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Endoplasmic reticulum stress (ER stress) contributes to the development of pulmonary fibrosis, especially in type II alveolar
epithelial cells (AECs) apoptosis. ER stress also promotes NLRP3 inflammasome activation which is inhibited by upregulation
of cAMP/PKA pathway. However, it is confused whether ER stress-induced NLRP3 inflammasome activation and pyroptosis
in type II alveolar epithelial cells which exacerbates pulmonary fibrosis via a mechanism that is suppressed by cAMP/PKA
pathway. In our research, we explored that potential links among NLRP3 inflammasome, ER stress, and cAMP/PKA pathway
in type II AECs to explain the new mechanisms of pulmonary fibrosis. We found that in vivo, ER stress, NLRP3
inflammasome, and PKA upregulated in the alveolar epithelial area in animal models of pulmonary fibrosis. In addition,
immunofluorescence staining further confirmed that ER stress, NLRP3 inflammasome, and cAMP/PKA had potential links on
type II AECs in BLM group. In vitro, ER stress stimulated NLRP3 inflammasome activation, promoted pyroptosis, and also
upregulated cAMP/PKA pathway. Upregulation of cAMP/PKA pathway inhibited ER stress-induced pyroptosis of A549 cells
and vice versa. These results initially supported conclusion that ER stress may stimulate NLRP3 inflammasome activation and
pyroptosis in type II AECs, which exacerbated pulmonary fibrosis, and cAMP/PKA pathway may act as a feedback regulator.

1. Introduction

Endoplasmic reticulum stress (ER stress) promotes type II
alveolar epithelial cells (AECs) apoptosis, and a mechanism
refers to the progression of pulmonary fibrosis [1–3]. How-
ever, accumulating evidence showed that ER stress stimulated
NLRP3 inflammasome activation which linked to many
diseases, such as cardiovascular disease [4], diabetes mellitus
[5, 6], and steatohepatitis [7]. Indeed, previous investigations
have also confirmed that NLRP3 inflammasome activation

may contribute to disease progression in pulmonary fibrosis
[8–13]. Therefore, whether ER stress-induced NLRP3 inflam-
masome activation promotes type II AECs pyroptosis and
exacerbates pulmonary fibrosis needs to be established.

Cyclic adenosine monophosphate (cAMP) is a well-
characterized second messenger that activates phosphoryla-
tion of protein kinase A (PKA) and further regulates cell
signaling pathways [14]. In 2012, Lee et al. reported that
Ca2+ in macrophages inhibited the expression of intracellular
cAMP, resulting in NLRP3 inflammasome activation via
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calcium-sensing receptors [15]. Subsequently, numerous stud-
ies have confirmed that cAMP/PKA activation inhibited
NLRP3 inflammasome activation [16–20]. Interestingly, ER
stress may promote cAMP/PKA activation [21, 22]. Thus,
we speculated that the negative feedback of the cAMP/PKA
pathway regulated ER stress-induced NLRP3 inflammasome
activation and pyroptosis in type II AECs which may act as a
novel mechanism of pulmonary fibrosis.

In this study, we explored whether ER stress-induced
NLRP3 inflammasome activation promotes type II AECs
pyroptosis in a mouse model of bleomycin- (BLM-) induced
pulmonary fibrosis. Furthermore, we also investigated whether
ER stress upregulated cAMP/PKA pathway and whether
upregulation of the cAMP/PKA pathway suppressed ER
stress-induced NLRP3 inflammasome activation and pyropto-
sis in type II AECs which alleviated pulmonary fibrosis.

2. Methods

2.1. Ethics Statement. Animal experiments were approved by
ethics committee of Nanfang hospital and conform to the
relevant norms of animal ethics.

2.2. Animal Experiments.Male C57/BL mice (aged 5–8 weeks)
were obtained from animal breeding facility of SouthernMed-
ical University. Mice were divided into two groups with 10
mice per group: the BLM group and the control group. Mice
in the BLM group were given 5mg/kg bleomycin through tra-
cheal administration under anesthesia; the control group was
given the equivalent amount sterile saline in the same way.
All mice were sacrificed after 28 days.

2.3. Histological and Immunohistochemical Analyses. Immu-
nohistochemical staining of paraffin-embedded lung sections
(4μm) was performed with primary antibodies against
Grp78, Grp94, CHOP, NLRP3, IL-1β, ASC, GSDMD, and
PKA (1: 200, Proteintech, China). Immunoreactivity was visu-
alized using a commercial HRP-based method (GTVision TM
Detection System/Mo&Rb, Denmark).

