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Hepatocellular carcinoma (HCC) with cancer cells under endoplasmic reticulum (ER) stress has a poor prognosis. This study is
aimed at discovering credible biomarkers for predicting the prognosis of HCC based on ER stress-related genes (ERSRGs). We
constructed a novel four-ERSRG prognostic risk model, including PON1, AGR2, SSR2, and TMCC1, through a series of
bioinformatic approaches, which can accurately predict survival outcomes in HCC patients. Higher risk scores were linked to
later grade, recurrence, advanced TNM stage, later T stage, and HBV infection. In addition, 20 fresh frozen tumors and
normal tissues from HCC patients were collected and used to validate the genes expressed in the signature by qRT-PCR and
immunohistochemical (IHC) assays. Moreover, we found the ER stress-related signature could reflect the infiltration levels of
different immune cells in the tumor microenvironment (TME) and forecast the efficacy of immune checkpoint inhibitor (ICI)
treatment. Finally, we created a nomogram incorporating this ER stress-related signature. In conclusion, our constructed four-
gene risk model associated with ER stress can accurately predict survival outcomes in HCC patients, and the model’s risk score
is associated with the poor clinical classification.

1. Introduction

The endoplasmic reticulum (ER) is a multifunctional organ-
elle consisting of branching tubes and flattened vesicles that
are the main site of protein synthesis and transport, lipid
biosynthesis, and calcium storage [1, 2]. However, many fac-
tors, including inhibition of protein glycosylation, oxidative
stress, nutritional deficiencies, imbalance of calcium homeo-
stasis, and hypoxia, could reduce the efficiency of ER in pro-
cessing protein folding and finally lead to ER stress and
unfolded protein response (UPR) [3, 4]. UPR plays a crucial
role in regulating cellular adaptation to ER stress by increas-
ing ER content, improving ER protein folding capacity, and
downgrading misfolded proteins [5, 6]. Three transmem-
brane ER sensors, including activating transcription factor
6 (ATF6), protein kinase R- (PKR-) like endoplasmic reticu-
lum kinase (PERK), and inositol-requiring enzyme 1

(IRE1α), have been found to determine the triggering of
ER stress and subsequent activation of the UPR [7]. With
the increasing recognition of ER stress mechanisms, ER
stress dysregulation has been found to play an essential role
in various human diseases, including cardiometabolic dis-
eases [8–10], diabetes [11, 12], chronic kidney disease [13,
14], Alzheimer’s disease [15, 16], and cancers [17–20].
Chronic activation of the UPR caused by ER stress, viral
infection, or hepatic obesity may lead to liver dysfunction
and disturbances in lipid and glucose metabolism [21]. ER
stress plays a crucial role in the pathogenesis of the nonalco-
holic fatty liver disease (NAFLD) [22] and is strongly associ-
ated with survival and death in HCC patients [23]. Recent
studies suggested that ER stress and UPR have emerged as
new signaling targets for therapeutic interventions in
NAFLD and HCC [3, 24–26]. In the current study, a novel
prognostic risk model based on ER stress-related genes

Hindawi
Journal of Immunology Research
Volume 2022, Article ID 1366508, 18 pages
https://doi.org/10.1155/2022/1366508

https://orcid.org/0000-0002-9834-6477
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1366508


2

0.88

Co
ph

en
et

ic
 co

effi
ci

en
t

0.92

0.96

1.00

3 4 5
Number of clusters

6

(a)

Connectivity matrix

1

0.8

0.6

0.4

0.2

0

Cluster
1
2
3

(b)

0

0.00

0.25 Log-rank
p = 0.0071

O
ve

ra
ll 

su
rv

iv
al

 ra
te

0.50

0.75

1.00

12 24 36 48 60
Time (months)

72 84 96 108 120

Cluster1 (n = 202)
TCGA cohort

Cluster2 (n = 37)
Cluster3 (n = 126)

(c)

Figure 1: Continued.
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(ERSRGs) was constructed, which could be effectively used
for prognostic classification of HCC patients and utilized
as a potential target for individualized immunotherapy.

