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More and more studies have shown that long noncoding RNAs (lncRNAs) play essential roles in malignant tumors. The lncRNA
MEG3 serves as a crucial molecule in breast cancer development, but the specific molecular mechanism needs to be further
explored. We previously reported that Schlafen family member 5 (SLFN5) inhibits breast cancer malignant development by
regulating epithelial-mesenchymal transition (EMT), invasion, and proliferation/apoptosis. Herein, we demonstrated that
MEG3 was downregulated in pan-cancers and correlated with SLFN5 expression positively in breast cancer by bioinformatics
analysis of TCGA and UCSC Xena data. Intervention with MEG3 positively affected SLFN5 expression in breast cancer cells.
MEG3 repressed EMT and migration/invasion, similar to our previously reported functions of SLFN5 in breast cancer.
Through bioinformatics analysis of starBase and LncBase data, 12 miRNAs were found to regulate both SLFN5 and MEG3, in
which miR-146b-5p was confirmed to be regulated by MEG3 using MEG3 siRNA and overexpression method. MiR-146b-5p
could bind to both SLFN5 3′UTR and MEG3, and inhibit their expression in a competing endogenous RNA mechanism,
assayed by luciferase reporter and RNA pull down methods. Therefore, we conclude that MEG3 positively modulates SLFN5
expression by sponging miR-146b-5p and inhibits breast cancer development.

1. Introduction

Although breast cancer (BRCA-)-related mortality has been
declining over the past 20 years, BRCA has the highest
morbidity and mortality in woman cancers worldwide to
date [1, 2]. Treatment failure is mainly due to the extensive
heterogeneity and distant metastases of BRCA [3]. For cancer
cell metastasis, epithelial-mesenchymal transition (EMT) is
the initial step, through which cancer cells acquire mesenchy-
mal morphologies, migratory and invasive capabilities, and
can metastasize to other distal organs [4–7]. In BRCA, EMT
triggers primitive alterations in the tumor microenvironment,

which increases the number of tumor cells and their migra-
tion, invasion potential, and chemoresistance [8, 9].

Studies show that the expression or dysfunction of long
noncoding RNAs (lncRNAs) is correlated to many serious
diseases, such as degenerative neurological diseases, cardio-
vascular diseases, and cancer [10–13]. Various lncRNAs play
roles in regulating EMT and tumor progression in a variety
of tumors, but the mechanisms are different [14]. For exam-
ple, the lncRNA SNHG7 promotes BRCA tumorigenesis and
progression through the Notch-1 signaling pathway and
EMT initiation [15]. The lncRNA PANDAR promotes the
EMT pathway by upregulating MMPs (2 and 9) levels in
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BRCA [16]. Maternally expressed gene 3 (MEG3) affects cell
growth and development in various tissues [17, 18]. MEG3
levels are downregulated in a variety of cancers [19–21]. In
BRCA, MEG3 inhibits BRCA growth by upregulating endo-
plasmic reticulum stress and activating p53 [22] and sup-
presses EMT of BRCA cells by targeting E-cadherin [23].
However, the mechanism through which MEG3 regulates
BRCA progression remains to be explored.

Schlafen-5 (SLFN5), a member of the Schlafen family, is
abnormally expressed and involved in the progression of
melanoma, renal cell carcinoma, gastric cancer, and glioblas-
toma [24–27]. BRCA big data from the Cancer Genome
Atlas (TCGA) shows that SLFN5 transcript level signifi-
cantly decreases in BRCA. We previously found SLFN5
inhibited MT1-MMP expression associated invasion [28],
and retained ZEB1 transcriptional expression associated
EMT and progression in BRCA cells [29, 30], so SLFN5
may play an inhibitory role in BRCA progression. However,
the upstream regulatory mechanism of SLFN5 is rarely
explored, and whether SLFN5 is regulated by noncoding
RNA, such as lncRNAs and microRNA, in BRCA is unclear.

