:0001667 Ameboidal-type cell migration 2.68e-11 36

GO:0005911 Cell-cell junction 2.24e-11 36

GO:0032432 Actin filament bundle 5.17e-11 15

GO:0001725 Stress fiber 1.23e-10 14

GO:0097517 Contractile actin filament bundle 1.23e-10 14

GO:0044449 Contractile fiber part 4.65e-10 23

GO:0003779 Actin binding 1.49e-08 31

GO:0001540 Amyloid-beta binding 1.93e-08 13

GO:0005201 Extracellular matrix structural constituent 1.76e-07 17

GO:0042277 Peptide binding 2.75e-07 23

GO:0033218 Amide binding 6.00e-07 25

hsa04514 Cell adhesion molecules 2.35e-05 14

hsa04670 Leukocyte transendothelial migration 2.95e-05 12

hsa04270 Vascular smooth muscle contraction 3.57e-05 13

hsa04610 Complement and coagulation cascades 5.31e-05 10

hsa04360 Axon guidance 1.97e-04 14

GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes; NSCLC: non-small-cell lung cancer.
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well as the Kyoto Protocol Encyclopedia of Genes and
Genomes (KEGG) pathways. The protein-protein interac-
tion (PPI) network was built, after which cellular molecular
complexity detection (MCODE) was performed to deter-
mine various important modules. MCODE was also used
for screening 12 hub genes. To obtain vital prognostic data,
the dominant genes were imported into the online Kaplan-
Meier plotter database (P < 0:05). The levels of DEGs and
hub genes in NSCLC as well as normal lung tissues were ver-
ified by Gene Expression Profiling Interactive Analysis
(GEPIA; P < 0:05). Overall, the goal of this research was to
improve the understanding of the carcinogenic effects of
NSCLC through the analysis of data about the processes of
genetic variations that occur during disease development
and reveal central genes that can be used as biomarkers for
diagnosis, therapeutic outcomes, and disease progression.

2. Results

2.1. NSCLC-Associated DEGs. There were 562 DEGs in the 5
datasets, which consisted of 98 downregulated and 464
upregulated genes (Figure 1(a)).

2.2. KEGG and Gene Ontology (GO) Enrichment Analyses.
GO analysis revealed that the DEGs were markedly enriched
in BPs, such as extracellular matrix organization, extracellu-
lar structure organization, nuclear division, mitotic nuclear
division, organelle fission, cell-substrate adhesion, assembly
of cell junctions, organization of cell junctions, vascular pro-
cess in circulatory system, and ameboidal-type cell migra-
tion (Table 1). The enriched MFs included actin binding,

extracellular constituents of matrix structures, amyloid-beta
binding, peptide binding, amide binding, histone kinase
activity, metalloendopeptidase activity, extracellular constit-
uents of matrix structures conferring tensile strengths, and
metallopeptidase activities (Table 1). The enriched CC terms
were cell-cell junction, actin filament bundle, stress fiber,
contractile actin filament bundle, contractile fiber part, mid-
body, condensed chromosome, centromeric region, chromo-
somal region, and condensed nuclear chromosome
(Table 1). KEGG pathway analyses showed that downregu-
lated DEGs were highly enriched in p53 signaling pathway,
while upregulated DEGs were highly enriched in pathways
related to cell adhesion molecules, transendothelial leuko-
cyte migration, contractions of vascular smooth muscles,
coagulation and complement cascades, and axon guidance.

2.3. The PPI Network and Module Analysis. The established
DEG-associated PPI network is shown in Figure 1(c), with
the most important module shown in Figure 1(b), as identi-
fied by Cytoscape. Functional assessments of genes in this
module revealed high enrichment in nuclear division, organ-
elle fission, mitotic nuclear division, histone phosphoryla-
tion, cell cycle checkpoint, condensed chromosome,
centromeric region, chromosomal region, midbody, chro-
mosomes, protein serine/threonine kinase activities, histone
kinase activities, protein C-terminus binding, the cell cycle,
progesterone-mediated oocyte maturation, ferric iron bind-
ing, oxidoreductase activities, acting on CH or CH2 groups,
the p53 signaling pathway, cellular senescence, and oocyte
meiosis (Table 2).

Table 2: GO and KEGG pathway enrichment analyses of DEGs in the most significant module.

