
Research Article
Different Airway Inflammatory Phenotypes Correlate with
Specific Fungal and Bacterial Microbiota in Asthma and Chronic
Obstructive Pulmonary Disease

Rui Yang ,1 Qiao Zhang,2 Zhidong Ren,1 Hong Li,2 and Qianli Ma 1

1Institute of Respiratory Diseases, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
2Center for Chronic Respiratory Disease Management, North-Kuanren General Hospital, Chongqing, China

Correspondence should be addressed to Qianli Ma; cqmql@163.com

Received 23 October 2021; Revised 22 January 2022; Accepted 16 February 2022; Published 11 March 2022

Academic Editor: Zhipeng Xu

Copyright © 2022 Rui Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Studies of chronic airway inflammatory diseases have increasingly focused on airway microbiota. However, the
microbiota characteristics of asthma and chronic obstructive pulmonary disease (COPD) patients with different airway
inflammatory phenotypes remain unclear. Objective. We aimed to reveal the differences of fungal and bacterial microbiota
between eosinophilic asthma (EA) and noneosinophilic asthma (NEA) patients and between eosinophilic COPD (EC) and
noneosinophilic COPD (NEC) patients. Further, explore whether similarities exist in the airway microbiota of patients with the
same phenotype. Methods. Induced sputum samples were collected from 45 asthma subjects and 39 COPD subjects. The
airway microbiota of the subjects was profiled by nearly full-length 16S rRNA and internal transcribed space (ITS) sequencing.
Results. Subjects with eosinophilic phenotype (EA and EC) showed significant differences in both fungal and bacterial
microbiota compared to the corresponding subjects with noneosinophilic phenotype (NEA and NEC). In addition, no
differences were observed between the fungal microbiota of subjects with the same phenotype (EA vs. EC, NEA vs. NEC). In
bacterial microbiota, the greater relative abundance of Streptococcus thermophilus was observed in EA and EC subjects, while
Ochrobactrum was enriched in NEA and NEC subjects. In fungal microbiota, the EA and EC subjects showed higher relative
abundances of Aspergillus and Bjerkandera, while the NEA and NEC subjects were enriched in Rhodotorula and Papiliotrema.
Conclusions. Different airway inflammatory phenotypes were related to specific fungal and bacterial microbiota in both asthma
and COPD, while the same airway inflammatory phenotype revealed a degree of similarity in airway microbiota, particularly in
fungal microbiota.

1. Introduction

Over 500 million people worldwide are affected by the preva-
lence of chronic airway inflammatory diseases and consume
substantial public health resources, represented by asthma
and chronic obstructive pulmonary disease (COPD) [1]. Both
of them are heterogeneous chronic airway inflammatory dis-
eases with airflow limitations, and the common pathological
bases are airway remodeling and airway inflammation domi-
nated by inflammatory cell infiltration. It is widely recognized
that airway inflammatory phenotypes in both asthma and
COPDwere divided into eosinophilic phenotype and noneosi-

nophilic inflammatory phenotypes according to the level of
peripheral blood and/or sputum eosinophil count. T helper
(Th) 2 lymphocyte-mediated eosinophilic inflammation is
the representative airway inflammation of approximately
50% of asthma patients [2]; also, increased airway eosinophilic
inflammation can be observed in around 10%-40% of COPD
patients [3, 4].

Recently, the associations between airway inflamma-
tory phenotypes and microbiota are receiving increasing
attention with the development of culture-independent
technology. Studies had shown the distinct structure of
bacterial microbiota in patients with higher eosinophilic
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inflammation, compared with patients with lower eosinophilic
inflammation and healthy controls, in both asthma and
COPD [5–9]. Furthermore, the fungal microbiota also plays
a key role in airway inflammatory diseases. Sharma et al.
[10] demonstrated that asthma patients with high/low blood
eosinophils differ in fungal microbiota composition and the
specific genera were associated with clinical parameters. How-
ever, the relationship between eosinophilic inflammation and
fungal microbiota in subjects with COPD was poorly under-
stood. Further, it is not clarified about the similarities and dif-
ferences in the effects of eosinophilic phenotype on the
microbiota of asthma and COPD.

