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Objective. Currently, clinical classification of osteosarcoma cannot accurately predict the survival outcomes and responses to
chemo- or immunotherapies. Our goal was to classify osteosarcoma patients into clinical/biological subtypes based on EMT
molecules. Methods. This study retrospectively curated the RNA expression profiling of osteosarcoma patients from the
TARGET and GSE21257 cohorts. Consensus clustering analyses were conducted in accordance with the expression profiling of
prognostic EMT genes derived from univariate analyses. Immunological features were evaluated through immune cell
infiltration, immune checkpoint expression, and activity of cancer immunity cycle. Drug sensitivity was estimated with the
GDSC database. WGCNA approach was adopted to determine the EMT-derived genes. Following univariate analyses, a
multivariate cox regression model was developed and externally verified. Predictive independency was evaluated with uni- and
multivariate analyses. GSEA was presented to uncover relevant molecular mechanisms. Results. Prognostic EMT genes across
osteosarcoma patients were stratified into distinct subtypes, namely, subtypes A and B. Patients in subtype B presented
desirable prognosis, high immune activation, and enhanced sensitivity to cisplatin. Meanwhile, patients in subtype A were
more sensitive to gemcitabine. In total, 86 EMT-derived hub genes were determined, and an EMT score was conducted for
osteosarcoma prognosis. Following external verification, this EMT score was reliably and independently predictive of patients’
survival outcomes. Additionally, it was positively linked to steroid biosynthesis. Conclusion. Overall, our findings proposed
EMT-relevant molecular subtypes and signatures for predicting prognosis and therapeutic responses, contributing to
personalized treatment and clinical implication for osteosarcoma.

1. Introduction

Osteosarcoma represents the most prevalent primary bone
sarcomas, which originates from mesenchymal stem cell
populations, with an annual incidence of 3-5 cases per mil-
lion individuals [1–3]. It most often affects children, adoles-
cents, and young adults, with aberrant bone growth areas
[4]. The difficulty in biology research is in relation to the
complexity of the osteosarcoma genome as well as remark-
able biological discrepancy among osteosarcoma subtypes
[5]. Hence, an in-depth understanding of osteosarcoma biol-
ogy highlights the heterogeneity as well as uncovers the
molecular abnormality that defines patient subpopulations.
The standard treatment of osteosarcoma comprises surgical

resection and chemotherapy [6]. Patients are usually resis-
tant to conventional chemotherapy; meanwhile, high-dose
chemotherapeutic agents cause severe side effects [7]. Hence,
to improve the survival duration of osteosarcoma patients
has been proven to be challenging.

Epithelial-mesenchymal transition (EMT) is a key pro-
cess by which epithelial cells acquire mesenchymal charac-
teristics [8]. Growing evidences demonstrate that EMT
exerts a crucial role in stemness [9], metabolic reprogram-
ming [10], immune evasion [11], and therapeutic resistance
[12] for cancer cells. Osteosarcoma cells that have experi-
enced EMT process will lose the cellular polarity and acquire
aggressive and metastatic features. This process has been
regarded as a crucial event for osteosarcoma metastases
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[13]. Previously, Yiqi et al. proposed an EMT-relevant model
of osteosarcoma as a prognostic indicator through integrated
multicohorts [14], indicative of the crucial prognostic impli-
cation of EMT during osteosarcoma progression. Limited
evidences demonstrate that chemotherapy (cisplatin, etc.)
resistance contributes to EMT activation in osteosarcoma
cells [15, 16]. Recent research has presented that EMT genes
are remarkably linked to immunity in osteosarcoma [17].
Tumor-associated macrophages trigger EMT in osteosar-
coma through activation of COX-2/STAT3 signaling [18].
Thus, extensive research of EMT on clinical outcomes and
therapeutic responses of osteosarcoma is urgently required.
In our research, integrated genomic analyses were conducted
for characterizing distinct EMT-relevant subtypes with
prognostic and prediction implications in osteosarcoma.