2. Materials and Methods

2.1. Public Datasets and Generation of ERSRGs. This study
included mRNA expression data and clinical features of
HCC patients from three publicly available datasets includ-
ing TCGA-LIHC, ICGC (LIRI-JP), and GSE14520. ERSRGs
were available from previous research [4]. The general clin-
ical characteristics of HCC patients are shown in Table S1.

2.2. Molecular Subtype Identification by Nonnegative Matrix
Factorization (NMF) Algorithm. The 365 HCC samples in
TCGA were grouped using the NMF algorithm with the cri-
teria “brunet” and 50 iterations based on ERSRGs. The num-
ber of clusters (K) ranged from 2 to 6, with cophenetic,
dispersion, and profile being used to determine the ideal
number of clusters. Kaplan-Meier survival analysis was also

undertaken to see if there were any changes in survival
across the NMF subtypes.

2.3. Prognostic Risk Score Model Construction and
Functional Analysis. The univariable Cox relapses were to
begin with performed to calculate the affiliation between
ERSRGs and survival results of HCC patients in three cohorts.
LASSO-Cox relapse strategy and stepwise Cox relapse exami-
nation were at that point performed to survey the overcover-
ing prognosis-related qualities and set up prognostic
characteristics. Risk score was at last set up based on the pre-
mise of directly combining the equation underneath with the
mRNA expression level duplicated the multivariate Cox
relapse coefficient (β) demonstrate. Risk score = ðβmRNA1
×mRNA1Þ + ðβmRNA2 ×mRNA2Þ +⋯+ðβmRNAn ×
mRNAnÞ. We stratified patients in TCGA dataset into two
subgroups due to the ideal hazard score edge. The prescient
control and autonomy of the prognostic signature were evalu-
ated by receiver operating characteristic (ROC) curve, Kaplan-
Meier survival examination, and Cox relative risk relapse
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Figure 1: Molecular subtypes identification based on ERSRGs. (a) The optimal number of clusters was identified as three based on the
cophenetic. (b) 365 HCC samples were separated into three subcategories. (c) Substantial differences were found between patients in the
three groupings. (d) Two-by-two comparisons were made between the three groups. (e) Stromalscore, immunescore, and
ESTIMATEscore were different among the three clusters.
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investigation. Gene set enrichment analysis (GSEA) between
the two subgroups was performed to distinguish the altogether
cautioned GO items with FDR < 0:05.

2.4. Quantitative Real-Time PCR (qRT-PCR) and
Immunohistochemical (IHC) Analysis. Twenty fresh-frozen
tumors and normal tissues from HCC patients who under-
went liver tissue resection were collected, and all patients
signed informed consent. All pathological data were evalu-
ated and codiagnosed by two independent pathologists. All
methods were performed following relevant guidelines and
regulations. qRT-PCR was used to detect the mRNA levels
of genes in the model [27]. Primer sequences are shown in
Table S2. IHC assays were used to explore the protein
expression of SSR2 in normal and HCC tissues. SSR2
antibody was obtained from Proteintech (China). Two
pathologists independently assessed the results.

2.5. Immune Status Calculation and Immune Infiltrate
Analysis. The immune status of each sample was assessed
by applying the ESTIMATE algorithm to the TCGA cohort
and calculating immune and stromal scores. The association
between risk scores and immune and stromal scores was
analyzed by Pearson correlation analysis. To explore the
impacts of the prognostic model on immunotherapies, we
calculated the relationship between risk score and 15 poten-
tially available targeted immune checkpoint genes [28]. Fur-
thermore, to assess the potential association between
prognostic signature and tumor-infiltrating immune cells
(TIICs) in the HCC microenvironment, the TCGA database
was used to measure the abundance ratios of TIICs through
CIBERSORT [29] (http://cibersort.stanford.edu/), Timer
[30], Quantiseq [31], and xCell [32].

2.6. Genetic Alterations and TMB Analysis. The mutation
and CNA data of 350 HCC patients were downloaded from
TCGA to analyze the difference of genetic alterations
between the high- and low-risk score subgroups with R
package “maftools,” and the tumor mutation burden
(TMB) of each patient was subsequently assessed.