2.4. Immunofluorescence Histochemistry. Immunofluorescent
staining of lung sections (4μm) was performed by incubation
overnight in low temperature with combinations of detective
primary antibodies. After being hatched with different species

and different wavelengths of secondary antibodies, images
were visualized under fluorescence microscope.

2.5. Immunocytochemistry. Cells cultured on glass coverslips
were fixed with paraformaldehyde, ruptured membrane with
Triton X-100 and sealed with FBS (fetal bovine serum), and
then hatched overnight at 4°C in a moist chamber with the
primary antibodies. PBST was used to clean the primary
antibody and hatch the fluorescent secondary antibody.
Finally, images were observed by fluorescence microscope
within 48 hours.

2.6. LDH Release Assay. LDH was released following cell
death because of disruption of the plasma damage. Cell via-
bility was assessed by the concentration of LDH release
which was detected by LDH cytotoxicity assay detection kit
(Beyotime, China).

2.7. CCK8 Assay. Cell viability was evaluated by CCK8 assay
(FUDE, China).

2.8. cAMP Measurement. The concentration of cAMP was
determined using an ELISA kit (SAB, America).

2.9. siRNA-Mediated Silencing of NLRP3. A549 cells were
incubated into 6- or 96-well plates and transfected with a
NLRP3 siRNA (siNLRP3 sense: 5′CCAAGAAUCCAAGU
GUAATT 3′; siNLRP3 antisense: UUACACUGUGGAUU
CUUGGCT) or a negative control using Lipofectamine 3000
(Invitrogen, America). Transfection efficiency was evaluated
by Western blot and qPCR analyses.

2.10. Western Blot Analysis.Western blot was performed in a
standardized procedure. PVDF membranes were incubated
with specific antibodies against Grp94, CHOP, NLRP3, IL-
1β, caspase-1, GSDMD, PKA, cleaved IL1β (1 : 1,000, Pro-
teintech, China), cleaved IL1β (1 : 10,00, Bioss, China), and
GADPH (1 : 10,000, FUDE, China).

2.11. Real-Time Quantitative-PCR Analysis. Total RNA was
extracted in a standardized procedure with the following
normalized detection methods. The expression of mRNA
was normalized against GADPH.
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Figure 1: (a) H&E and Masson’s trichrome staining (magnification 200×). (b) Relative Ashcroft score. ∗P < 0:05 vs. control group.
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Figure 2: ER stress and NLRP3 inflammasome activation increased in the alveolar region in the BLM group. (a–c) Immunochemical
staining of ER stress markers Grp78, Grp94, and CHOP and (d–g) NLRP3 inflammasome-related proteins NLRP3, IL1β, ASC, and N-
GSMDM.
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2.12. Statistical Analysis. T-test was utilized to evaluate differ-
ences between groups and ANVOA to evaluate differences
between more than two groups. P < 0:05 was considered as
significant difference.

3. Results

3.1. Elevation of ER Stress and NLRP3 Inflammasome in the
Mouse Model of BLM-Induced Pulmonary Fibrosis. BLM-
induced pulmonary fibrosis in mice was detected by hematox-
ylin and eosin and Masson’s trichrome staining (Figure 1(a)).

The fibrosis score was also increased in BLM-induced pulmo-
nary in mice compared with control group (Figure 1(b)).
Immunochemical staining (Figures 2(a)–2(c)) of ER stress
markers in the alveolar region revealed decreased expression
of Grp78 in the BLM model group, while expression of
Grp94 and CHOP increased, suggesting that loss of the chap-
erone protein Grp78 promoted ER stress, which was consis-
tent with previous reports [23]. Simultaneously, compared
with the control group, elevated alveolar expression of the
NLRP3 inflammasome-related protein NLRP3, IL-1β, ASC,
and N-GSDMD was detected in the BLM model group
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Figure 3: Coexpression of ER stress marker and NLRP3 inflammasome-related proteins in type II alveolar epithelial cells in BLM-induced
pulmonary fibrosis. Immunofluorescence staining showing (a, b) colocalization of SPC with the ER stress marker CHOP and the NLRP3
inflammasome-related protein NLRP3 and (c, d) colocalization of the ER stress marker CHOP with the NLRP3 inflammasome-related
protein NLRP3 and IL-1β.
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Figure 4: Continued.
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(Figures 2(d)–2(g)). Collectively, these observations indicated
elevations of ER stress and NLRP3 inflammasome activation
in BLM-induced pulmonary fibrosis.