2. Materials and Methods

2.1. Acquisition of Gene Expression Profiling. This study
acquired the TARGET data matrix (https://ocg.cancer.gov/
programs/target/data-matrix) comprising gene expression
data and clinical data of 84 osteosarcoma patients, as the dis-
covery cohort. Genome-wide gene expression profiling and
prognostic information of 53 osteosarcoma patients were
curated from the GSE21257 cohort in the Gene Expression
Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/
gds/) [19], as the testing cohort. This cohort was on the basis
of the platform of GPL10295 Illumina human-6 v2.0 expres-
sion beadchip. The gene expression series matrix files were
directly retrieved, and the probe IDs were mapped to the
gene symbols in accordance with the matched annotation
files. Thereafter, expression values of multiple probes map-
ping to the same gene were averaged while probes mapping
to multiple genes were eliminated. The gene set of EMT was
curated from the Molecular Signatures Database (MSigDB),
which was listed in Supplementary Table 1 [20].

2.2. Identification of Molecular Subtypes. Univariate analyses
were presented for assessment of the association of EMT
genes with osteosarcoma prognosis. Genes with P < 0:05
were determined for the subsequent analyses. K-means-
based consensus clustering was carried out utilizing the
ConsensusClusterPlus package on the basis of the tran-
scriptome files of prognostic EMT genes [21]. Cumulative
distribution function (CDF), delta area, and consensus
matrix diagrams were conducted in accordance with default
parameters. The number of clusters was determined in
accordance with the following criteria: (i) the consistency
within the clusters was relatively high; (ii) the coefficients
of variation were relatively low; (iii) the area under the
CDF curve was not remarkably elevated. The area under
the CDF curves was utilized for defining the clustering num-
ber. Principal component analyses (PCA) were conducted
for verifying the accuracy of this classification.

2.3. Gene Set Variation Analyses (GSVA). Fifty hallmark
pathways were acquired from the MSigDB, and the activity
of above pathways was estimated with GSVA package in
osteosarcoma specimens [22]. Limma package was adopted

to compare the discrepancy in activity of hallmark pathways
between subtypes [23].

2.4. Analyses of Immunological Features. The infiltration of
tumor-infiltrating immune cells was estimated across osteo-
sarcoma tissues utilizing the single-sample gene set enrich-
ment analyses (ssGSEA) [24] and TIMER2 database [25].
The RNA expression of immune checkpoint molecules and
HLA molecules was determined across osteosarcoma speci-
mens. Cancer immunity cycle comprises release of cancer cell
antigens (step 1), cancer antigen presentation (step 2), priming
and activation (step 3), trafficking of immune cells to tumors
(step 4), infiltration of immune cells into tumors (step 5), rec-
ognition of cancer cells by T cells (step 6), and killing of cancer
cells (step 7) [26]. The activity of all steps was determined with
ssGSEA approach in accordance with the transcriptome pro-
filing [27]. The gene set of each step within the cancer immu-
nity cycle was listed in Supplementary Table 2.

2.5. Estimation of Drug Sensitivity. Through adopting the
pRRophetic algorithm [28], the half-maximal inhibitory
concentration (IC50) values of cisplatin and gemcitabine
were determined in osteosarcoma in accordance with the
Genomics of Drug Sensitivity in Cancer (GDSC; http://
www.cancerrxgene.org/) [29].

2.6. Weighted Gene Coexpression Network Analyses
(WGNCA). The data matrix of mRNA expression profiling
in the TARGET cohort was analyzed utilizing the WGCNA
package [30]. The first 25% genes with the largest variance
were determined. For selecting a standard scale-free net-
work, the sample hierarchical clustering approach was uti-
lized for detecting and removing outlier specimens,
followed by selection of the appropriate soft thresholding
analyses. Thereafter, the adjacency matrix and topological
overlap matrix (TOM) were established as well as the
matched dissimilarity (1-TOM) was determined. Dynamic
tree cutting methods were utilized for completing the gene
tree and module clustering. Thereafter, the module charac-
teristic genes were clustered as well as the highly similar
modules were merged. The dissimilarity of the module
eigengenes (ME) was determined with the moduleEigen-
genes function. The interactions of ME with EMT subtypes
were analyzed with Pearson’s correlation. Module member-
ship (MM) represents the relevance of the expression profile
to ME, while gene significance (GS) represents the correla-
tion between the expression profiles and clinical traits. In
this study, MM was calculated with Pearson’s correlation
of the expression profiling and ME. Meanwhile, GS was
measured for evaluating the genes with EMT subtypes.
Thereafter, the correlation between MM and gene signature
was evaluated, and EMT-derived genes were determined.