Herein, by means of bioinformatics analysis, we found
that MEG3 and SLFN5 present the same expression pattern
in BRCA and bind with the common mircoRNA, laying a
foundation for the competitive endogenous RNA mecha-
nism. Our hypothesis was proved by a series of biological
experiments. MEG3 intervention can affect the SLFN5 level
in BRCA cells and regulate the EMT process. Importantly,
miR-146b-5p can bind both MEG3 and SLFN5 and regulate
their expression via a competitive mechanism, suggesting a
novel regulation mechanism for SLFN5 in BRCA.

2. Materials and Methods

2.1. Bioinformatics Assay. All original data were downloaded
from TCGA (https://cancergenome.nih.gov/) and UCSC
Xena (http://xena.ucsc.edu/) websites and integrated using
R 4.1.0 to verify the results presented in the website for the
database. The clinical characteristics associated with MEG3
expression in BRCA patients are listed in Table 1. We
input MEG3 into the “Quick PanCAN Analysis” module of
the UCSCXenaShiny and obtained the differences of
MEG3 in tumors compared with adjacent normal tissues.
Using the “Expression Analysis-Box Plot” module of GEPI
A2 Web server (http://gepia2.cancer-pku.cn/#analysis), the
box plot of BRCA tumor and normal tissue expression
difference was obtained. The relationship between SLFN5
and MEG3 in BRCA was obtained by calculating the
Pearson correlation coefficient. ESTIMATE, an algorithm
designed for predicting TME tumor purity, provided both
immune and stroma scores for this study.

2.2. Cell Culture and Transfection. Four types of human
BRCA cells (MDA-MB-231, BT-549, MCF-7, and T-47D)
and 293T cells were all from ATCC and cultured in Dulbec-
co’s modified Eagle’s medium (Gibco: C11885500BT, Aus-
tralia) supplemented with 10% fetal bovine serum (Gibco:
10099-141, Australia). SiRNAs targeting MEG3 and SLFN5,
miR-146b-5p mimic and inhibitor were synthesized (Gene-

Pharma, China), sequences as shown in Table 2.
Transfection experiments were performed using
Lipofectamine™ 2000 (Invitrogen, USA) when cell
confluence reaches 30% in six-well plates.

2.3. Real-Time PCR. 2× 106 cells were lysed with 1ml TRIzol
reagent (Invitrogen) for total RNA isolation. RNA was
reversely transcribed into cDNA using the PrimeScript RT
reagent kit (TaKaRa, Japan), and expression difference of
RNA was quantitatively analyzed by real-time PCR using a
SYBR PremixEx Taq kit (Takara, Japan). Primer sequences
used are shown in Table 3. Relative fold change of RNA
was calculated using formula 2−ΔΔCt with β-actin or U6 as
loading control.

2.4. Western Blotting. Cells were lysed using RIPA lysis
buffer (Beyotime, China), and proteins were extracted. Pro-
teins were isolated by SDS-PAGE and transferred to PVDF
membranes (Beyotime, China). After blocking with 5% non-
fat milk, PVDF membranes were incubated with SLFN5 rab-
bit pAb (Sigma-Aldrich: HPA017760), E-cadherin rabbit
mAb (CST: 3195), vimentin rabbit mAb (CST: 5741),
ZEB1 rabbit mAb (CST: 3396), and β-actin rabbit mAb
(CST: 4970S) at 4°C for above 12 hours. After incubation
with HRP-conjugated anti-rabbit antibody at room temper-
ature for 1 h, the membranes were then incubated with
enhanced chemiluminescent (ECL, Pierce, USA) for protein
band detection.

2.5. RNA Pull down Assay. MEG3 sequences were amplified
and ligated into pcDNA3.1 vector, and recombinant vectors
were transformed into JM109 competent cell. MEG3 plas-
mids and empty plasmids (NC) were purified, and plasmids
were linearized with the restriction endonuclease SmaI. Lin-
earized plasmids were used as templates for MEG3 RNA and
NC transcriptions, respectively, using T7 RNA polymerase
(Beyotime: D7069, China). Both MEG3 RNA and NC
RNA were labeled with biotin at 3′ end using desthiobiotiny-
lation kit (Pierce: 20163). The biotin-labeled RNAs were
combined with streptavidin magnetic beads to pull down
RNA isolated from MCF7 cells. Pulled down RNAs were iso-
lated from magnetic beads with proteinase K treatment and
reverse transcribed into cDNA used for the following real-
time PCR to detect miR-146b-5p expression using SYBR
Green (ABI: 4387406).

