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Osteosarcoma is a kind of primary malignant tumor of bone. In recent years, its therapeutic effect and prognostic survival are
dissatisfactory. The tumor immune microenvironment (TIME) reflects immune status of patients, but it is little known in
osteosarcoma. Therefore, this study attempts to conduct a comprehensive analysis to explore TIME of osteosarcoma and
identify TIME-related subtypes for clinical management and treatment. We successfully established two novel tumor immune
infiltration clusters (TIIC) which are characterized by difference of microenvironment and immune-related biological
processes. High tumor immune infiltration cluster (H-TIIC) subtypes with higher immune infiltration score shows a better
overall survival. Further, the two immune subtypes are shown to differ in immunotherapy and chemotherapy. The results
would be helpful for clinical decision in osteosarcoma.

1. Introduction

Osteosarcoma is a primary bone malignancy which is con-
sidered to be second leading cause of tumor-related death
in adolescents aged 10 to 20 years [1, 2]. The five-year sur-
vival rate has been obviously improved with application of
neoadjuvant chemotherapy [3]. However, in recent years,
more and more patients have gradually increased their resis-
tance to chemotherapy. The therapeutic effect and prognos-
tic survival are not satisfactory [4]. The therapeutic scheme
and prognosis estimation depend on TNM staging and
Huvos Grading, but there are obvious limitations [5]. Thus,
it is necessary to establish a new standard to guide an indi-
vidualized administration of osteosarcoma.

Researches revealed that immune microenvironment is
closely associated with tumor. CD8+ T cells could recognize

tumor-associated antigens and launch an immune attack
against the tumors [6]. Antigen-presenting cells (APCs) such
as natural killer (NK) cells, macrophage, and dendritic cells
(DC) could express immune checkpoint molecules which
inhibited the antitumor immune function of T cells [7].
Tumor-associated macrophages (TAM) are closely associated
with tumor metastasis and poor prognosis in osteosarcoma
[8]. These evidences indicated that difference of individual
immune is an important factor in chemotherapy resistance
and prognosis. Therefore, the identification of new immune
subtypes based on the immune microenvironment is benefi-
cial to the individualized administration of osteosarcoma.

Tumor immune microenvironment (TIME) represents a
complex interactions of tumor-infiltrating immune cell pop-
ulations and individual immune status [9]. Previous studies
have revealed that it could be accurately quantified by
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single-sample gene set enrichment analysis (ssGSEA) algo-
rithm based on immune gene sets [10–13]. However, the
exploration of TIME in osteosarcoma has rarely been
reported.

Therefore, ssGSEA algorithm was conducted to explore
the TIME and further improve the understanding of
immune status of osteosarcoma in this study. Then, nonneg-
ative matrix factorization (NMF) consensus clustering
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Figure 1: Flowchart of the analyses in this study.
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Figure 2: Continued.
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analysis was used to identify two novel immune subtypes in
osteosarcoma. At the same time, in order to facilitate clinical
application, a simplified model was constructed to distin-
guish the immune subtypes through sophisticated machine
learning algorithms. This study would provide useful help
for clinical management and treatment in osteosarcoma.

2. Materials and Methods

2.1. Data Processing. Firstly, RNA-seq raw data of osteosar-
coma were acquired from the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET)
database (https://ocg. http://cancer.gov/programs/target)

through TCGA biolinks R package. And its corresponding
clinical data were obtained from UCSC Xena (https://
xenabrowser.net). Subsequently, Ensembl IDs were con-
verted to gene symbols based on Ensembl database
(http://uswest.ensembl.org/index.html). Raw data were
normalized based on variance stabilizing transformation
through the DESeq2 R package. Next, GSE21257 of osteo-
sarcoma data [14] was downloaded by GEOquery R pack-
age. Probe IDs were converted to gene symbols based on
GPL10295 file. The GSE21257 was normalized by limma
R package. Finally, samples without follow-up data and
gene expression in more than half of the samples with 0
were excluded.
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Figure 2: Identification of immune subtypes of osteosarcoma in training and validation cohort by NMF consensus clustering. The optimal
clustering number was determined by the cophenetic, dispersion, residual, silhouette indicators, and clustering heatmap.

Table 1: The relationship between two immune subtypes and clinical features.