2.7. Analysis of Hub Genes. Protein–protein interactions
(PPIs) of genes in the lightcyan module were assessed
through the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) online tool (http://string-db.org/
) [31]. Hub genes in this PPI network were determined uti-
lizing the Molecular Complex Detection (MCODE), a plug-
in of Cytoscape software [32].
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2.8. Functional Enrichment Analyses. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were presented utilizing the cluster-
Profiler package [33]. The parameter utilized in this package
was default as well as the threshold for identifying theGO func-
tions and KEGG pathways was set as P value < 0.05.

2.9. Gene Set Enrichment Analyses (GSEA). For uncovering
the difference in functional phenotypes between high- and
low-risk subpopulations, GSEA was carried out. The
“c5.all.v7.0.symbols.gmt” was utilized as a reference gene
set. GSEA was implemented utilizing GSEA software. A
nominal P < 0:05 was regarded as a significant enrichment.

2.10. Statistical Analyses. Statistical analyses were imple-
mented utilizing R software (version 4.0.2). Kaplan-Meier sur-
vival curves were drawn among osteosarcoma cases, and
survival difference was determined with log-rank test. Receiver
operator characteristic (ROC) curves were presented with
timeROC package. Comparison between two subgroups was
conducted with student’s t or Wilcoxon test. Two-sided P
value < 0.05 was indicative of statistical significance.

3. Results

3.1. Characterization of Two EMT Molecular Subtypes in
Osteosarcoma. Figure 1 illustrates the flowchart of this study.

We curated 200 EMT genes from the MSigDB and analyzed
their prognostic implication in osteosarcoma through uni-
variate cox regression analyses. As a result, 40 EMT genes
were remarkably linked to osteosarcoma prognosis
(Figure 2(a); Table 1), in which 28 served as protective fac-
tors of osteosarcoma prognosis while the others served as
risk factors. The consensus clustering of prognostic EMT
genes was conducted to determine distinct EMT subtypes
for osteosarcoma. For two categories, the area under the
CDF curves began to stabilize (Figures 2(b) and 2(c)). Mean-
while, the consensus matrix was conducted for identifying
the optimal number of subtypes. In Figure 2(d), the consen-
sus matrix displayed a well-defined block structure when k
= 2. Overall, two EMT molecular subtypes were conducted,
namely, subtypes A and B. PCA results also fit into two clus-
ters (Figure 2(e)). Survival analyses showed that subtype A
presented poorer prognosis in comparison to subtype B
(Figure 2(f)), indicative of the discrepancy in survival out-
comes between subtypes.

3.2. Immunological Features and Drug Sensitivity of Two
EMT Molecular Subtypes. The activity of the 50 hallmark
pathways was estimated across osteosarcoma tissues utiliz-
ing the GSVA algorithm. We noted that the remarkable acti-
vation of stromal pathways (EMT, Wnt β-catenin signaling,
etc.), immune pathways (IL6 JAK STAT3 signaling, etc.),
and metabolism pathways (bile acid metabolism, heme
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Figure 1: The flowchart of this study.
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Figure 2: Continued.
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metabolism, xenobiotic metabolism, etc.) in EMT subtype B
than subtype A (Figure 3(a) and Supplementary Table 3). In
Figure 3(b), ssGSEA approach showed that EMT subtype B
presented remarkably enhanced immune cell infiltrations
containing central memory CD4 and CD8 T cells, effector
memory CD4 T cells, memory B cells, regulatory T cells,
type 1 and 2 helper cells, CD55bright natural killer cells,
macrophages, MDSCs, natural killer cells, and natural
killer T cells than subtype A. Meanwhile, TIMER2
approach showed the lower infiltrations of B cells and the
higher infiltration of CD4 T cells compared with subtype A
(Supplementary Figure 1). Additionally, we noted that
immune checkpoint molecules ADORA2A, CD44,
PDCD1LG2, TNFRSF14, and TNFRSF8 were prominently
activated in subtype B than A (Figure 3(c)). Nevertheless,
we did not investigate the significant discrepancy in HLA
molecule expression between subtypes (Figure 3(d)). The
activity of cancer immunity cycle was also estimated in
each osteosarcoma specimen. Compared with subtype A,
release of cancer cell antigen, B cell/monocyte/Th17 cell
recruiting, recognition of tumor cells through T cells, and
killer of tumor cells presented remarkably enhanced
activity in subtype B (Figure 3(e)). Overall, EMT subtype B
possessed the features of immune activation. Also, subtype
B displayed increased sensitivity to cisplatin while subtype
A was more sensitive to gemcitabine (Figure 3(f)).