ID Description P value Count in gene set

GO:0000280 Nuclear division 2.12e-13 9

GO:0048285 Organelle fission 5.13e-13 9

GO:0140014 Mitotic nuclear division 6.78e-13 8

GO:0000075 Cell cycle checkpoint 1.95e-09 6

GO:0016572 Histone phosphorylation 7.14e-09 4

GO:0000793 Condensed chromosome 1.12e-13 8

GO:0098687 Chromosomal region 3.76e-10 7

GO:0000779 Condensed chromosome, centromeric region 5.40e-09 5

GO:0030496 Midbody 3.70e-08 5

GO:0000775 Chromosome, centromeric region 6.39e-08 5

GO:0035173 Histone kinase activity 2.87e-10 4

GO:0004674 Protein serine/threonine kinase activity 0.003 3

GO:0008022 Protein C-terminus binding 0.007 2

GO:0008199 Ferric iron binding 0.007 1

GO:0016725 Oxidoreductase activity, acting on CH or CH2 groups 0.009 1

hsa04115 p53 signaling pathway 2.11e-07 4

hsa04914 Progesterone-mediated oocyte maturation 6.22e-05 4

hsa04110 Cell cycle 1.18e-04 4

hsa04114 Oocyte meiosis 1.33e-04 4

hsa04218 Cellular senescence 2.34e-04 4

GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes; FDR: false discovery rate.
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Table 3: Functional roles of 16 hub genes with degree ≥ 10.

No.
Gene
symbol

Full name Function

1 CDK1 Cyclin-dependent kinase 1

Plays a key role in the control of the eukaryotic cell cycle by modulating the centrosome
cycle as well as mitotic onset; promotes G2-M transition, and regulates G1 progress and
G1-S transition via association with multiple interphase cyclins. Required in higher cells

for entry into S-phase and mitosis

2 CCNB1 G2/mitotic-specific cyclin-B1

Essential for the control of the cell cycle at the G2/M (mitosis) transition; belongs to the
cyclin family. Cyclin AB subfamily ZC3HC1-nuclear-interacting partner of ALK;
essential component of a SCF-type E3 ligase complex, SCF (NIPA), a complex that

controls mitotic entry by mediating ubiquitination and subsequent degradation of cyclin
B1 (CCNB1). Its cell-cycle-dependent phosphorylation regulates the assembly of the SCF
(NIPA) complex, restricting CCNB1 ubiquitination activity to interphase. Its inactivation
results in nuclear accumulation of CCNB1 in interphase and premature mitotic entry.

May have an antiapoptotic role in NPM-ALK-mediated signaling events

3 TOP2A DNA topoisomerase 2-alpha

Control of topological states of DNA by transient breakage and subsequent rejoining of
DNA strands. Topoisomerase II makes double-strand breaks. Essential during mitosis
and meiosis for proper segregation of daughter chromosomes. May play a role in

regulating the period length of ARNTL/BMAL1 transcriptional oscillation (by similarity)

4 PRM2
Ribonucleoside-diphosphate

reductase subunit M2

Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of
deoxyribonucleotides from the corresponding ribonucleotides. Inhibits Wnt signaling;

belongs to the ribonucleoside diphosphate reductase small chain family

5 CHEK1
Serine/threonine-protein kinase

Chk1

Serine/threonine-protein kinase which is required for checkpoint-mediated cell cycle
arrest and activation of DNA repair in response to the presence of DNA damage or

unreplicated DNA. May also negatively regulate cell cycle progression during
unperturbed cell cycles. This regulation is achieved by a number of mechanisms that

together help to preserve the integrity of the genome.

6 AURKA Aurora kinase A

Mitotic serine/threonine kinase that contributes to the regulation of cell cycle
progression. Associates with the centrosome and the spindle microtubules during mitosis
and plays a critical role in various mitotic events including the establishment of mitotic

spindle, centrosome duplication, centrosome separation as well as maturation,
chromosomal alignment, spindle assembly checkpoint, and cytokinesis. Required for

initial activation of CDK1 at centrosomes

7 ZWINT ZW10 interactor
Part of the MIS12 complex, which is required for kinetochore formation and spindle
checkpoint activity. Required to target ZW10 to the kinetochore at prometaphase