In this study, we sought to explore the differences in the
fungal and bacterial microbiota associated with eosinophilic
and noneosinophilic inflammatory phenotypes in stable
COPD and asthma patients. Through the nearly full-length
16S rRNA and internal transcribed space (ITS) sequencing,
we reported that the fungal microbiota of eosinophilic and
noneosinophilic inflammatory phenotypes was distinct in
subjects with COPD and further found the fungal microbi-
ota was similar in asthma and COPD subjects with the same
airway inflammatory phenotype.

2. Study Design and Subjects

Subjects in this study were from the first visit of a pro-
spective observational cohort study, which was approved
by the Medical Ethics Committee of the Second Affiliated
Hospital of the Army Medical University and registered in
Chinese Clinical Trial Registry (http://www.chictr.org.cn,
No.: ChiCTR1900024871). In accordance with the Declara-
tion of Helsinki, the written informed consent was provided
by all subjects before enrollment in the study. The induced
sputum samples were collected from adult subjects with sta-
ble COPD or asthma.

Subjects with COPD were diagnosed based on the 2019
Global Initiative for Chronic Obstructive Lung Disease
(GOLD) guidelines [11], the postbronchodilator forced expi-
ratory volume in 1 s/forced vital capacity ratio ðFEV1/FVCÞ
< 0:7 and FEV1 < 80% predicted. Asthmatic subjects were
diagnosed according to the 2019 Global Initiative for Asthma
(GINA) guidelines [12], with FEV1 increase > 12% and
200ml after inhaling 400μg salbutamol or a positive bron-
chial provocation test result. Exclusion criteria of subjects
included acute exacerbations in the last 3 months; antibiotic
or antifungal drug usage within 4 weeks before recruitment;
subjects with any other chronic respiratory disease that may
interfere with optimal conditions for the study, including
(but not limited to) patients with asthma-COPD overlap,
active tuberculosis, bronchiectasis, interstitial lung disease,
and cystic fibrosis.

Demographic and clinical characteristics of subjects were
collected during the patient visits. COPD Assessment Test
(CAT) and Asthma Control Test (ACT) were employed to
evaluate the symptoms of subjects. Subjects were defined as
eosinophilic asthma (EA)/COPD (EC) group if their sputum
eosinophil percentage was ≥3%; otherwise, they were classified
into noneosinophilic asthma (NEA)/COPD (NEC) group.

3. Samples’ Collection and DNA Extraction

The samples’ collection and processing process were based
on our previous publications [13]. The plugs were attentively
dispersed in dithiothreitol at 37°C. Trypan blue and hemocy-
tometer were used to measure total cell counts. Cell count of
leukocytes was counting at least 400 cells based on a stained
with Wright-Giemsa slide. The sputum squamous cell
percentages > 10% subjects were removed to reduce oral con-
tamination. DNA extraction was performed with TIANamp
DNA Kit (DP302-02, TIANGEN, Beijing, China). After
determining the concentration and purity of products using
NanoDrop ND2000 (Thermo, USA), the pure products were
stored at -20°C before sequencing.

4. The Nearly Full-Length Sequencing and
Bioinformatics Analysis

For bacteria, PCR amplification of the 16S rRNA genes was
performed using the forward primer 27F (5′-AGAGTTTGA
TCMTGGCTCAG-3′) and the reverse primer 1492R (5′-
ACCTTGTTACGACTT-3′) [5, 14]. Fungal ITS genes were
performed using primers ITS1F (5′-CTTGGTCATTTAGA
GGAAGTAA-3′) and LR3 (5′-CCGTGTTTCAAGAC
GGG-3′) [15–17]. The nearly full-length sequencing of 16S
rRNA and ITS genes was carried out according to PacBio
Sequel Systems powered by Single Molecule, Real-Time
(SMRT) sequencing technology. PacBio circular consensus
sequencing (CCS) reads were obtained by the multiple align-
ments of subreads to reduce sequencing error rates. Raw
sequences were processed by SMRT Link portal; the CCS
reads were considered as noise and were filtered out with
minimum of 3 passes and a minimum predicted accuracy
of 99%. Both fungi and bacteria sequencing data were proc-
essed using Quantitative Insights Into Microbial Ecology 2
(QIIME2) pipeline [18]. After chimera detection, the
VSEARCH was employed to cluster high-quality sequences
into operational taxonomic units (OTUs) at 97% similarity.
A representative sequence was generated from each OTU
using the default parameters, and the singleton OTUs were
removed. To obtain a stricter taxonomic classification of
each OTU, the BROCC algorithm [19] was performed after
searching the nt database from NCBI using BLASTn, with
the algorithmic threshold set to 100%. Procedural controls
for the DNA extraction and PCR steps were included in
the sequencing, and none of the four reagent control sam-
ples provided more than 100 read counts.