3.3. Establishment of EMT Subtype-Relevant Coexpression
Modules. Considering the sensitivity of WGCNA to batch
effects, this study firstly preprocessed the data of osteosar-
coma individuals in EMT molecular subtypes A and B from

the TARGET cohort. The first 25% genes with the largest
variance were determined for subsequent analyses. Thereaf-
ter, the hclust function was adopted for confirming the batch
effect removal as well as investigating whether there was any
outlier. In Figure 4(a), no outlier sample was found. Because
of the premise of WGCNA approach required to hypothe-
size that the network met the scale-free criteria, this study
further screened the optimal soft thresholding value for
making a coexpression network was more subject to a
scale-free network. Through calculation of the scale-free
topology fitting index, R2 value was up to 0.85
(Figure 4(b)), which validated the feasibility of WGCNA. A
hierarchical clustering tree was retrieved through adopting
hierarchical clustering analyses. Thereafter, in accordance
with the dynamic tree cut approach, 29 distinct coexpression
modules were assigned (Figure 4(c)). Figure 4(d) demon-
strated that the lightcyan module presented the strongest
correlation to EMT molecular subtypes. The genes in this
module deserved more exploration.

3.4. Exploration of EMT-Derived Genes and Their Relevant
Biological Implication. Our further analyses uncovered that
the genes in the lightcyan module were remarkably linked
to two EMT molecular subtypes (Figures 5(a) and 5(b)),
indicative of the genes in the lightcyan module as EMT-
derived genes. Through MCODE analyses, we determined
86 EMT-derived hub genes, as depicted in Figure 5(c). Their
relevant biological implication was explored in-depth. In
Figure 5(d), the EMT-derived hub genes were remarkably
linked to endoplasmic reticulum. Additionally, they were
significantly enriched in ribosome, oxidative
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Figure 2: Characterization of two EMT molecular subtypes across osteosarcoma patients in the TARGET cohort. (a) Forest plots depict the
univariate cox regression analyses results of EMT genes that were significantly linked to osteosarcoma prognosis with P < 0:05. Red indicates
risk factor while blue represents protective factor. (b) CDF curves when k = 2 to 9. (c) The relative variations of the area under the CDF
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accordance with the expression profiling of prognostic EMT genes. (f) Kaplan-Meier survival analyses for patients in two clusters.
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phosphorylation, chemical carcinogenesis-reactive oxygen
species, thermogenesis, and HIF-1 signaling pathway
(Figure 5(e)).

3.5. Development of an EMT-Derived Prognostic Model for
Osteosarcoma. Our univariate cox regression analyses were
indicative that 33 EMT-derived genes displayed significant
interactions with osteosarcoma prognosis (Table 2). Above
genes were input the multivariate cox regression model. In

accordance with the expression and coefficient of candidate
genes (Table 3), we developed an EMT-derived prognostic
model for osteosarcoma, comprising RPS9, RPS23, EIF4A1,
RPL12, RPL36, RPL37A, RPL34, EEF1B2, RPS8, RPS28,
RPL10, RPS24, RPL35A, RPL11, RPL21, RPS27A, RPS12,
and RPL13A. We noted the remarkable discrepancy in their
expressions in high- than low-risk subpopulations
(Figure 6(a)). Figure 6(b) displayed the EMT score distribu-
tion across osteosarcoma patients. As EMT score elevated,

Table 1: Prognostic EMT genes of osteosarcoma in the TARGET cohort.