Variable
GSE21257 TARGET

H-TIIC (n = 24) L-TIIC (n = 29) P value H-TIIC (n = 39) L-TIIC (n = 46) P value

Age (median) 17.33 15.08 0.124 14.09 14.43 0.433

Gender 0.275 0.122

Female 11 8 21 16

Male 13 21 18 30

Metastasis (at diagnosis) 0.076 0.779

No 21 18 34 38

Yes 3 11 5 8

Huvos grades 0.462

1 3 10

2 8 8

3 7 6

4 3 2

Unknown 3 3
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Figure 3: Overall survival of H-TIIC and L-TIIC osteosarcoma subtypes in (a) TARGET cohort and (b) GSE21257 cohort.
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2.2. Identification of Immune Subtypes. We quantified TIME
level of each sample with 28 immune signatures (S1) based on
the ssGSEA algorithm of GSVA R package [10, 15]. Subse-
quently, it was normalized by using an equation. Next, we used
the NMF R package to construct immune subtypes [16]. For

the NMF method, “nsNMF” option was selected and 50 itera-
tions were carried out, and the number of clusters k was set as
2 to 6. Finally, immune infiltration score of each osteosarcoma
sample conducted by the ESTIMATE algorithm and was
applied to identify immune subtypes [17].
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Figure 4: The infiltration of 28 immune cells between H-TIIC subtype and L-TIIC subtype in (a) TARGET cohort and (b) GSE21257
cohort.
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2.3. Survival Analysis. The Kaplan-Meier curves and log-
rank test were conducted to confirm the survival differences
between two immune subtypes by using survminer R
package.

2.4. Gene Set Enrichment Analysis. We used DESeq2 R
package to conduct a gene list in TCGA cohort. The genes
with false discovery rate (FDR) less than 0.05 were per-
formed gene set enrichment analysis by using the fgsea R
package. The biological processes with a P value less than
0.05 and an absolute value of the normalized enrichment
score (NES) more than 2.5 were considered statistically
significant.

2.5. Immune Response Prediction. The subclass mapping
approach [18] was used to predict the clinical response of
osteosarcoma immune subtypes to immune checkpoint
blockade in TARGET cohort. The same method was also
adopted to verify the results in GSE21257 cohort.

2.6. Exploration of Sensitivity of Chemotherapy. The pRRo-
phetic R package was used to calculate sensitivity of che-
motherapy of each osteosarcoma based on the largest
publicly available pharmacogenomics database (Genomics
of Drug Sensitivity in Cancer (GDSC), https://www
.cancerrxgene.org/) [19]. Three commonly used drugs were
selected: cisplatin, methotrexate, and doxorubicin. All

parameters were set as the default values. Differences in
sensitivity of chemotherapy were determined by the Wil-
coxon rank-sum test.

2.7. Statistical Analysis. Statistical analysis was based on R4.0
and its corresponding software packages. Continuous and
categorical clinical variables between two subtypes were
compared using the Wilcoxon rank-sum test and chi-
square test. Differences of immune cell infiltration were
tested through the Wilcoxon rank-sum test. The association
between immune checkpoint proteins and immune subtypes
was determined by t-test. In all analyses, P values < 0.05
indicated statistically significant difference.

3. Results

3.1. Identification of Two Novel Immune Subtypes. The study
flowchart is shown in Figure 1. In this study, we found that
an optimal clustering number was 2 in both cohorts based
on cophenetic, dispersion, residual, silhouette indicators,
and clustering heatmap in NMF analysis. Osteosarcoma
samples were identified into two clusters which were low
tumor immune infiltration cluster (L-TIIC) and high tumor
immune infiltration cluster (H-TIIC) (TCGA: 46 L-TIIC
(54.12%) vs. 39 H-TIIC (45.88%), 29 L-TIIC (54.72%) vs.
24 H-TIIC (45.28%)) (Figures 2(a)–2(d)).
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3.2. L-TIIC Characterized by Poor Overall Survival. There
were no significant differences in clinical characteristics
between the two subtypes in either cohorts (Table 1). But
there was a significant survival difference in survival analy-
sis. L-TIIC had poorer overall survival than H-TIIC in
TCGA cohort (P < 0:05, HR = 0:314, 95%CI = 0:148 −
0:668, Figure 3(a)). We also found similar results in the
GSE21257 cohort (P < 0:05, HR = 0:399, 95%CI = 0:176 −
0:904, Figure 3(b)).

3.3. Differential Tumor Immune Microenvironment. In our
analysis, we observed that many kinds of immune cells existed
significant differences between two subtypes (Figure 4). It
indicated that two subtypes had different immune status.

3.4. Gene Set Enrichment Analyses. In GSEA analysis, our
results revealed that many biological processes differed
between the two immune subtypes (Figure 5). Most of them

were related with immune process. It indicated that two sub-
types existed different immune responses, which may result
in poor prognosis in L-TIIC.