We measured the α-diversity (diversity within a habitat)
of the microbiota using the Chao1 and Simpson indexes, the
former to describe species richness, which refers to the num-
ber of species in a community or habitat, and the latter to
describe species diversity, which is a combined measure of
species richness and species evenness. The Wilcoxon rank-
sum test and Dunn test were used to compare α-diversity
between groups. Nonmetric multidimensional scaling
(NMDS) [20] plots based on Bray-Curtis distance and per-
mutational multivariate analysis of variance (PERMA-
NOVA) [21] were employed to reveal β-diversity (diversity
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among habitats) variations. The differential microbiota fea-
tures were identified using linear discriminant analysis effect
size (LEfSe) [22] with LDA threshold set to 3.0, and taxa
with relative abundances less than 0.5% were filtered out.
Random forest models [23] were established against 10-
fold cross-validation to supplement the biomarkers of fungal
microbiota. Fungal-bacterial correlation networks were con-
structed based on Spearman’s correlation coefficient (FDR-
corrected P < 0:01 and ∣r ∣ >0:5) between the top 20 genera.
The networks were divided into modules using the igraph
package [24] in R (3.6.1) software and visualized by Cytos-
cape (3.7.2) software. After the Kolmogorov-Smirnov test
for normality of clinical characteristics, Fisher’s exact test
was used to test count data and Wilcoxon rank-sum test or
t-test for measurement data.

5. Result

5.1. Enrolled Subjects’ Characteristics. We collected 84
induced sputum samples from 45 asthma subjects and 39
COPD subjects. According to the percentage of sputum
eosinophils, the asthma subjects were divided into the EA
group (n = 26) and the NEA group (n = 19), and the subjects
with COPD were divided into the EC group (n = 22) and the
NEC group (n = 17) (Figure 1).

The NEA subjects had higher inhaled corticosteroid
(ICS) doses than EA subjects, but this difference was not
observed between EC and NEC subjects (Table 1). Further-
more, in comparisons between two groups with the same
inflammatory phenotype (EA vs. EC, NEA vs. NEC), sub-
jects with COPD had a higher proportion of males, were
older, used higher doses of ICS, and had poorer lung func-
tion compared to the corresponding subjects with asthma.

5.2. Fungal Microbiota. The overviews of sequencing results
are shown on supplementary material (Tables S1–S3).

The Simpson (P = 0:035) index of the EA subjects was
significantly lower compared that of NEA subjects (Figure 2
(a)), which was consistent with previous studies in the
asthmatic subjects [10, 25]. A comparable result had been
observed in COPD subjects; the EC subjects showed lower
Chao1 index (P = 0:036) and Simpson index (P = 0:031)
than NEC subjects (Figure 2(c)). However, no significant
difference in α-diversity was observed in asthma and COPD
subjects with the same inflammatory phenotype
(Figures S1A and S1C).

NMDS analysis based on the Bray-Curtis distance
showed significant differences in β-diversity between the
eosinophilic and noneosinophilic inflammatory phenotypes.
In asthma subjects, the β-diversity was significantly different
between the EA and NEA groups (Figure 2(b), PERMA-
NOVA, R2 = 0:09, P = 0:001), and similar result was also
observed in COPD subjects (Figure 2(d), PERMANOVA,
R2 = 0:08, P = 0:001). The NMDS plots containing all samples
and the Venn plots demonstrating OTUs shared between
groups were displayed in the supplemental file (Figure S1B).
Interestingly, there was no significant difference between the
EA subjects and EC subjects (Figure S1B, PERMANOVA,
P = 0:37) or between NEA and NEC subjects (Figure S1D,
PERMANOVA, P = 0:73). These results suggested that
within asthma and COPD, respectively, the fungal micro-
biota was dissimilar in subjects with different inflammatory
phenotypes; however, the fungal microbiota of asthma and
COPD subjects with the same inflammatory phenotype
might be similar.