2.7. Drug Susceptibility Analysis. The association between
anticancer drug sensitivity and mRNA molecules in our risk
model was directly explored in the CellMiner database [33].
574 in advanced clinical trials and 216 Food and Drug
Administration- (FDA-) approved drugs were used for
follow-up analyses. Drugs with adjusted P value < 0.001
and Pearson correlation coefficient > 0:3 as cut-off criteria
were considered tumor-sensitive drugs.

2.8. Statistical Analysis. Categorical data were compared
with the Pearson chi-square test or Fisher exact test when-
ever appropriate, and quantitative variables were analyzed
using the independent-samples t-test. ROC curve analysis
and Kaplan-Meier survival analysis were performed to assess
the prediction performance of survival outcomes with R
software (Version 4.0.3). Cox proportional model was per-
formed to analyze the relationship between prognostic sig-
nature and survival outcomes, together with other clinical
features. Results were considered statistically significant
when the P value < 0.05.

3. Results

3.1. Molecular Subtype Identification Based on ERSRGs. By
using the NMF algorithm, the optimal number of clusters
was identified as three based on the cophenetic
(Figure 1(a)). Then, 365 HCC samples were separated into
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Figure 2: Development and survival examinations of four-gene signature in TCGA. (a) Identification of overlapping prognostic ERSRGs in
TCGA, ICGC, and GSE14520 datasets. (b) Enrichment analysis of 28 overlapping prognostic ERSRGs. (c) The parameter selection in the
LASSO-Cox analysis was adjusted by 10 cross-validations. (d) Distribution of risk scores, OS status, and gene expression profiles. (e)
Kaplan-Meier survival plot. (f) Characteristics of predicted 1-, 2-, and 3-year OS rates in ROC analysis.
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Figure 3: Higher risk scores were linked to later grade (a), recurrence (b), advanced TNM stage (c), later T stage (d), and HBV infection (e).
As for age, gender, and cirrhosis status, no significant differences were found (f–h).
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three subcategories based on the ERSRGs (Figure 1(b)), and
substantial differences were found between patients in the
three groupings (Figure 1(c)). When two-by-two compari-
sons were made between the three groups, only cluster 1
and cluster 3 were significantly different from each other
(Figure 1(d)). Interestingly, the stromalscore, immunescore,
and ESTIMATEscore were different among the three clus-
ters (Figure 1(e)).

3.2. Identification of Overlapped ERSRGs in the Three
Cohorts. As calculated by univariable Cox regressions with
an adjusted P value < 0.05, 329 ERSRGs in TCGA, 225
ERSRGs in ICGC, and 152 ERSRGs in GSE14520 cohort
had significant prognostic relevance, respectively
(Figure 2(a)). Then, 28 overlapped ERSRGs are mainly
enriched in ER stress-related biological processes and are
used for further analysis (Figure 2(b)).

3.3. Establishment of an ER Stress-Related Signature in
TCGA. Overlapped ERSRGs were selected by performing
the LASSO-Cox regression model based on the minimum
value of λ, and 9 genes were screened as shown in

Figure 2(c). These genes were then placed into a stepwise
Cox proportional model, and finally, a prognostic four-
gene signature was identified. Risk score = ð0:07012933 ×
AGR2Þ + ð0:42892985 × SSR2Þ – ð0:12903062 × PON1Þ + ð
0:40769605 × TMCC1Þ. Only SSR2 showed differential
expression in normal and tumor tissues (Figure S1(a)),
although all four genes had prognostic significance
(Figure S1(b)). The expression of the four genes in HCC
cell lines was shown in Figure S1(c). Risk scores for HCC
patients were calculated with the above formula, and
patients were stratified into high- or low-risk subgroups
with an optimal risk score threshold (Figure 2(d)). Kaplan-
Meier survival analysis revealed that patients with higher
risk scores were significantly relevant to poorer survival
outcomes (Figure 2(e)), and ROC analysis revealed that
this signature had a good prognostic performance with
AUCs at 1-, 2-, and 3-year of 0.769, 0.738, and 0.715
(Figure 2(f)). The association between risk score and
clinical characteristics including age, gender, grade, stage,
and vascular invasion and the value of AFP, cirrhosis,
HBV infection status, and tumor status were evaluated.
The results revealed that higher risk scores were linked to
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later grade (Figure 3(a)), recurrence (Figure 3(b)), advanced
TNM stage (Figure 3(c)), later T stage (Figure 3(d)), and
HBV infection (Figure 3(e)). As for age, gender, and
cirrhosis status, no significant differences were found
(Figures 3(f)–3(h)). In addition, further stratified survival
analysis was applied for different clinical characteristics,
and the results demonstrated that this prognostic model
could further differentiate patients with different clinical
characteristics including age, vascular invasion, grade,
recurrence, TNM stage, gender, HBV infection status, and
AFP value (Supplementary Figure S2). Finally, the results
of GO and KEGG functional analysis of the differential
genes in the high- and low-risk score groups are shown in
Supplementary Figure S3. To explore whether the four-
gene signature could be acted as an independent
prognostic model for HCC patients, univariable and
multivariate Cox analyses were performed, and results
revealed that this signature could be served as an
independent prognostic factor for HCC patients
(HR = 2:203, 95% CI 1.313-3.694, P < 0:001) in TCGA.