2.6. Dual-Luciferase Reporter Assay. Both the sequence of
SLFN5 3′UTR and MEG3, putative binding sites for miR-
146b-5p, were cloned into the pmirGLO Dual-Luciferase
miRNA Target Expression vector (Promega: E1330, Wiscon-
sin, USA) to obtain the MEG3-WT and SLFN5-WT con-
structs, respectively. The mutant (MUT) sequences of
MEG3 and SLFN5 3′UTR were introduced to create the
MEG3-MUT and SLFN5-MUT constructs, respectively.
These constructs were transfected into 293T cells with
miR-146b-5p mimics using Lipofectamine™ 2000 (Invitro-
gen: 11668-019). The luciferase activity was assayed by
Dual-Luciferase® Reporter System (Promega: E1910) using
GloMaxTM (Promega, E5331).
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2.7. Migration and Invasion Assays. For migration assay,
5× 104 cells were placed in a 24-well transwell plate (Corn-
ing Costar: 3422) and incubated for 24 hours. For invasion
assay, 80μl of cold gel matrix (BD: 35623) was transferred
to the transwell insert. After gelling, 5× 104 cells were inoc-
ulated on the gel matrix and cultured for 48 hours. Follow-
ing incubation for above indicated time, the cells on the
upper surface of filter were removed by cotton swabs, and
the filter was stained with 0.4% crystal violet. Migrated or
invaded cells on the lower surface were photographed with
a Leica light microscope, and cell numbers were counted.

2.8. Statistical Analysis. Data are presented as themean ± SD
of three independent experiments and analyzed using R
(version 4.1.0) and SPSS (version 17.0) software with P <
0:05 as statistically significant difference. The correlation
between two groups was analyzed by Pearson χ2 test. Two
groups’ comparison was analyzed by t test. Multiple groups’
comparison was performed by one-way ANOVA combined
with Tukey’s multiple comparisons test.

3. Results

3.1. MEG3 Is Downregulated in Pan-Cancers and Positively
Correlated with SLFN5 Expression in BRCA. Firstly, we ana-
lyzed the difference of MEG3 expression between 33 tumor
tissues and normal tissues, showing a decrease in 24 types
of tumor tissues (such as BRCA, lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and ovar-
ian cancer (OV)) and an increase in 4 types of tumor tis-
sues (cholangio carcinoma (CHOL), large B-cell
lymphoma (DLBC), testicular cancer (TGCT), and thy-
moma (THYM)), with no significant difference in 3 types
of tumors (head and neck cancer (HNSC), pheochromocy-
toma and paraganglioma (PCPG) and sarcoma (SARC))
and no normal group information in the remaining 2 types
of tumors (mesothelioma (MESO) and ocular melanomas
(UVM)). These indicate that MEG3 may be negatively cor-
related with most tumor progression (Figure 1(a)). Subse-
quently, the expression level of MEG3 was further
confirmed to be significantly lower in BRCA patients by
bioinformatics (Figure 1(b)). It must also be mentioned that
MEG3 level was negatively associated with TNM stage
(Table 1 and Figure S1). Moreover, both MEG3 and
SLFN5 present similar positive correlationships with
immune infiltration in the TME of BRCA based on
immune score and stromal score (Figure 1(c)). It should
be pointed out that our previous study reported that
SLFN5 level was negatively correlated with tumor stage in
BRCA [29]. The results of Pearson analysis revealed that
the MEG3 transcript was correlated with SLFN5 mRNA
level positively in BRCA (Figure 1(d)), indicating that
MEG3 may be involved in progression and positively
associated with SLFN5 regulation in BRCA.