EMT genes HR HR.95L HR.95H P value

ACTA2 0.60007 0.478306 0.752831 1.02E-05

CADM1 1.563352 1.03282 2.366404 0.034631

CALD1 0.687834 0.503844 0.939013 0.018464

CD59 0.578201 0.340429 0.982043 0.042661

CDH11 0.646305 0.426496 0.979399 0.039579

COL5A2 1.796028 1.21462 2.655742 0.003344

COL8A2 0.830052 0.695262 0.990972 0.039373

CXCL12 0.701203 0.527838 0.931508 0.014302

DAB2 0.552834 0.356892 0.856351 0.007943

DCN 0.687972 0.532825 0.888294 0.004125

DKK1 1.217418 1.017358 1.456819 0.031726

EDIL3 0.533263 0.387603 0.733661 0.000112

FAP 0.751864 0.601025 0.940557 0.012547

FAS 0.698216 0.49836 0.978218 0.0368

FBLN1 0.825041 0.688457 0.988721 0.037269

FUCA1 0.538319 0.351718 0.82392 0.004346

GADD45B 1.585384 1.089054 2.307914 0.016163

GLIPR1 0.596184 0.399629 0.889413 0.011271

GPX7 2.237357 1.229706 4.0707 0.008362

ID2 1.676029 1.016465 2.763573 0.042973

ITGB5 0.656243 0.465517 0.925111 0.016205

LGALS1 0.628315 0.437404 0.902552 0.01191

LOX 1.778616 1.212237 2.609618 0.003241

LOXL1 0.738146 0.595854 0.914418 0.005456

MAGEE1 0.505129 0.30388 0.839659 0.008439

MYL9 0.654679 0.468967 0.913933 0.012821

NID2 0.765564 0.595752 0.983779 0.036818

PCOLCE2 1.351295 1.050002 1.739042 0.019333

PMEPA1 0.618542 0.439716 0.870092 0.005794

POSTN 0.806768 0.651984 0.998298 0.048195

SERPINE2 1.647594 1.220342 2.224429 0.001114

SERPINH1 2.061795 1.199287 3.544606 0.008863

TAGLN 0.641922 0.464091 0.887895 0.007398

TNFRSF11B 1.470617 1.142542 1.892898 0.002748

TNFRSF12A 0.662569 0.470071 0.933897 0.018749

TPM1 0.505179 0.324643 0.786111 0.002473

TPM4 0.597236 0.374292 0.952974 0.030618

VCAM1 0.71391 0.55234 0.922742 0.010049

VEGFA 1.440634 1.123444 1.847379 0.00401

WNT5A 0.64968 0.452996 0.93176 0.019071
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dead cases were gradually increased (Figure 6(c)). Survival
analyses demonstrated that high-risk cases were indicative
of more unfavorable clinical outcomes in comparison to
low-risk cases (Figure 6(d)). ROC curves were presented to

assess the predictive performance of EMT score in osteosar-
coma prognosis. In Figure 6(e), area under the curves
(AUCs) at one-, three-, and five-year survival were sepa-
rately 0.723, 0.858, and 0.860, proving that EMT score was
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Figure 3: Immunological features and drug sensitivity of two EMT molecular subtypes. (a) Heat map depicts the activity of the 50 hallmark
pathways in EMT subtypes A and B. (b) Boxplot shows the infiltrations of tumor-infiltrating immune populations in two subtypes. (c)
Boxplot depicts the RNA expression of known immune checkpoint molecules in two subtypes. (d) Comparison of the RNA expression of
HLA molecules in two subtypes. (e) Comparing the activities of all steps within cancer immunity cycle between subtypes. (f) Boxplot
displays the sensitivity to cisplatin and gemcitabine in two subtypes. ∗P value < 0:05; ∗∗P value < 0:01; and ∗∗∗ P value < 0:001.
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Figure 4: Establishment of EMT subtype-relevant coexpression modules in the TARGET cohort. (a) Hierarchical clustering dendrogram of
osteosarcoma individuals as well as the matched EMT molecular subtypes. (b) Analyses of network topology and average network
connectivity under diverse soft-threshold powers (β). The red line is indicative of a correlation coefficient of 0.85. (c) Clustering
dendrogram with dissimilarity in accordance with topological overlapping, along with designed module colors. (d) The interaction
network between modules and EMT molecular subtypes. Each column is indicative of EMT molecular subtype while each row is
indicative of a coexpression module. The number in the rectangle displays the correlation coefficient and P value.
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capable of prediction of osteosarcoma prognosis. Compared
with previously published two EMT models from Yiqi et al.
[14] and Peng et al. [17], our EMT-derived prognostic
model had higher C-index (0.828), indicating the prediction
superiority of this model (Figure 6(f)).

3.6. External Verification of the Prognostic Value of EMT
Score. The prognostic value of EMT score was further veri-
fied in the GSE21257 cohort. Figure 7(a) depicted the
expression patterns of each gene from EMT score across
osteosarcoma specimens. We also visualized the distribution
of EMT score in the GSE21257 cohort (Figure 7(b)). In
accordance with the median value of EMT score, we strati-
fied osteosarcoma individuals into high- as well as low-risk
subpopulations. Additionally, we noted that there were rela-
tively increased dead cases in high-risk subgroup
(Figure 7(c)). As expected, high EMT score was remarkably

linked to more unfavorable survival outcomes (Figure 7(d)).
The AUC at five-year survival was 0.818, proving the excel-
lent predictive performance of EMT score (Figure 7(e)).