8 NUF2 Kinetochore protein Nuf2

Acts as a component of the essential kinetochore-associated NDC80 complex, which is
required for chromosome segregation and spindle checkpoint activity. Required for
kinetochore integrity and the organization of stable microtubule binding sites in the

outer plate of the kinetochore. The NDC80 complex synergistically enhances the affinity
of the SKA1 complex for microtubules and may allow the NDC80 complex to track

depolymerizing microtubules

9 MKI67
Proliferation marker protein Ki-

67

Required to maintain individual mitotic chromosomes dispersed in the cytoplasm
following nuclear envelope disassembly. Associates with the surface of the mitotic

chromosome and the perichromosomal layer, and covers a substantial fraction of the
chromosome surface. Prevents chromosomes from collapsing into a single chromatin
mass by forming a steric and electrostatic charge barrier: the protein has a high net
electrical charge and acts as a surfactant, dispersing chromosomes and enabling

independent chromosome motility

10 BIRC5
Baculoviral IAP repeat

containing 5
This gene is a member of the human CCDS set

11 CEP55 Centrosomal protein of 55 kDa
Plays a role in mitotic exit and cytokinesis. Recruits PDCD6IP and TSG101 to midbody
during cytokinesis. Required for successful completion of cytokinesis. Not required for

microtubule nucleation. Plays a role in the development of the brain and kidney

12 ANLN Anillin

Required for cytokinesis. Essential for the structural integrity of the cleavage furrow and
for completion of cleavage furrow ingression. Plays a role in bleb assembly during
metaphase and anaphase of mitosis. May play a significant role in podocyte cell

migration; pleckstrin homology domain containing
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Figure 2: Continued.
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2.4. Hub Gene Identification and Analysis. Twelve genes
were established to be hub genes with degree values ≥ 10
(Table 3). The 12 hub genes were used to draw the difference
in the distribution of LUAD and LUSC tissues and adjacent
tissues in TCGA database (https://portal.gdc.cancer.gov/)
using ggplot2 in R language. Figure 2(a) shows the expres-
sion levels of hub genes in unpaired LUAD as well as adja-
cent tissues. The levels of hub genes in unpaired LUAD
and adjacent tissues are shown in Figure 2(b). Figure 2(c)
shows the levels of hub genes in paired LUAD tumor and
adjacent tissues. Figure 2(d) shows the levels of hub genes
in adjacent and paired LUSC tissues. The P value was used
to indicate significance as follows: ns, P ≥ 0:05; ∗, P < 0:05;
∗∗, P < 0:01; and ∗∗∗, P < 0:001. Hub genes were down-
loaded from the DAVID website (https://david.ncifcrf.gov/
), and then, the “ggplot2” and “clusterProfiler” in R language
were used for visualization the GO and KEGG results.
Enrichments of upregulated and downregulated genes are
shown in Figures 3(a) and 3(b), respectively. Figure 3(c)
shows a visualization of the enrichment analysis results for
the hub genes. After the analysis of the 12 hub genes with
the pROC package in R language and visualized with the
ggplot2 package, receiver operating characteristic (ROC)