3.2. Intervention with MEG3 Positively Affects SLFN5
Expression in BRCA In Vitro. The above data demonstrated
that MEG3 is positively correlated with SLFN5 expression in
BRCA, and to investigate the potential mechanism, MEG3

levels were detected in BRCA cell lines with different inva-
sive capabilities. The results showed that MEG3 RNA levels
were evidently lower in high-invasive BRCA cells (BT549
and MDA-MB-231) than that in low-invasive BRCA cells
(T-47D and MCF7) (Figure 2(a)). Then, to research the
function of MEG3 in BRCA cells, low-invasive BRCA cells
were transfected with si-MEG3 plasmid, si-MEG3-1, and
si-MEG3-2; meanwhile, high-invasive cells were transfected
with MEG3 plasmid. Interestingly, in the lower invasive
cells, the mRNA and protein levels of SLFN5 were both sig-
nificantly downregulated after si-MEG3 transfection
(Figures 2(b)–2(c)), si-MEG3-2 showing a higher transfec-
tion efficiency so chosen to be used in the following experi-
ments. In contrast, MEG3 transfection led to SLFN5 mRNA
and protein expression evidently upregulated in high-
invasive BRCA cells (Figures 2(d)–2(e)), suggesting that
MEG3 level positively regulates SLFN5 expression and pos-
sibly involved in invasion capability in BRCA in vitro.

3.3. MEG3 Represses BRCA Cell EMT and Invasion Similar
to SLFN5 Functions in BRCA Cells. The above experiment
results confirmed that the RNA expression of MEG3 in
BRCA cells with low-invasive capability was significantly
different from that in BRCA cells with high-invasive capabil-
ity, which suggests that MEG3 may be associated with EMT
process in BRCA. To verify this hypothesis, low-invasive
cells with high MEG3 expression were knocked down by
si-MEG3-2 or si-NC, and high-invasive cells were trans-
fected with MEG3 plasmid or NC to observe the morpholog-
ical changes and EMT-related gene expressions. The
morphologies of si-MEG3-transfected cells changed from
epithelial morphology to a dispersed and prolonged cell phe-
notype with mesenchymal characteristics (Figure 3(a)). In
contrast, MEG3-transfected cells were partially transformed
from long fusiform or spindle-shaped to regular paving
stone morphology (Figure 3(b)). As morphology and EMT
molecular markers, E-cadherin for epithelial and vimentin
and ZEB1 for mesenchymal were examined and exhibited
corresponding changes in mRNA levels (Figures 3(c) and
3(d)) and protein levels (Figures 3(e)–3(f)) after si-MEG3
or MEG3 treatment. Further, transwell migration and inva-
sion assays were performed. Compared with NC group, si-
MEG3-transfected cells exhibited evidently elevated migra-
tion/invasion abilities (Figures 3(g) and 3(h)). However,
migration and invasion were weakened after MEG3 upregu-
lation (Figures 3(i) and 3(j)). These confirmed that MEG3
level could influence EMT program and invasion capability
in BRCA in vitro.

Our previous study revealed that high or low expression
levels of SLFN5 lead to epithelial or interstitial morphology
in some cancer cells, which indicates that SLFN5 may exert
an important function on cellular EMT and invasion [28,
29]. Since the above results show that MEG3 can influence
SLFN5 expression both at mRNA and protein levels and
influence BRCA cell EMT and invasion, so we need to con-
firm SLFN5 function on EMT to explore their relationship
further. Herein, T-47D and MCF7cells were transiently
transfected with SLFN5-specific siRNA (si-SLFN5) or nega-
tive control siRNA (si-NC). Si-SLFN5-treated cells displayed
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a mesenchymal phenotype compared to si-NC-treated cells
(Figure 3(k) in Figure 3 continued). Si-SLFN5 cells exhibited
a decrease in vimentin and ZEB1 and an increase in E-
cadherin at both mRNA and protein expression
(Figures 3(l) and 3(m) in Figure 3 continued), confirming
that SLFN5 knockdown can inhibit EMT in BRCA. These
results showed that MEG3 and SLFN5 have similar func-

tions on EMT in BRCA and, together with MEG3, can pos-
itively regulate SLFN5 expression, providing a full possibility
for the regulatory mechanism of competitive endogenous
RNAs (ceRNA).