3.7. Genes in EMT Score as Prognostic Indicators of
Osteosarcoma. Further analyses were conducted for asses-
sing the survival implication of each gene in EMT score in
the TARGET cohort. As a result, high expression of EEF1B2,
EIF4A1, RPL10, RPL11, RPL12, RPL13A, RPL21, RPL34,
RPL35A, RPL36, RPL37A, RPS8, RPS9, RPS12, RPS23,
RPS24, RPS27A, and RPS28 was prominently linked to more
undesirable survival outcomes in comparison to their low
expression (Figures 8(a)–8(r)).

3.8. EMT Score Is Independent of Clinicopathological
Indicators for Osteosarcoma Prognosis. In the TARGET
cohort, our univariate cox regression analyses displayed that
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Figure 5: Exploration of EMT-derived genes and their relevant biological implication. (a) Scatter plots depict the interactions of module
membership and gene significance for EMT subtype A. (b) Scatter plots display the interactions of module membership and gene
significance for EMT subtype B. (c) The PPI network uncovers the EMT-derived hub genes through MCODE analyses. (d, e) GO and
KEGG pathway enrichment analyses of EMT-derived hub genes.
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this EMT score was prominently linked to osteosarcoma
survival outcomes (Figure 9(a)). Further multivariate analy-
ses demonstrated that the EMT score was independently
predictive of patients’ prognosis (Figure 9(b)). For uncover-
ing the underlying biological phenotypes between subpopu-
lations, this research carried out GSEA. As a result, steroid
biosynthesis was remarkably activated in high-risk subpopu-
lation (Figure 9(c)), and hypertrophic cardiomyopathy dis-
played prominent activation in low-risk subpopulation
(Figure 9(d)).

4. Discussion

Osteosarcoma presents diverse clinical courses and biologi-
cal heterogeneity [34]. Hence, to reliably predict prognosis
and therapeutic responses, it is critical for comprehensively

investigating the molecular mechanisms. Our study deter-
mined forty prognostic EMT genes in osteosarcoma.
Through consensus clustering approach, two EMT molecu-
lar subtypes were conducted. Especially, EMT subtype A
presented poorer prognosis in comparison to subtype B,
indicating that there was a remarkable discrepancy in sur-
vival outcomes between subtypes. Recently, immunotherapy
is a promising treatment option against osteosarcoma, and it
is crucial to improve the comprehending about the immune
responses [3]. We evaluated the immunological features
from multiple perspectives. GSVA demonstrated the activa-
tion of immune pathways (like IL6 JAK STAT3 signaling) in
subtype B. Our ssGSEA revealed that subtype B displayed
remarkably enhanced immune cell infiltrations containing
central memory CD4 and CD8 T cells, effector memory
CD4 T cells, memory B cells, regulatory T cells, type 1 and

Table 2: Prognostic EMT-derived genes in the TARGET cohort.

Genes Hazard ratio 95% lower confidence interval 95% upper confidence interval P value