The LEfSe analysis identified significant differences in
29 taxa between EA and NEA subjects (Figure S2A). At
the genus and species levels (Figure 3(a)), Aspergillus,
Cladosporium, Psathyrella, and Bjerkandera adusta
exhibited higher abundances in EA subjects, whereas
Papiliotrema flavescens and Trametes sanguinea exhibited
significantly higher abundances in NEA subjects.
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Figure 1: The study flowchart.
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Additionally, 38 differential taxa were identified between
EC and NEC subjects (Figure S2B). At the genus and species
levels (Figure 3(b)), Aspergillus, Gloeoporus dichrous, Irpex
oreophilus, Nigroporus vinosus, and Bjerkandera adusta were
significantly enriched in EC subjects, whereas Rhodotorula,
Auricularia cornea, Bullera unica, and Papiliotrema
flavescens were greater in NEC subjects. Intriguingly, we
found that not only Aspergillus and Bjerkandera adusta
were enriched in EC subjects but also Papiliotrema
flavescens were enriched in NEC subjects, which were same
as asthmatic subjects.

Random forest models were applied to supplement the
differential microbiota features of different inflammatory
phenotypes in both asthma and COPD subjects. At the
genus level, the overall accuracy was 0.87 (accuracy ratio
= 1:50) for asthma subjects and 0.80 (accuracy ratio = 1:40)
for COPD subjects (Figures 3(c) and 3(d)). The models indi-
cated that Aspergillus, Cladosporium, Papiliotrema, and Rho-
dotorula are the common genera to distinguish eosinophilic
and noneosinophilic inflammation, whether in subjects with
asthma or COPD. The relative abundances of these genera
varied significantly in Wilcoxon rank-sum test (P < 0:05),
except for Cladosporium. Cladosporium had significantly
greater relative abundances in EA subjects compared with
NEA subjects (P = 0:002); however, this difference has not
been observed in COPD subjects (P = 0:169).

Combining the results of LEfSe analysis and random
forest models, Aspergillus and Bjerkandera were considered
as fungal biomarkers of eosinophilic subjects in both
asthma and COPD; meanwhile, Papiliotrema and Rhodo-
torula were regarded as biomarkers for noneosinophilic
subjects.

5.3. Bacterial Microbiota. In this study, NEA subjects
showed higher α-diversity of bacteria compared with EA
subjects (Figure 4(a), Chao1 index, P = 0:002), which coin-
cided with the results of recent studies [8, 25]. Compared

with EC subjects, the NEC subjects also had significantly
increased Chao1 (Figure 4(c), P = 0:004) index. Moreover,
EC subjects showed lower Shannon and Simpson indexes
than EA subjects, however, not significantly, and there was
no significant difference in α-diversity index between sub-
jects of NEA and NEC (Figures S3A and S3C).

Significant difference was observed in β-diversity
between EA and NEA subjects (Figure 4(b), PERMANOVA,
R2 = 0:1, P = 0:001) and EC and NEC subjects (Figure 4(d),
PERMANOVA, R2 = 0:07, P = 0:013). That result indicated
that eosinophilic and noneosinophilic subjects had different
bacterial microbiota within asthma and COPD, respectively.
Furthermore, in the comparison between asthma and COPD
subjects with eosinophilic inflammation, significant differ-
ence was found between EC subjects and EA subjects
(Figure S3B, PERMANOVA, R2 = 0:05, P = 0:012). By
contrast, we did not find a distinction in β-diversity
between asthma and COPD subjects with noneosinophilic
inflammation (Figure S3D, PERMANOVA, P = 0:26), but
the effect of large intersample variability on this outcome
was also a nonnegligible factor that needs to be further
evaluated in subsequent studies.