3.4. MEG3 sponges miR-146b-5p leading to SLFN5 upregulation
at the posttranscriptional level by ceRNAmechanism.To further
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Figure 1: The MEG3 expressed in pan-cancers and the correlation with SLFN5 in BRCA based on TCGA database and UCSC Xena website.
(a) Analysis of MEG3 expression in 33 types of tumor tissues compared with normal tissues, decreased in 24 types of tumor tissues (such as
BRCA, LUAD, LUSC, and OV), increased in 4 types of tumor tissues (CHOL, DLBC, TGCT, and THYM), with no significant difference in 3
types of tumors (HNSC, PCPG, and SARC), and no normal group information in the remaining 2 types of tumors (MESO and UVM). (b)
Analysis of MEG3 expression in 1085 BRCA and 291 normal tissues. (c, d) The correlation analysis between TME (immune score and
stromal score) and MEG3 or SLFN5 in BRCA. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗ P < 0:0001. Abbr. TCGA: The Cancer Genome Atlas; TME:
tumor microenvironment. BRCA: breast cancer.
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explore whether MEG3 regulates SLFN5 RNA expression
via a ceRNA mechanism, a hypergeometric test identified
12 miRNAs that could regulate both SLFN5 and MEG3
in the overlapping area between 31 SLFN5-miRNA pairs
downloaded from starBase v2.0 and 266 MEG3-miRNA
pairs obtained from LncBase v2 (P = 0:0122; Figure 4(a)).
The network displayed in Figure 4(b) reflects the regulatory
relationship among SLFN5, MEG3, and miRNAs. Then, the
expressions of 12 miRNAs were analyzed in BRCA cell
lines with the loss and gain of MEG3, and miR-146b-5p
changed significantly in si-MEG3/MEG3 transfection cells
(Figures 4(c) and 4(d)), suggesting that MEG3 can nega-
tively regulate miR-146b-5p expression.

Subsequently, a sequence-based comparison between
MEG3 and miR-146b-5p using RNAhybrid revealed that the
MEG3 contains a target site for miR-146b-5p (Figure 4(e)).
MEG3 overexpression obviously decreased miR-146b-5p level
in MCF7 cells (Figure 4(f)). Similarly, MEG3 levels were
greatly suppressed by miR-146b-5p mimic (Mi), while evi-
dently elevated by miR-146b-5p inhibitor (AMO)
(Figure 4(g)). Further, luciferase activity was detected, and
the results showed that miR-146b-5p Mi suppressed the lucif-
erase activity of MEG3-WT inMCF7 cells, but not the mutant
one (Figure 4(h)). Then, RNA pull down assay revealed that a
higher level of miR-146b-5p was pulled down by biotin-
labeledMEG3 (MEG3-Bio) than byNC-Bio (Figure 4(i)), pro-
viding evidence for MEG3 binding with miR-146b-5p.

Undoubtedly, a probable binding sequence was found in
SLFN5 3′UTR and miR-146b-5p (Figure 4(j)). SLFN5 expres-
sion was downregulated by the miR-146b-5p Mi, but was
upregulated by AMO (Figure 4(k)). Additionally, treatment
with both MEG3 siRNA and miR-146b-5p Mi can decrease
SLFN5 protein and mRNA expression (Figures 4(l) and
4(m)).Moreover, miR-146b-5p AMO can restore the response

of MEG3 knockdown in T47D and MCF7 cells. Consistently,
both miR-146b-5p Mi and MEG3 silence can significantly
decrease the luciferase activity of wild-type SLFN5, while did
not show response in the mutant group (Figure 4(n)). More-
over, miR-146b-5p inhibitor can restore the response of
MEG3 knockdown (Figure 4(n)), suggesting that in BRCA
cells MEG3 can promote SLFN5 expression via sponging the
miR-146b-5p.

4. Discussion

The biological functions of lncRNAs in cancer include cell
cycle regulation, microRNA regulation, epigenetic regula-
tion, and signal transduction pathways [31–33]. For exam-
ple, lncRNA HOTAIR is involved in some cancer
malignant progression [34]. However, lncRNA GAS5 played
an inhibiting role in renal cell carcinoma [35]. Several stud-
ies reported that MEG3 can inhibit cancer cell proliferation
in diverse cancers [20, 36, 37]. For example, Li J et al. con-
firmed that MEG3 inhibits cell growth of cholangiocarci-
noma through regulating Bmi/RNF2 [37].