curves were generated for LUAD (Figures 4(a) and 4(b))
and LUSC (Figures 4(c) and 4(d)). NUF2 assessment
showed higher accuracy than other variables in predicting
the tumor status (normal versus tumor). Subsequently, over-
all survival analysis according to hub gene expression was
conducted via the Kaplan-Meier curves. Relative to low
expression patients, NSCLC patients with elevated CDK1,
CCNB1, TOP2A, PRM2, CHEK1, AURKA, ZWINT,
NUF2, MKI67, BIRC5, CEP55, and ANLN levels showed
worse overall survival (Figures 5(a)–5(h)). We noticed that
NSCLC patients with changes of NUF2-related genes
showed decreased overall survival, while NSCLC patients
with NUF2 genome changes showed the highest hazard
ratio. These observations were statistically significant
(HR = 2:01, CI 1.7-2.39, P = 2:4e − 16) (Figure 5(h)). Assess-
ment of NUF2 mRNA levels in a variety of tumor types
revealed that they were elevated in tumor tissues, relative
to adjacent tissues (Figure 6(a)). Comparison analysis
showed that NUF2 mRNA is high (left column, red) and
suppressed (right column, blue) in tumor and normal tis-
sues, respectively. The diagram comes from the Oncomine
database (available from https://www.oncomine.org/
resource/login.html) with thresholds as: P value, 1E-4; fold
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Figure 2: The 12 hub genes were used to draw the difference in the distribution of lung adenocarcinoma and lung squamous cell carcinoma
tissues and adjacent tissues in the TCGA (https://portal.gdc.cancer.gov/) database using ggplot2 in R language. (a) is the expression of hub
gene in cancer tissues and adjacent tissues of unpaired samples in LUAD, and (b) is the expression of hub gene in cancer tissues and adjacent
tissues of unpaired samples in LUSD. (c) represents the expression of hub gene in LUAD paired sample cancer tissues and adjacent tissues,
and (d) represents the expression of hub gene in LUSD paired sample cancer tissues and adjacent tissues. The P value adopts scientific
notation and all have statistical significance. ∗P < 0:05; ∗∗P < 0:01; and ∗∗∗P < 0:001.
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change, 2; and gene rank, 10%. Figure 6(b) shows the expres-
sion of NUF2 in 33 human cancer datasets (GEPIA2) (URL
https://gepia2.cancer-pku.cn) obtained from the TCGA via
GEPIA2; dot plots were generated to show all the gene
expression profiles. The cancer and their matching normal
tissues were collected. Each point represents the expression
of the sample. Figure 6(c) shows NUF2 mRNA levels in
tumors and tissues. Data for adjacent normal tissues were
acquired from the Gene Expression in Normal and Tumor
Tissues (GENT) database (http://medicalgenomics.kribb.re
.kr/GENT/). The boxes denote the median as well as the
25th and 75th percentiles. Dots denote outliers. The red box
represents cancer tissue, and the blue box represents normal
tissue.

The Protein Atlas network database (https://www
.proteinatlas.org/) was utilized for analyses. Figure 7(a)
shows the hematoxylin and eosin (HE) staining result for
NUF2 in LUAD, and Figure 7(b) shows the HE staining
result for NUF2 in LUSC. Figure 7(c) shows the HE stain-
ing result for NUF2 in normal bronchial tissues.
Figure 7(d) shows the Serial Analysis of Gene Expression
(SAGE) findings for the analysis of NUF2 in human can-
cers. The Tumor IMmune Estimation Resource (TIMER)
website (https://cistrome.shinyapps.io/timer/) was used to
show the associations between infiltrations of immune
cells in tumors and NUF2 somatic copy numbers in LUSC
and LUAD. According to the copy number of NUF2, the
samples were divided into five categories (arm-level dele-
tion, deep deletion, diploid/normal, high amplification,

and arm-level gain), and distributions of infiltrated
immune cells in the five samples were compared. In
LUAD, except for the marked variations in the number
of arm-level deletions in B cells, the other five types of
cells (neutrophils, CD8+ T cells, macrophages, CD4+ T
cells, and dendritic cells) were diploid/normal or showed
significant differences in arm-level gain. However, the
results were not exactly the same for LUSC. The copy
numbers in neutrophils, B cells, and dendritic cells showed
obvious differences. The rates of arm-level deletions as
well as gains and increased amplification in CD4+ T cells
showed obvious differences. The arm-level gain in macro-
phages was obviously different, and all CD8+ T cell copy
number observations were significantly different between
normal and tumor tissues. P values are as follows: ns, P
≥ 0:05; ∗, P < 0:05; ∗∗, P < 0:01; and ∗∗∗, P < 0:001
(Figure 8(a)). The TIMER website (https://cistrome
.shinyapps.io/timer/) was used to view the correlations of
immune cells and tumor purity and NUF2 levels in LUSC
and LUAD in the TCGA database (Figure 8(b)). Table 4
shows the correlation analysis of NUF2 and immune
cell-associated genes as well as biomarkers in TIMER
(P ≤ 0:001). The UALCAN website (http://ualcan.path.uab
.edu/cgi-bin/ualcan-res.pl) was used to show differences
in the levels of NUF2 in LUAD cancers of different grades
and in the normal population versus LUAD patients. The
expression of NUF2 in patients with different smoking sta-
tuses and the difference in the expression of NUF2 in
TP53 mutant and nonmutated LUAD were assessed
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Figure 3: Download the hub gene from the DAIVED website (https://david.ncifcrf.gov/), and then, use the ggplot2 package and
clusterProfiler package in the R language to visualize the enrichment analysis of GO and KEGG. Panel (a) is the enrichment analysis of
upregulated genes, and panel (b) is the enrichment analysis of downregulated genes. Panel (c) is the visualization diagram of the
enrichment analysis of the hub gene.
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(Figures 9(a)–9(c)). The differences in the expression of
NUF2 in LUSC tumors of different grades, the expression
of NUF2 in normal people and LUSC patients with differ-
ent smoking statuses, and the difference in the expression
of NUF2 in TP53-mutated and nonmutated LUSC samples

were also assessed. ∗∗∗P < 0:001 indicates that the differ-
ence is statistically significant (Figures 9(d)–9(f)).