RPS9 2.458541 1.15383 5.23857 0.01977

NACA 2.062809 1.072155 3.968812 0.030111

RPL31 1.680277 1.0025 2.816292 0.048903

RPS23 1.582119 1.016551 2.462348 0.042083

EIF4A1 1.937961 1.08181 3.471674 0.026127

RPL12 1.825521 1.014796 3.283939 0.044538

RPL36 1.802713 1.14667 2.834099 0.010684

RPL37A 1.925317 1.244403 2.978814 0.003262

RPL30 1.728499 1.013395 2.948215 0.044557

EEF1D 2.404885 1.289322 4.48567 0.005799

RPL34 1.591933 1.008351 2.513262 0.045971

EEF1B2 1.869724 1.109806 3.149981 0.018701

RPS19 2.010787 1.032395 3.916394 0.040005

RPS8 2.668652 1.469129 4.84757 0.001268

RPS28 1.782071 1.161261 2.734766 0.008189

RPL10 1.854512 1.061042 3.241354 0.030163

RPL17 1.641353 1.015359 2.653289 0.043159

RPS24 1.724982 1.073501 2.771832 0.024256

RPL35A 1.994541 1.117985 3.558361 0.01941

RPS29 1.749557 1.044543 2.930418 0.033539

RPS27 2.231872 1.311656 3.797681 0.003074

RPS6 2.021336 1.349611 3.02739 0.000639

RPL11 1.708468 1.002166 2.912551 0.049078

RPL10A 2.063278 1.076517 3.954529 0.029103

RPL21 2.199899 1.223921 3.95414 0.008404

RPS3 2.092433 1.247417 3.509873 0.005147

RPS27A 1.913786 1.113551 3.289098 0.018812

RPS7 1.752451 1.118447 2.745847 0.014344

RPS12 1.809168 1.044998 3.132147 0.034248

PABPC1 1.618195 1.005308 2.604728 0.047506

RPL3 2.218272 1.119994 4.393531 0.022315

RPL7 1.777043 1.066145 2.961965 0.027407

RPL13A 2.1936 1.139154 4.224085 0.01879
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2 helper cells, CD55bright natural killer cells, macrophages,
MDSCs, natural killer cells, and natural killer T cells. In
addition, subtype B had the features of increased expression
of immune checkpoint molecules ADORA2A, CD44,
PDCD1LG2, TNFRSF14, and TNFRSF8. Among steps
within cancer immunity cycle, release of cancer cell antigen,
B cell/monocyte/Th17 cell recruiting, recognition of tumor
cells through T cells, and killer of tumor cells presented
remarkably enhanced activity in subtype B. Hence, EMT
subtype B was characterized by immune activation. Drug
resistance severely hinders the improvement of survival rate
of osteosarcoma patients [35]. Cisplatin, an alkylating drug,
can form irreversible covalent bonds with DNA, which
causes DNA strands to cross-link and break and missense
mutation [36]. It is widely applied for osteosarcoma chemo-
therapy as well as cisplatin resistance is frequent across oste-
osarcoma individuals [37]. Our data demonstrated that
EMT subtype B presented enhanced sensitivity to cisplatin.
Gemcitabine represents the second cytidine analog devel-
oped following cytosine arabinoside [38]. Intriguingly, sub-
type A was more sensitive to gemcitabine.

Through WGCNA approach, we constructed 29 EMT
subtype-relevant coexpression modules in the TARGET
cohort. Especially, lightcyan module presented the strongest
interactions with EMT molecular subtypes. Further,
MCODE analyses determined 86 EMT-derived hub genes.
Functional enrichment analyses unraveled the remarkable
interactions of these EMT-derived hub genes with endoplas-
mic reticulum (ER), ribosome, oxidative phosphorylation,
chemical carcinogenesis-reactive oxygen species, thermo-
genesis, and HIF-1 signaling pathway. For instance, the ER
represents the central intracellular organelle of diverse cellu-
lar functions and endoplasmic reticulum stress response

participates in osteosarcoma pathogenesis [39]. SENP1/
HIF-1alpha regulates hypoxia-mediated EMT in osteosar-
coma cells [40].

This study conducted an EMT-derived prognostic model
for osteosarcoma in the TARGET cohort, comprising
EEF1B2, EIF4A1, RPL10, RPL11, RPL12, RPL13A, RPL21,
RPL34, RPL35A, RPL36, RPL37A, RPS8, RPS9, RPS12,
RPS23, RPS24, RPS27A, and RPS28. ROC curves proved
that the EMT score was capable of accurately predicting
osteosarcoma individuals’ clinical outcomes. Additionally,
external verification proved the feasibility of this model in
the GSE21257 cohort. Each gene in the EMT score was
linked to undesirable prognosis of osteosarcoma individuals.
Previously, mTOR inhibitor blunts the p53 response to
nucleolar stress through modulating RPL11 and MDM2
expressions [41]. RPL34 upregulation is indicative of unde-
sirable clinical outcomes in osteosarcoma as well as silencing
RPL34 weakens osteosarcoma proliferation [42]. Suppress-
ing RPS9 blunts osteosarcoma cell growth via inactivating
MAPK signaling [43]. Nevertheless, the functions of most
genes in osteosarcoma progression are lack of experimental
evidences. Multivariate analyses suggested the independency
of the EMT score in prediction of osteosarcoma outcomes.
Further, GSEA results presented that steroid biosynthesis
was remarkably activated in high-risk osteosarcoma individ-
uals, indicating that steroid biosynthesis might affect osteo-
sarcoma progression.