Using LEfSe analysis, we identified 34 differential taxa
between EA and NEA subjects (Figure S4A). At the genus
and species levels (Figure 5(a)), EA subjects were enriched
in Moraxella, Selenomonas, Fusobacterium nucleatum,
Prevotella salivae, Prevotella pallens, Prevotella oris,
Prevotella melaninogenica, Streptococcus thermophilus, and
Campylobacter concisus, whereas NEA subjects were enriched
in Pseudomonas, Ochrobactrum, and Stenotrophomonas. In
particular, Ochrobactrum and Streptococcus thermophilus
had also been differential taxa in the comparison between
EC and NEC subjects (Figure 5(b)).

5.4. Fungal-Bacterial Correlation Network Analysis. To
investigate the similarities and differences in bacterial-
fungal interactions between COPD (Figure 6(a)) and asthma

Table 1: Enrolled subjects’ characteristics.

Parameters
Asthma COPD P value

EA (n = 26) NEA (n = 19) EC (n = 22) NEC (n = 17) EA vs.
NEA

EC vs.
NEC

EA vs.
EC

NEA vs.
NEC

Male (%) 9 (34.62) 8 (42.11) 21 (95.45) 14 (82.35) 0.75‡ 0.3‡ 0.005‡ <0.001‡

Age (years) 54:04 ± 11:41 57:68 ± 12:11 68:55 ± 7:53 71 ± 5:97 0.308† 0.21※ <0.001† <0.001※

BMI (kg/m2) 23:02 ± 3:56 23:59 ± 3:22 23:37 ± 2:50 24:12 ± 3:06 0.455※ 0.406† 0.463※ 0.617†

ICS dose (μg/d) 417:31 ± 282:47 657:89 ± 346:92 890:9 ± 236:86 935:29 ± 183:51 0.025※ 0.705※ <0.001※ 0.025※

Smoking (%) 7 (26.92) 6 (31.58) 15 (68.18) 11 (64.71) 0.751‡ 1‡ 0.008‡ 0.093‡

FEV1 (%predicted) 71:68 ± 14:97 75:22 ± 24:66 43:38 ± 10:23 43:07 ± 13:35 0.455※ 0.216※ <0.001† <0.001※

FEV1/FVC (%) 61:17 ± 11:93 60:75 ± 19:03 40:55 ± 7:64 44:02 ± 9:58 0.696※ 0.305† <0.001※ <0.001※

Sputum eosinophils (%) 20:9 ± 24:62 1:14 ± 0:83 15:26 ± 22:93 1:05 ± 0:82 <0.001※ <0.001※ 0.444※ 0.739†

Sputum neutrophils (%) 57 ± 56:58 81:89 ± 7:64 65:91 ± 24:69 88:23 ± 6:75 0.001※ <0.001※ 0.264※ 0.013†

ACT score 21:42 ± 3:28 21:74 ± 5:26 — — 0.954※ — — —

CAT score — — 19:05 ± 6:3 18:64 ± 6:54 — 0.848† — —

Data were presented as n ð%Þ andmean ± SD unless otherwise stated. The ICS doses were converted to equivalents of fluticasone. †Tested by t-test. ‡Tested by
Fisher’s exact test. ※Tested by Wilcoxon rank-sum test.
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(Figure 6(b)), we performed a correlation network analysis.
Overall, COPD subjects demonstrated greater connection
density compared to asthma subjects. Interestingly, we
observed some similar correlations in asthma subjects and
used the same colors to represent these modules. The blue
module of COPD and asthma included Fusobacterium, Por-
phyromonas, Neisseria, Capnocytophaga, and Leptotrichia.
Furthermore, the Ochrobactrum, Alternaria, Rhodotorula,
Papiliotrema and Bullera also appear in the purple module
of the asthma subjects. However, as only a small number
of correlations were observed, we could not construct a valid
network to compare differences between samples with differ-
ent inflammatory phenotypes.