This study analyzed the MEG3 expression in pan-
cancers by bioinformatics analysis, and the results demon-
strated that MEG3 was decreased in most of cancers. And
the downregulation of MEG3 in BRCA is consistent with
the previous Dong’s research [21]. It brought to our atten-
tion that the expression of MEG3 was positively related to
SLFN5 by bioinformatics analysis in BRCA patients. Our
previous studies revealed that SLFN5 is a tumor suppressor
in BRCA [28–30]. SLFN5 can suppress BRCA cell invasion
through the downregulation of MT1-MMP [28] and inhibit
BRCA cell EMT through the downregulation of ZEB1 [29].
In this study, knockdown of MEG3 can decrease SLFN5
expression, while elevated MEG3 can increase SLFN5
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expression in BRCA cells; moreover, loss- and gain-of-
function studies showed that MEG3 can inhibit the EMT
of BRCA cells similar to SLFN5’s function. Furthermore,
the overexpression of MEG3 partially reversed morphologi-
cal/functional changes induced by knockdown of SLFN5.
Subsequently, EMT markers (E-cadherin, vimentin, and
ZEB1) were analyzed to validate MEG3’s roles in keeping
epithelial morphology in BRCA cells, which indicates that
MEG3 exerts inhibitory functions on BRCA progression by
regulating SLFN5. Some studies validated our results; for
example, MEG3 may be involved in regulating EMT process
to inhibit breast cancer and pituitary development [23, 36].
We also found previously that SLFN5 can inhibit BRCA cell

proliferation and promote their apoptosis [30] and that pre-
sumably MEG3 may involve in these regulation.

To determine the mechanisms underlying the relation-
ship of MEG3, SLFN5, and EMT, we speculated that the
ceRNA network might be a potential regulatory mechanism
of MEG3-miRNA-SLFN5 axis. LncRNAs can serve as ceR-
NAs to sponge miRNAs to regulate the gene expression tar-
geted by miRNAs in diverse cancers [23, 38–40]. Here, our
study obtained 12 miRNAs related to both MEG3 and
SLFN5 through bioinformatics screening, and the binding
sites between miR-146b-5p and MEG3/SLFN5 were found.
Subsequently, it is predicted that miR-146b-5p regulates
both SLFN5 and MEG3 by RNA hybridization and
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confirmed that MEG3 can directly bind to miR-146b-5p by
RNA pull down assay. However, miR-146b-5p showed the
dual functions of promoting or inhibiting tumorigenesis in
cancer [41–45]. For instance, Qu L et al. reported that
miR-146b-5p can promote Ewing’s sarcoma malignancy by
inhibiting B-cell translocation gene 2 expression [45]. Nota-
bly, the role of miR-146b-5p regulating EMT is controversial
in BRCA. Li S et al. reported that lncRNA NEAT1 promotes
the BRCA progression by binding miR-146b-5p [46],
completely contrary to the results of this study. Meanwhile,
Akkiprik M et al. reported that miR-146b-5p is upregulated
in the peripheral blood of patients with locally advanced
BRCA [47], consistent with the results of this study, but
the function of miR-146b-5p in cancers needs be more
explored in the near future. Thus, this study confirmed that
MEG3 could serve as a ceRNA involved in the potential
mechanism to positively modulate SLFN5 expression
through miR-146b-5p, thereby affecting EMT and invasion
capability in BRCA cells (Figure 5).

5. Conclusion

Our present research discovered that MEG3 is weakly
expressed in BRCA and regulates SLFN5 expression posi-
tively in vitro. Importantly, MEG3 modulates SLFN5 expres-
sion via sponging miR-146b-5p and inhibits EMT of BRCA

cells, which indicates that MEG3/miR-146b-5p/SLFN5 axis
may be a potential therapeutic target in BRCA treatment.
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