3.4. Verification of the Signature in the ICGC and GSE14520
Cohorts. To validate the signature, ICGC and GSE14520
datasets were applied as validation cohorts. Risk scores of
patients were calculated with the same formula, and patients
were stratified into high- or low-risk subgroups in the ICGC
(Figure 4(a)) and GSE14520 cohort (Figure 4(f)). We found
lower scores in patients with HCC who were alive
(Figure 4(b)) or at earlier TNM stages (Figure 4(c)) in the
ICGC dataset. Kaplan-Meier survival analysis revealed that
patients with higher risk scores were prominently relevant
to poorer OS rates in the ICGC cohort (Figure 4(d)). ROC
analysis revealed that this signature had a good prognostic
performance with AUCs at 1-, 2-, and 3-year of 0.752,
0.716, and 0.698 in the ICGC cohort (Figure 4(e)). The same
results were found in the GSE14520 dataset (Figures 4(g)
and 4(h)). Finally, the results of univariable and multivariate
Cox analyses revealed that this signature could be served as
an independent prognostic factor for HCC patients (ICGC:
HR = 2:749, 95% CI 1.424-5.310, P < 0:001; GSE14520: HR
= 1:713, 95% CI 1.224-2.398, P < 0:001).
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Figure 6: Continued.
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3.5. Genetic Alterations and TMB Analysis. The results of
genetic alterations analysis indicated that the mutation rates
of the top 10 most significantly mutated genes were remark-
ably different in the two subgroups (Figure 5(a)). Subse-
quently, the TMB of each patient was assessed. We found
that the risk score was closely related to TMB, and patients
in the high-risk scores subgroup had significantly increased
TMB (Figure 5(b)).

3.6. Immune Infiltrates and Immune Checkpoint Gene
Analysis. As shown in Figure 6(a), according to the results
of the Timer algorithm, HCC patients in the high-risk score
subgroup had modestly increased ratios of B cells, CD4+ T
cells, neutrophils, and myeloid dendritic cells. The results
of the CIBERSORT demonstrated that HCC patients in the

low-risk score subgroup had modestly increased ratios of
resting CD4 memory cells and monocyte cells, while patients
in the high-risk score subgroup had significantly elevated
ratios of T helper cells and Treg cells. Moreover, the results
of the Quantiseq demonstrated that HCC patients in the
low-risk score subgroup had modestly increased ratios of
neutrophil and uncharacterized cells, while patients in the
high-risk score subgroup had significantly elevated ratios
of macrophages M1 and M2 cells (Figure 4(a)). The results
of the xCell demonstrated that HCC patients in the low-
risk score subgroup had modestly increased ratios of CD8
central memory cells, endothelial cells, hematopoietic stem
cells, macrophage cells, macrophage M2 cells, and NK cells,
while patients in the high-risk score subgroup had signifi-
cantly elevated ratios of CD4 Th1 and Th2 cells. In the
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Figure 6: Immune infiltrates analysis. (a) Violin plot showing the abundance differentiation of TIICs in two subgroups. (b–h) Differential
analysis of immune checkpoint genes in two subgroups.
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following, we found that patients in the high-risk subgroup
had significantly increased PD1, PD-L1, CD276, CTLA4,
CXCR4, OX40, and CD137 (Figures 6(b)–6(h)), indicating
that immune checkpoint inhibitor (ICIs) treatment was
more effective for patients in high-risk subgroup.