6. Discussion

In this study, we collected induced sputum samples from 45
asthma subjects and 39 COPD subjects to explore the micro-
biota differences between eosinophilic and noneosinophilic
phenotypes. We reported that the fungal microbiota of air-
way eosinophilic and noneosinophilic inflammatory pheno-
types in COPD subjects was different, and the NEC subjects
showed higher fungal α-diversity and β-diversity than EC
subjects. Similarly, the EA and NEA subjects had consider-
able differences in fungal microbiota; this result was similar
to the previous study from asthma subjects [10, 26]. Interest-
ingly, our research revealed that the fungal taxa associated
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Figure 2: Alpha diversity and beta diversity of fungal microbiota. Each dot reprented a sample. Box plots of the Chao1 index and Simpson
index, to compare alpha diversity (a) between EA and NEA and (c) between EC and NEC. The y-axis represented the value of the
corresponding Chao1 or Simpson index. The statistical analysis was performed using Wilcoxon rank-sum test and Dunn’ post hoc test.
NMDS analysis based on the Bray-Curtis distance to compare beta diversity (b) between EA and NEA and (d) between EC and NEC.
PERMANOVA was employed to reveal beta diversity variations.
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with eosinophilic or noneosinophilic inflammation were
consistent in both asthma and COPD.

Several studies demonstrated that fungal colonization
can contribute to airway inflammatory diseases as an impor-
tant allergen [27–30]. Aspergillus, Cladosporium, and Rhodo-
torula were previously shown to be present in healthy
individuals, and their relative abundance was significantly
altered in asthma patients and associated with Th2 inflam-
mation [10, 25]. Among the asthma subjects in this study,
EA subjects had higher relative abundances in Aspergillus,
Cladosporium, Psathyrella, and Bjerkandera adusta species.
Cladosporium is known to cause lung allergic inflammation,
airway hyperreactivity, and remodeling in mice [31], and
Aspergillus also play a momentous role in airway inflamma-
tory and allergic diseases as a type 2 inflammation adjuvant
[32]. In addition, it was being provided that Bjerkandera can
lead to eosinophilic infiltration in the airways along with
Th2 cytokine and eosinophil-related chemokine production
[33, 34]. However, studies on the fungal microbiota of
COPD patients are still scarce. We reported that Aspergillus,
Gloeoporus dichrous, Irpex oreophilus, Nigroporus vinosus,
and Bjerkandera adusta were associated with higher sputum
eosinophils in COPD subjects. Our study indicated that

Aspergillus and Bjerkandera were significantly enriched in
subjects with eosinophilic inflammation, and Rhodotorula
and Papiliotrema had higher relative abundances in subjects
with noneosinophilic inflammation, both in asthma and
COPD.

Previous studies had demonstrated that asthma subjects
with higher eosinophilic inflammation showed lower bacte-
rial diversity than the subjects with lower eosinophilic
inflammation [8, 35, 36]. In our study, obvious differences
also emerged in the bacterial microbiota of COPD subjects.
In healthy individuals, a core bacterial microbiota domi-
nated by Streptococcus, Prevotella, Veillonella, Pseudomonas,
Haemophilus, and Fusobacterium has been reported [37]. In
asthma subjects of this study, the EA subjects were enriched
in 4 species from Prevotella (Prevotella oris, Prevotella sali-
vae, Prevotella melaninogenica, and Prevotella pallens) and
Fusobacterium nucleatum, Campylobacter concisus, Strepto-
coccus thermophilus, Moraxella, and Selenomonas, while
the NEA subjects had higher abundance in Pseudomonas
and Ochrobactrum. Moreover, we observed some compara-
ble species in COPD subjects, such as Streptococcus thermo-
philus also enriched in EC subjects and Ochrobactrum and
Pseudomonas aeruginosa enriched in NEC subjects.
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Figure 3: Differential taxa of fungi between eosinophilic and noneosinophilic inflammatory phenotypes. At genus and species levels, the
LEfSe analysis between (a) EA vs. NEA and (b) EC vs. NEC. The LDA threshold was set at 3.0, and taxa with relative abundance less
than 0.5% were filtered out. The fungal genera predicted by random forest analysis for classifying (c) asthma and (d) COPD subjects into
eosinophilic and noneosinophilic inflammatory phenotypes. Random forest models were established against a 10-fold cross-validation.
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Prevotella, Fusobacterium, and Selenomonas were demon-
strated by a previous study to be enriched in atopic asthma
subjects [35]; our results showed these species were also
associated with sputum eosinophils. Wang et al. [5] demon-
strated that Prevotella aurantiaca and Fusobacterium nucle-
atum exhibited positive associations with Th2-related
mediators in COPD patients, and we further observed the