2.5. NUF2 Expression in NSCLC Tissues. To evaluate the sig-
nificance of NUF2 in NSCLC, we investigated NUF2 protein
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Figure 4: The 12 hub genes were analyzed with the pROC package in R language and visualized with the ggplot2 package. (a) and (b) are
receiver operating characteristic curves (ROC) of LUAD, and (c) and (d) are receiver operating characteristic curves (ROC) of LUSC.
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Figure 5: Continued.
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levels in four randomly selected paired NSCLC specimens.
Western blot showed elevated NUF2 levels in NSCLC tis-
sues, relative to adjacent nontumor samples (Figures 10(a)
and 10(b), P < 0:01).

3. Discussion

Globally, lung carcinoma is the most prevalent cause of
tumor-associated death. About 1.6 million people die from
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Figure 5: Overall survival analyses of 12 hub genes were performed using the Kaplan-Meier plotter online platform. P < 0:05 was considered
statistically significant.
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Figure 6: NUF2 mRNA expression in a variety of cancer types: (a) Comparison shows that the datasets of NUF2 mRNA overexpression (left
column, red) and underexpression (right column, blue) are in cancer and normal tissues. The graphic representation is derived from the
Oncomine database (available from https://www.oncomine.org/resource/login.html), and the threshold is to use the following parameters:
P value is 1E-4, fold change is 2, and gene ranking is 10%. (b) Expression of NUF2 expression in 33 human cancers (Gene Expression
Profiling Interactive Analysis 2) (URL https://gepia2.cancer-pku.cn) obtained from the Cancer Genome Atlas via GEPIA2: dot map. The
gene expression profiles in all tumor samples and paired normal tissues are shown. Each point represents the expression of the sample.
(c) The expression pattern of NUF2 mRNA in tumors and tissues. The corresponding normal tissues: the data on the expression of
NUF2 mRNA in various types of cancer is retrieved from the GENT (gene expression in normal and tumor tissue) database (available at
http://medicalgenomics.kribb.re.kr/GENT/). The boxes represent the median and the 25th and 75th percentiles. Dots represent outliers.
The red box represents tumor tissue, and the blue box represents normal tissue.
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lung carcinoma each [22]; approximately 85% of lung cancer
patients have NSCLC, among which LUAD and LUSC are
the most prevalent subtypes [23]. With continuous advances
in molecular biology and information technology, in the past
two decades, significant progress in NSCLC treatment has
been reported [24]. Smoking is highly correlated with the
development of lung carcinoma, and it is also related to
environmental exposures, such as secondhand smoke, occu-
pational carcinogens and pollution, and genetic susceptibil-
ity [25, 26]. However, the pathomechanisms for NSCLC
occurrence as well as development of NSCLC are not
extremely clear. Regulators of the cell cycle play major roles
in NSCLC [27–29]. Most NSCLC cases are not detected
early, making patients ineligible for treatment, which could
explain for poor prognostic outcomes. Thus, the need for
development of potential markers for efficient diagnosis
and treatment is urgent. Microarray technologies allow the
exploration of genetic changes in NSCLC and have been
proven to be important methods for identifying new disease
markers [30].

In this study, the pathways in which the DEGs were
found to be enriched are closely related to immune infiltra-

tion. Mami-Chouaib et al. studied resident memory T cells
and found that they are critical components in tumor immu-
nology [31]. The tumor microenvironment (TME) affects
the progression of many malignant tumors in humans. The
infiltration of immune-related cells into tumors increases
the recruitment of immune activation signals and antidi-
sease immune effector cells and activates related pathways
[32]. KEGG pathway analyses showed that downregulated
DEGs were highly enriched in p53 signaling pathway. The
p53 protein can mediate nucleolar stress responses, leading
to cell cycle arrest, apoptosis, senescence, or differentiation,
thereby affecting the occurrence as well as development of
tumors [33]. Mutations of the p53 tumor suppressor gene
often occur in lung carcinoma. Mutant p53 (mtp53) sup-
presses wild-type p53 protein activities and destroy its tumor
suppressor function. Moreover, mtp53 usually functions as
an oncogene. The posttranslational modification of p53 pro-
tein is vital for its transcription as well as tumor suppressor
function [34]. These conclusions are in tandem with ours.