3.2. Coexpression of ER Stress Marker and NLRP3
Inflammasome-Related Proteins in Type II Alveolar Epithelial
Cells in BLM-Induced Pulmonary Fibrosis. Double-staining
showed that the expression of the ER stress marker CHOP
and NLRP3 colocalized with surfactant protein C (SPC) in
the BLM model group, indicating that ER stress and NLRP3
inflammasome activation were closely linked in type II AECs
in BLM-induced pulmonary fibrosis (Figures 3(a) and 3(b)).
This conclusion was further supported by the increased colo-
calization of CHOP and NLRP3 with IL-1β (Figures 3(c)
and 3(d)).

3.3. Endoplasmic Reticulum Stress Promoted NLRP3
Inflammasome Activation and Pyroptosis in Type II Alveolar
Epithelial Cells. To investigate whether ER stress induced-
NLRP3 inflammasome activation in type II AECs, we stimu-
lated A549 cells with tunicamycin (the ER stress promoter)
in vitro. Western blot analysis showed that tunicamycin
increased the expression of the ER stress marker proteins
Grp94 and CHOP, and the NLRP3 inflammasome-associated
proteins NLRP3, ASC, cleaved caspase-1, cleaved IL-1β, and
N-GSDMD compared with the control group, while these
changes were suppressed by 4PBA (ER stress inhibitor)
(Figures 4(a)–4(e), Supplementary Figure 1). After
stimulation of A549 cells with tunicamycin for 24h, RT-
qPCR analysis showed that the relative mRNA expression
levels of Grp94, CHOP, NLRP3, ASC, IL1β, and IL18 were
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Figure 4: Endoplasmic reticulum stress promoted NLRP3 inflammasome activation and pyroptosis in type II alveolar epithelial cells. A549
cell lines were pretreated 4PBA (5mM) for 1 h or NLRP3 expression was knocked down by siRNA transfection before exposure to
tunicamycin (1 μg/mL) for 24 h. (a–e) Protein levels of the ER stress markers Grp94 and CHOP and the NLRP3 inflammasome-related
proteins NLRP3, ASC, cleaved caspase-1, cleaved IL1β, and N-GSDMD were detected by Western blot analysis. (f, g) Colocalization of
Grp94/NLRP3 and CHOP/NLRP3 was detected by immunofluorescence staining. (h) LDH release assay of cell viability. (i) Cell viability
was assessed by CCK8 assay. ∗P < 0:05 vs. control group, ∗∗P < 0:05 vs. tunicamycin group, (j) LDH release assay of cell viability, (k) cell
viability was assessed by CCK8 assay. n.s.: not significant vs. control group, ∗P < 0:05 vs. tunicamycin group.
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increased compared with control group, and these changes
were suppressed by 4PBA (Supplementary Figure 2). In
addition, double immunofluorescence staining showed that
the ER stress markers Grp94 and CHOP colocalized with
NLRP3 in A549 cells simulated with tunicamycin, which
further confirmed ER stress induced-NLRP3 inflammasome
activation (Figures 4(f) and 4(g)). Furthermore, LDH release
and CCK8 assays revealed that LDH release was increased
while cell viability was decreased stimulated with tunicamycin
compared with the control groups (Figures 4(h) and 4(i)).
Indeed, after confirming siRNA-mediated knockdown of
NLRP3 expression in A549 cells by Western blot and RT-
qPCR analyses (Supplementary Figure 3), we showed that
NLRP3 knockdown inhibited the release of LDH and decrease
of cell viability stimulated by tunicamycin, indicating that ER
stress promoted cell pyroptosis (Figures 4(j) and 4(k)).

3.3.1. Activation of the cAMP/PKA Pathway in BLM-Induced
Pulmonary Fibrosis. Immunochemical staining revealed the
expression of PKA elevated in the BLM model group com-
pared with the control group (Figure 5(a)). Double immuno-
fluorescence staining showed that colocalization of SPC with
cAMP and PKA increased in the BLM model group

(Figures 5(b) and 5(c)). Interestingly, colocalization of NLRP3
with cAMP also increased in the BLMmodel group, indicating
a potential link between the cAMP/PKA pathway and the
NLRP3 inflammasome in type II AECs in BLM-induced pul-
monary fibrosis.