A few limitations of our study should be taken into con-
sideration. First, further analyses are required for elucidating
the molecular mechanisms underlying the impact of genes in
the EMT-derived model on osteosarcoma through in-depth
experiments. Second, more osteosarcoma patients can
produce more convincing and accurate findings. Hence,

Table 3: Multivariate cox regression models of prognostic EMT-derived genes in the TARGET cohort.

Genes Coefficient Hazard ratio 95% lower confidence interval 95% upper confidence interval P value

RPS9 4.023231 55.88136 4.964366 629.0281 0.001125

RPS23 -2.22729 0.107821 0.029177 0.398444 0.000838

EIF4A1 1.276326 3.58345 1.412445 9.091407 0.007211

RPL12 -1.6577 0.190577 0.047067 0.771666 0.020167

RPL36 1.628909 5.098309 1.267648 20.50471 0.021793

RPL37A 2.963511 19.36584 3.250895 115.3638 0.001135

RPL34 -1.15058 0.316453 0.088979 1.125463 0.075506

EEF1B2 -1.61765 0.198365 0.052239 0.753247 0.017492

RPS8 1.872409 6.503945 1.045504 40.4602 0.044678

RPS28 -0.96574 0.380701 0.125372 1.156025 0.088358

RPL10 1.556604 4.742688 1.641072 13.70634 0.004043

RPS24 1.05129 2.861339 0.805129 10.16888 0.104176

RPL35A 1.484525 4.41287 1.237412 15.73721 0.022118

RPL11 -2.61106 0.073457 0.007738 0.69735 0.022973

RPL21 1.896643 6.663489 1.460904 30.39358 0.014305

RPS27A 1.278613 3.591655 1.047995 12.3092 0.041895

RPS12 -0.85901 0.423581 0.148122 1.211305 0.109073

RPL13A -3.5775 0.027945 0.002652 0.294432 0.002905
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Figure 6: Development of EMT score for osteosarcoma prognosis in the TARGET cohort. (a) Heat map depicts the expression of each gene
from EMT score in each osteosarcoma specimen. Red is indicative of upregulation; and blue is indicative of downregulation. (b) The
distribution of risk score among osteosarcoma individuals. Vertical dotted line is indicative of the median value of EMT score. (c) The
distribution of survival status of high- and low-risk subgroups. (d) Kaplan-Meier survival analyses for two subgroups. (e) ROC curves at
one-, three-, and five-year survival in accordance with EMT score. (f) C-index of our EMT model and previously published two EMT
models from Zhang et al. and Peng et al.
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Figure 7: External verification of the prognostic value of EMT score in the GSE21257 cohort. (a) Heat map depicts the expression of each
gene from EMT score in each osteosarcoma specimen. Red is indicative of upregulation while blue is indicative of downregulation. (b) The
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Figure 8: Association of genes in EMT score with osteosarcoma prognosis in the TARGET cohort. (a)–(r) Kaplan-Meier survival analyses
for high and low expression subgroups of (a) EEF1B2, (b) EIF4A1, (c) RPL10, (d) RPL11, (e) RPL12, (f) RPL13A, (g) RPL21, (h) RPL34, (i)
RPL35A, (j) RPL36, (k) RPL37A, (l) RPS8, (m) RPS9, (n) RPS12, (o) RPS23, (p) RPS24, (q) RPS27A, and (r) RPS28 in the TARGET cohort.
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Figure 9: Evaluation of the independency of EMT score in osteosarcoma prognosis and its relevant signaling pathways. (a, b) Uni- and
multivariate cox regression models for determining the independency of EMT score in estimating osteosarcoma survival outcomes in the
TARGET cohort. (c, d) Signaling pathways that were remarkably linked to EMT score via GSEA.
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abundant specimens will be included for improving our con-
clusions as well as more reliably illustrating the underlying
mechanisms by which genes in the EMT-derived model
affect osteosarcoma progression.

5. Conclusion

Collectively, this study adopted consensus clustering analy-
ses for determining two EMT molecular subtypes in the
TARGET cohort as well as uncovered the discrepancy in
survival outcomes, immunological features, and drug sensi-
tivity between subtypes. Through system biology-based
WGCNA approach, we determined EMT-derived genes
and conducted an EMT score for predicting osteosarcoma
prognosis. To our knowledge, we firstly characterized the
EMT-relevant subtypes for osteosarcoma. Additionally, the
EMT score we proposed was externally verified in the exter-
nal cohort. Overall, our findings might contribute to person-
alized treatment and be of much clinical implication for
osteosarcoma.
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