Twelve DEGs with degrees ≥ 10 were obtained as hub
genes. We noticed that NSCLC patients with NUF2-related
genomic changes showed a decrease in overall survival,
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Figure 7: Use Protein Atlas network database (https://www.proteinatlas.org/) to analyze: (a) is the HE staining result of NUF2 in lung
adenocarcinoma, and (b) is the HE staining result of NUF2 in lung squamous cell carcinoma. (c) is the HE staining result of NUF2 in
normal bronchus. (d) is the use of SAGE to analyze NUF2 in human cancers.
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while NSCLC patients with NUF2 genome changes showed
the highest hazard ratio. NUF2 is a component of the essen-
tial kinetochore-associated NDC80 complex, which is
important in chromosomal segregation as well as spindle
checkpoint activities. It is also vital for the maintenance of
the integrity of the kinetochore and organization of stable
microtubule binding sites in the outer plate of the kineto-
chore. The complex promotes the affinity of the SKA1 com-
plex for microtubules, which allows the NDC80 complex to
track depolymerizing microtubules [35]. NUF2 is reported
as one of tumor testis antigens that is secreted ectopically
by cancers, and NUF2 levels are increased in prostate tumor
tissues [36]. Xie et al. found that NUF2 is involved in cell
apoptosis and proliferation regulation by controlling the
binding of spindle microtubules and the centromere to
attain the correct chromosome separation. NUF2, a
prognostic-associated marker, is correlated with infiltrations

of immune cells in hepatocellular carcinoma [37]. In addi-
tion, NUF2 is elevated in breast cancer, human osteosar-
coma, pancreatic tumor, and colorectal cancer and is an
important diagnostic, treatment, and prognostic marker of
tumors [38–41]. In conclusion, NUF2 is a potential predic-
tor of NSCLC prognosis.

The TME is a key regulator of tumorigenesis, tumor pro-
gression, and drug resistance [42]. In the TME, tumors and
cells continue to evolve to reduce the production of new
antigens and the burden of mutations to facilitate the eva-
sion of antitumor responses. This reduces the tumor’s
responsiveness to adaptive immune responses and facilitates
cancer-supportive changes inside the tumor, such as changes
in the expression of immunomodulatory molecules on can-
cer cells. External tumor factors, including soluble inhibitory
molecules, immunosuppressive cells, or inhibitory receptors
expressed by immune cells, can change the compositions
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and activities of tumor-infiltrating lymphocytes (TILs) (by
enhancing the T regulatory cell, effector T cell ratio, and
suppressing the roles of effector T cells and enhancing tumor

proliferation as well as metastasis) [43]. We found that
NUF2 is associated with immune infiltration of several cell
types, such as CD8+ T cells, B cells, T cells (general),
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Figure 9: (a–c) Use the UALCAN website (http://ualcan.path.uab.edu/cgi-bin/ualcan-res.pl), respectively, to show the expression
differences of NUF2 lung adenocarcinoma tumors in different grades, normal population, and lung adenocarcinoma. The expression of
NUF2 in different smokers and the difference in the expression of NUF2 in TP53 mutant and nonmutated lung adenocarcinoma. (d–f)
The differences in the expression of NUF2 lung squamous cell carcinoma tumors of different grades, the expression of NUF2 in normal
people and different smokers of lung squamous cell carcinoma, and the difference in expression of NUF2 in TP53 mutated and
nonmutated lung squamous cell carcinoma. ∗∗∗∗P < 0:001 indicates that the difference is statistically significant.
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tumor-associated macrophages (TAMs), monocytes, M1
and M2 macrophages, natural killer cells, neutrophils, den-
dritic cells, and Th1, Th2, Tfh, Th17, Treg, and exhausted
T cells. The association between NUF2 and immunosup-
pressive gene levels implies that NUF2 has a major function
in regulation of cancer immunology.