3.7. Establishment of a Nomogram Model in TCGA. To
investigate the coefficient prediction efficiency of this signa-
ture, a nomogram model was established in the TCGA data-
set, and the result revealed that the nomogram with a C-
index of 0.723 could help us provide a quantitative method
for predicting the 1-, 2-, and 3-year survival rate accurately
(Figure 7(a)). The overlap between the forecasted and actual
probabilities of 1-, 2-, and 3-year survival rates in the cali-
bration curves indicated good agreement (Figure 7(b)).

3.8. Comparison with the Previous Signatures. Comparing
the prediction potential among several genetic signatures
can help researchers learn more about their prognostic sig-
nificance. When compared with other previous signatures
[34–37], as shown in Figure S4, our four-gene signature
provided the best survival prediction capacity with fewer
genes.

3.9. Drug Susceptibility Analysis. Among the 574 in advanced
clinical trials and 216 Food and Drug Administration-
(FDA-) approved drugs, 55 were considered tumor-
sensitive drugs (Table S3), and the top 16 most significant
tumor-sensitive drugs were shown in Supplementary
Figure S5.

3.10. Expression Levels of Genes in the Risk Model. In keeping
with the results of the GEPIA analysis [38], we found that
only SSR2 was differentially expressed in tumor and normal
samples by qRT-PCR (Figure 8(a)). Furthermore, after cal-
culating the patients’ risk scores using the same formula,
we found that the scores could distinguish well between nor-
mal and tumor tissue (Figure 8(b)). Considering that only
SSR2 was differentially expressed, we analyzed it further.
We also found that the expression of SSR2 was associated
with poor progression in HCC patients (Figures 8(c) and
8(d)). The protein expression of SSR2 was overexpressed in
HCC tissues compared to normal tissues (Figure 8(e)).
Finally, the results of univariable and multivariate Cox anal-
yses revealed that SSR2 could be served as an independent
prognostic factor for HCC patients (HR = 2:1:759, 95% CI
1.191-2.599, P = 0:004) in TCGA.

4. Discussion

There is growing evidence that ER stress-mediated cell pro-
liferation, metabolic conversion, and genomic destabiliza-
tion are important in the development of many chronic
liver diseases, including alcoholic liver disease (ALD),
hepatic fibrosis, NAFLD, HBV, HCV hepatitis, and HCC
[39–41]. What is more, some synergistic effects between
virus infection, alcohol abuse, NAFLD, and ER stress were
found in the carcinogenesis of HCC [23]. In addition, ER
stress can enhance cancer cell immune evasion and promote
recurrence and metastasis by affecting the tumor microenvi-

ronment (TME) [42, 43]. ER stress-mediated UPR induces
autophagy via IRE1α, PERK, and ATF6 signaling channels
and stimulates vascular endothelial growth factor (VEGF)
secretion by macrophages, thereby promoting vasculogene-
sis in TME [44, 45]. Studies to date have shown that ER
stress plays a substantial role in regulating tumor cell fate
through altered metabolic status and has emerged as a novel
signaling target for the treatment of HCC. Inhibition of
IRE1α, XBP1s, and PERK expression could trigger tumor
cell death under ER stress conditions [24–26]. Proteasome
inhibitor MLN2238 exacerbates ER stress and promotes
cycle stagnation and apoptosis [46]. Sorafenib induces
increased ER stress and activates cellular autophagy in
HerpG2 cells [47]. Therefore, we hypothesized that aberrant
expression of ER stress-related genes may have prognostic
value for HCC patients.