3.5. Differential Expression of Immune Checkpoint Molecules
and Immune Therapeutic Response. Our analysis also found
that expression of immune checkpoint molecules (PDCD1,
CD274, PDCD1LG2, CTLA4, and HAVCR2) in L-TIIC
was significantly lower than H-TIIC (Figure 6, P < 0:05).
Moreover, immunotherapeutic response analysis indicated
significant differences in anti-PD1 treatment responses
(Figure 7).

3.6. Differences in Sensitivity of Chemotherapy. In the che-
motherapeutic drug sensitivity analysis, it declared that two
chemotherapeutic drugs (cisplatin and doxorubicin) existed
significant sensitivity differences between the two subtypes
(P < 0:05, Figures 8(a)–8(c)).
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Figure 6: Expression of immune checkpoints between H-TIIC and L-TIIC subtypes in (a) TARGET cohort and (b) GSE21257 cohort.
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4. Discussion

In the last decade, comprehensive treatment method has
been a significant benefits for osteosarcoma [20]. However,
a small part of patients still received a poor survival out-
comes [21, 22]. With the in-depth recognition of TIME,
the differential tumor microenvironment has been con-
firmed to play an important role in the poor survival out-
comes of tumors [23, 24]. Therefore, the exploration of
TIME is a chance for improving therapeutic effect and prog-
nosis in osteosarcoma.

In this study, we successfully established two novel
immune subtypes based on TIME of osteosarcoma. The
results revealed that L-TIIC subtype is characterized by a
poor prognosis. It could be speculated that the differences
in tumor immune microenvironment resulted in this out-
comes. Studies declared that TIME plays a complex role,
such as promoting or inhibiting the proliferation of tumors
[25, 26], promoting apoptosis of tumor cells and immune
cells [27], increasing resistance to chemotherapy [28], and
reducing or inhibiting ability of fighting tumor [29]. Many
immune cells have obvious difference in two subtypes. B
cells could produce antibodies and secrete cytokines to regu-
late antitumor immune process [30]. But it also reduces anti-
tumor ability by inhibiting proliferation of immune-
activated T cells [31]. CD8 T cell positivity is regulated by
killing tumor cells [32]. Moreover, CD8 T cell is closely
related with immunity therapy in osteosarcoma [33], and it
is the result of differences in immunotherapy targeting
PDCD1 (PD-1) in our analysis. Studies have revealed that
mast cell, MDSC, macrophages, and monocyte could upreg-
ulate inhibitory receptors and produce immunosuppressive
cytokines that are associated with poor prognosis in osteo-
sarcoma [8, 34, 35]. The complex and differential immune
environment could reduce differential immune processes.
Our gene set enrichment analysis confirmed that there are
a large number of different immune-related processes
between the two subtypes.

Three chemotherapy regimens (methotrexate, adriamy-
cin, and cisplatin) have been shown to be effective in many
osteosarcoma patients [36]. But, there are still some patients
who do not benefit from it because of developing drug resis-
tance [22, 37]. In our analysis, we could observe that the sen-
sitivity of the H-TIIC immune subtype to cisplatin and
doxorubicin was lower than that of the L-TIIC subtype.
We speculate that the H-TIIC has higher drug resistance.
The cause of chemotherapy resistance is a complicated topic.
PD-1, CD274 (PD-L1), PDCD1LG2 (PD-L2), CTLA-4,
HAVCR2 (TIM3), and LAG-3 were expressed at higher levels
in the H-TIIC subtype. Studies have uncovered that immu-
nosuppressive cells in tumor environment could bind these
inhibitory receptors to increase chemotherapy resistance
[38–41]. In addition, studies have found that elimination
of B lymphocytes could significantly increase the sensitivity
of patients to chemotherapy [42, 43]. We believe that differ-
ence of TIME might lead to different sensitivity of cisplatin
and doxorubicin. Our views are consistent with previous
studies [22]. Therefore, exploration of TIME provided a
new route in study of osteosarcoma.

This study achieved some good results and provided use-
ful help for clinical decision in osteosarcoma. However,
there still exist some drawbacks. For example, the relevant
public data could not directly offer the immune cell compo-
sition ratio of each sample and lack of animal experiments
and clinical cohort validation. Thus, larger data cohorts
and more experiments are needed to verify classification
and prognostic differences in clinical practice.

5. Conclusions

Taken together, we had successfully distinguished two
immune subtypes, which could clearly reflect the heteroge-
neity of the immune microenvironment of different osteo-
sarcomas. Two immune subtypes were characterized by
differential overall survival, immune-related biological pro-
cesses, sensitivity of chemotherapy, and response of ICB
treatment. Among them, the established H-TIIC subtype
has a good effect on the improvement of chemotherapy
resistance of osteosarcoma. This study could provide clinical
decision reference for treatment of osteosarcoma.
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