In summary, this study was aimed at identifying DEGs
that play key roles in NSCLC occurrence or progression.
There were 562 DEGs and 12 hub genes, and these genes
can be used as diagnostic markers for NSCLC. These results
also prove that NUF2 can be used as an effective immuno-
therapy target. In the next step, our research group will use
molecular biology experiments to further verify the biologi-
cal functions of NUF2 in NSCLC in vivo and in vitro.
Finally, we will use western blotting to evaluate the levels
of NUF2 in NSCLC and adjacent tissues to verify that
NUF2 can indeed be used as a target for in-depth research
on NSCLC treatment.

4. Methods

4.1. Microarray Data. The Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo) [44] is a public
functional genomics data repository of high-throughput
gene expression and chip and microarray data. Five gene
expression datasets (GSE19804 [16], GSE118370 [17],
GSE19188 [18], GSE27262 [19], and GSE33532 [20]) were
retrieved from the GEO (GPL570 Platform Affymetrix
Human Genome U133 Plus 2.0 Array). The conversion of
probes into their corresponding gene symbols was based
on annotation information for the platform. The
GSE19804 dataset had 60 NSCLC tissue and 60 noncancer-
ous samples. The GSE118370 dataset had 6 NSCLC tissue
and 6 noncancerous samples. The GSE19188 dataset had

91 NSCLC tissue and 65 noncancerous samples. The
GSE27262 dataset had 25 NSCLC tissue and 25 noncancer-
ous samples. The GSE33532 dataset had 80 NSCLC tissue
and 20 noncancerous samples.

4.2. Identification DEGS. GEO2R (http://www.ncbi.nlm.nih
.gov/geo/geo2r) was used for screening DEGs between
NSCLC samples and noncancer samples. GEO2R, an inter-
active web tool, enables the comparisons of two or more
GEO datasets. To identify DEGs, we applied thresholds for
the adjusted (adj.) P value and Benjamini and Hochberg
false discovery rate to establish a balance between the limita-
tions of finding significant (statistical) genes as well as false
positives. Probe sets lacking the corresponding gene symbols
or genes exhibiting multiple probe sets were, respectively,
eliminated or averaged. Log fold change ðFCÞ > 1 and adj.
P < 0:01 denoted statistical significance [45].

4.3. KEGG and GO Analyses of the DEGs. DAVID (http://
david.ncifcrf.gov) (version6.7) [46] is an online biological
information database integrated with a comprehensive set
of analysis tools. Functional annotation of genes and pro-
teins can be used to extract biological information. KEGG
is a database resource for understanding advanced and bio-
logical functions. Systems generated from large-scale molec-
ular datasets are considered high-throughput experimental
techniques [47] GO is an established gene analysis method.

4.4. PPI Network Construction and Module Analysis. The
Search Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org) (version 10.0) [48] online database was
used for PPI network prediction. Analysis of functional
interactions between and among proteins may elucidate on
the pathomechanisms of various diseases. We used the
STRING database to build a PPI network of DEGs, and
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Figure 10: (a and b) Expression of NUF2 in four non-small-cell lung cancer tissues and adjacent normal tissues detected by western
blotting. GADPH was used as loading control. ∗P < 0:05 and ∗∗P < 0:01. (c) The mRNA expression of NUF2 in four non-small-cell lung
cancer tissues and adjacent normal tissues detected by RT-PCR.

Table 5: Clinical data of four cases of WB experiment.

Gender Age Preoperative diagnosis Pathological type

1 Male 69 Space-occupying lesion of upper right lung Right lung squamous cell carcinoma

2 Male 68 Space-occupying lesion of right lower lung Right lower lung squamous cell carcinoma

3 Female 73 Space-occupying lesion of right lower lung Right lower lung adenocarcinoma

4 Male 71 Malignant tumor of left upper lung Left upper lobe adenocarcinoma
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interactions with a combined score > 0:4 were considered
statistically significant. Cytoscape (version 3.4.0) is an open
source bioinformatics software platform for visualizing
molecular interaction networks [49]. The MCODE (version
1.4.2) plug-in of Cytoscape is an app for clustering a given
network based on topology to find densely connected
regions [50]. The PPI networks were drawn using Cytoscape,
with the most significant module in the networks identified
using MCODE. The selection criteria were MCODE score
> 5, degree cutoff = 2, node score cutoff = 0:2, max depth
= 100, and k − score = 2. Then, KEGG and GO analyses of
the genes in this module were conducted using DAVID.