enrichment of multiple species belonging to Prevotella and
Fusobacterium in asthma patients with eosinophilic pheno-
type. In contrast, Pseudomonas could increase the regulatory
T cell response and inhibited concomitant Th2 response
[38], so the enrichment of Pseudomonas aeruginosa was
observed in the noneosinophilic group. Another genus,
Streptococcus, was known to exhibit greater abundance in
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Figure 4: Alpha diversity and beta diversity of bacterial microbiota. Each dot represented a sample. Box plots of the Chao1 index and
Simpson index, to compare alpha diversity (a) between EA and NEA and (c) between EC and NEC. The y-axis represented the value of
the corresponding Chao1 or Simpson index. The statistical analysis was performed using Wilcoxon rank-sum test and Dunn’ post hoc
test. NMDS analysis based on the Bray-Curtis distance to compare beta diversity (b) between EA and NEA and (d) between EC and
NEC. PERMANOVA was employed to reveal beta diversity variations.
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asthma subjects with an eosinophilic inflammatory pheno-
type [36], in COPD subjects Streptococcus was positively
correlated with blood eosinophil counts [9]; our study simi-
larly supported the association of Streptococcus with airway
eosinophilic inflammation.

Previous studies have suggested an important role for
microbial interactions in asthma, which associated with air-
way inflammation and disease outcome [10, 39]. As repre-
sentatives of airway inflammatory diseases, asthma and

COPD have some overlaps in the airway bacterial microbi-
ota, and we found that they share a degree of homogeneity
in microbial correlations. Liu et al. [25] demonstrated signif-
icant correlations in patients with asthma between Prevo-
tella, Veillonella, Leptotrichia, and Rothia; our study further
illustrated similar correlations in COPD patients as well.
Furthermore, the significant positive correlations were
observed between Ochrobactrum, Alternaria, and Rhodotor-
ula in both asthma and COPD. In the debate between the
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Figure 5: Differential taxa of bacteria between eosinophilic and noneosinophilic inflammatory phenotypes. At genus and species levels, the
LEfSe analysis between (a) EA vs. NEA and (b) EC vs. NEC. The LDA threshold was set at 3.0, and taxa with relative abundance less than
0.5% were filtered out.

(a)

0.6≥|r|>0.5

0.7≥|r|>0.6

0.8≥|r|>0.7

|r|>0.8

Bacteria

Fungi

Positive correlation
Negative correlation

(b)

Figure 6: Fungal-bacterial correlation network analysis at genus level in (a) COPD and (b) asthma. Each microbial taxon represented by a
node, the round nodes represent the genus of bacteria, the square nodes represent the genus of fungi. The network represents significant
Spearman’s correlation coefficients between the top 20 fungal and bacterial genera (FDR-corrected P < 0:01, ∣r ∣ >0:5). The solid line
indicated positive correlation, the dashed line indicated negative correlation, and the strength of correlation between genera was
indicated by the dark and light colors and the thickness of the lines. The color of the nodes represented the different modules.
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“British” and “Dutch” hypothesis [40], we provided a per-
spective from the interaction of airway inflammatory pheno-
types and microbiota structure; asthma and COPD have
both common and separate features. Understanding the
interaction is the first step towards clinical application, and
further clarification of the mechanisms behind the interac-
tion results will help us to better improve clinical practice.

There are some potential confounders and limitations
that need to be considered in our study. Firstly, limited by
the relatively small sample size of the current study, the
results require the support of a larger sample study. Sec-
ondly, since the fungal database needs to be improved com-
pared to the bacterial database and to obtain more reliable
annotation information, we set the BROCC algorithm
threshold to 100%, so the taxonomic classification efficiency
of fungi was lower than that of bacteria. Additionally, the
smoking rates and ICS doses differed between asthma and
COPD patients in this study, the effect of smoking and ICS
on airway microbiota had been demonstrated by previous
studies [35, 41, 42], and that influence to this result needs
to be explored in the follow-up study.

7. Conclusions

This study emphasized that fungal and bacterial microbiota
were associated with a specific airway inflammatory context
and revealed the overlaps of differential microbiota features
in particular phenotypes between subjects with asthma and
COPD. Our study highlighted the heterogeneity within
asthma and COPD, respectively, and the homogeneity
between them, guiding further research into disease patho-
genesis and the development of potential targeted therapies.
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