In the current study, a novel four-gene prognostic risk
model based on ERSRGs was constructed and exhibited
superior accuracy in forecasting the survival outcomes and
1-, 2-, and 3-year survival rate of HCC patients in TCGA,
ICGC, and GSE14520 cohorts. More importantly, this fea-
ture was an independent risk factor for HCC patients when
other clinical factors in the three cohorts were taken into
account. In addition, significant effects of this feature on
the immune microenvironment of HCC and the response
to immune checkpoint inhibitors were investigated. Patients
in the high-risk score subgroup had significantly increased
TMB values, PD1, PD-L1, CD276, CTLA4, CXCR4, OX40,
and CD137, indicating that ER stress could affect the
immune microenvironment in HCC, and immune check-
point inhibitor (ICIs) treatment was more effective for
patients in high-risk subgroup. In addition, we explored
the association between the expression of genes in the risk
model and anticancer drug sensitivity in the CellMiner data-
base and identified 55 tumor-sensitive drugs that may be
available for the treatment of HCC patients. Finally, to
exploit the full potential of this risk model, a nomogram
was constructed and exhibited superior predictive perfor-
mance. Therefore, our four genetic risk models associated
with ER stress can accurately predict survival outcomes in
HCC patients and facilitate the selection of the best-
individualized treatment.

Of the four genes in HCC patients, SSR2, TMCC1, and
AGR2 expressions were positively correlated with poor
prognosis, while PON1 expression was negatively correlated
with poor prognosis. As an important member of the para-
oxonase (PON) family, PON1 plays a very important role
in protecting mammalian organisms from oxidative stress
[48, 49]. Endothelial dysfunction in the body can be brought
on by glycosylated PON1-inducing ER stress [50]. PON1 is
also implicated in the apoptosis that ER stress causes in
tumor cells [51] and serum PON1 level is a powerful prog-
nostic factor and can be used to evaluate microvascular inva-
sion in HCC [52]. An endoplasmic reticulum-based proto-
oncogene called anterior gradient-2 (AGR2) is in charge of
maintaining the ER homeostasis. High AGR2 expression
improves cell folding and quality control, which are essential
for the response to ER stress [53]. AGR2 is also involved in
the development and progression of multiple tumors,
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including pancreatic [54], prostate [55], colorectal [56],
breast [57], and endometrial [58] cancers. AGR2 may serve
as a potential drug target to improve drug sensitivity during
cancer treatment [59]. AGR2 also plays a very important
role in the proliferation and metastasis of HCC cells [60].
Signal sequence receptor 2 (SSR2) is a protein involved in
the unfolded protein response of the endoplasmic reticulum.
Through the translocation of proteins necessary for URP,
SSR2 may be particularly implicated in melanoma cells’
resistance to ER stress [61]. Our study found that SSR2 is
upregulated and is strongly associated with poor prognosis
in HCC patients. Upregulated SSR2 could be involved in
hepatocarcinogenesis and metastasis through the regulation
of epithelial-mesenchymal transition (EMT) [62]. The trans-
membrane coiled-coil domain (TMCC1) is widely present in
vertebrates and lower organisms and belongs to the repre-
sentative members of the TMCC family. TMCC1 localizes
to the rough ER through its C-terminal transmembrane
domain and binds to ribosomal proteins through its cyto-
plasmic region, participating in the regulation of ER stress-
associated proteins [63]. Although TMCC1 has not been
reported in the literature to be associated with HCC, in
our study, we found that HCC patients with high expression
of TMCC1 had a poor prognosis. Of course, this requires
later collection of multiple HCC cases with complete sur-
vival data to validate this result. Overall, the four genes
involved in our prognostic model are all related to ER stress,
and a more in-depth study of their mechanism of action in
HCC may provide new ideas for immunotherapy targeting
ER stress in the future.

Compared with the 7-gene prognostic model con-
structed in our previous study presented as a preprint [64]
and other previous signatures [34–37], this 4-gene prognos-
tic model predicted better with fewer genes. Of course, our
research has certain limitations. This feature’s effectiveness
may be hampered by the diversity and individual heteroge-
neity of HCC patients. Furthermore, more in vivo and
in vitro research is needed to further examine the expression
and prognostic predictive relevance of these four genes at the
protein level, as well as their unique processes in HCC.

5. Conclusions

In summary, we constructed an ERSRG-based risk model in
this study, which can effectively classify HCC patients for
prognostic prediction and individualized immunotherapy
targeting ER stress.
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