4.5. Hub Gene Selection and Analysis. Hub genes with
degrees ≥ 10 were selected for analysis. A network of the
genes and their coexpressed genes was analyzed using cBio-
Portal (http://www.cbioportal.org) [51, 52] online platform.
The biological process analysis of hub genes was performed
and visualized using the Biological Networks Gene Oncology
(BiNGO) (version 3.0.3) plugin of Cytoscape [53]. Hierar-
chical clustering of hub genes was performed using the
UCSC Cancer Genomics Browser (http://genome-cancer
.ucsc.edu) [54]. Overall survival and disease-free survival
analyses of hub genes were performed using the Kaplan-
Meier curves in cBioPortal. The expression profiles of
NUF2 were analyzed and displayed using the online data-
base SAGE (http://www. http://ncbi.nlm.nih.gov/SAGE).
The relationships between expression patterns and tumor
grades, infection status, metastasis, and vascular invasion
were analyzed using the online database Oncomine (http://
www.oncomine.com) [55–57].

4.6. NSCLC Patient Specimens. To investigate NUF2 levels in
human NSCLC, we obtained tumor tissues and paired adja-
cent nontumorous tissues during radical resection of
patients without prior chemotherapy or radiotherapy at the
Department of Thoracic Surgery, Sixth Affiliated Hospital
of Nantong University. Resected NSCLC-adjacent nontumor
samples and matched tumor tissues were obtained and
instantly stored in liquid nitrogen (Table 5). From May
2021 to July 2021, 2 pairs of lung squamous cell carcinoma
tissues and adjacent nontumor tissues and 2 pairs of lung
adenocarcinoma tissues and adjacent nontumor tissues were
randomly selected from patients in The Sixth Affiliated Hos-
pital of Nantong University (Yancheng Third People’s Hos-
pital) (T1 and T2 in Figure 10 are LUSCs, and T3 and T4 are
LUADs). All patients or their guardians provided informed
consents, and this study was approved by the ethical com-
mittee of The Sixth Affiliated Hospital of Nantong Univer-
sity (Yancheng, China). The grade and histological type of
all tissue samples were independently verified by two profes-
sional pathologists.

4.7. Western Blot Analysis. A lysis buffer (Beyotime Institute
of Biotechnology, Nantong, China) was used to prepare total
protein extracts from cell lines as well as tumor tissues.
Then, protein concentrations were evaluated by a BCA kit
(Beyotime Institute of Biotechnology, Nantong, China). An
equal protein amount (40μg per lane) was separated by

SDS-polyacrylamide gel electrophoresis (PAGE) in 12%
acrylamide gels and transferred onto polyvinylidine difluor-
ide (PVDF) membranes (Millipore Corporation, Billerica,
USA) which were blocked in 5% fat-free milk followed by
overnight incubation at 4°C with the rabbit anti-NUF2 pri-
mary antibody (1 : 5000 dilution; Sangon Biotech, Shanghai,
China). The secondary antibody was horseradish peroxi-
dase- (HRP-) conjugated goat anti-rabbit antibody
(1 : 2000; Beyotime Institute of Biotechnology). After strip-
ping, the membrane was reprobed overnight at 4°C with
antibody against GAPDH (1 : 2000; Beyotime Institute of
Biotechnology), followed by incubation with secondary anti-
bodies as above at room temperature (RT) for 2 h. An
enhanced chemiluminescence system (ECL; Beyotime Insti-
tute of Biotechnology) was used for band visualization. The
band intensities were quantified by densitometry.

4.8. Real-Time Quantitative PCR. Quantitative real-time
PCR analysis was measured as previously described. Total
RNA was isolated from cultured cells or muscle tissues using
an RNeasy plus mini kit. cDNA was obtained using a
GoScript Reverse Transcription System and analyzed by
quantitative real-time PCR using SYBR Green kit. The data
were normalized to expression of ribosomal gene NUF2 or
GAPDH. The primer sequences are NUF2-forward (ATGG
AAGGCTTCTTACCATTCA) and NUF2-reverse (CTTA
AAAACCGACTTGTCCGTT).

4.9. Statistical Analysis. GraphPad Prism 7.0 software was
used for statistical analyses. Between-group differences were
evaluated by the two-tailed Student’s t-test. A P value < 0.05
indicated significance. All assays were repeated thrice.
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