3.4. ER Stress Induced Upregulation of the cAMP/PKA
Pathway in Type II AECs. Compared with the control group,
intracellular cAMP levels and the expression of PKA protein
were increased in the tunicamycin group (Figures 6(a) and
6(b)). Double immunofluorescence staining showed that the
ER stress marker Grp94 colocalized with cAMP and NLRP3
colocalized with cAMP (Figures 6(c) and 6(d)). Collectively,
these results indicated that ER stress induced activation of
the cAMP/PKA pathway and that the cAMP/PKA pathway
was closely associated with the NLRP3 inflammasome.

3.5. Inhibition of the cAMP/PKA Pathway Exacerbated Type
II AEC Death Induced by ER Stress.We pretreated A549 cells
with KH7 (adenylate cyclase inhibitor) and H89 (PKA
inhibitor) before tunicamycin treatment. KH7 and H89 fur-
ther increased the LDH release and decreased the cell viabil-
ity induced by ER stress (Figures 7(a)–7(d)). In addition, we
found that the adenylate activator forskolin reversed the
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Figure 5: Upregulation of the cAMP/PKA pathway in BLM-induced pulmonary fibrosis. (a) Immunohistochemical staining of PKA
protein. Immunofluorescence staining showing colocalization of (b, c) SPC/PKA and SPC/cAMP and (d) cAMP/NLRP3.
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release of LDH and decrease of cell viability induced by ER
stress (Figures 7(e) and 7(f)). Forskolin attenuated the levels
of NLRP3 and ASC induced by ER stress (Figure 7(g)).
These results indicated that the cAMP/PKA pathway
regulated ER stress-induced type II AEC pyroptosis via a
negative feedback mechanism.

4. Discussion

Our current study confirmed the potential links among ER
stress, NLRP3 inflammasome, and cAMP/PKA pathway in
type II AECs in pulmonary fibrosis. We further demon-
strated that ER stress induced-NLRP3 inflammasome activa-
tion upregulated cAMP/PKA pathway and pyroptosis in
A549 cells. In addition, we found that inhibition of the
cAMP/PKA pathway further promoted ER stress induced-
pyroptosis. These findings indicated that ER stress promoted
NLRP3 inflammasome activation and further facilitated
pyroptosis in type II AECs which resulted to pulmonary
fibrosis progression, and cAMP/PKA may act as a negative
feedback regulator (Figure 8).

ER stress-induced apoptosis of type II AECs has been
considered to be a crucial component of the mechanism of
pulmonary fibrosis [1–3]. However, numerous research have
found that ER stress could facilitate NLRP3 inflammasome
activation by promoting upregulation of TXNIP [5, 6], accu-
mulation of ROS [24], activation of NF-κB [25], potassium
efflux [26], and calcium influx [27]. Thus, we suspected that
there might be a similar mechanism in pulmonary fibrosis,
such as ER stress facilitating AECs pyroptosis by promoting
NLRP3 inflammasome. Compared with apoptosis, an
immune-silent programmed death [28], pyroptosis could
release IL1β and IL18 [29] which could interact with macro-
phages and fibroblast and therefore have more a strong
effects on mechanism of pulmonary fibrosis.

The adenylate cyclase activator forskolin has been
detected to alleviate the progression of pulmonary fibrosis
[30]. Importantly, it has been reported that cAMP levels
was decreased in lung fibroblasts in IPF due to repression
of Gαs-coupled receptors [31–33]. Furthermore, many stud-
ies found that stimulation of the cAMP/PKA pathway
suppressed NLRP3 inflammasome activation [15–20]. Inter-
estingly, ER stress may promote cAMP/PKA pathway acti-
vation [21, 22]. Simultaneously, we also found that ER
stress promoted cAMP/PKA pathway activation in type II
AECs. Furthermore, cAMP/PKA pathway activation inhib-
ited ER stress-induced NLRP3 inflammasome activation
and cell pyroptosis, while inhibition of the cAMP/PKA
pathway further exacerbated ER stress-induced cell death.
Our observations indicated that upregulation of cAMP/
PKA pathway may alleviate pulmonary fibrosis through
inhibiting ER stress-induced NLRP3 inflammasome activa-
tion in type II AECs.

Our study has certain deficiencies, which needs to be
further explored. A549 cell line is a neoplastic cell line,
although several researches have used it as a type II AECs
[34, 35]. In addition, it is unclear whether the upregulation
of cAMP/PKA pathway could suppress BLM-induced pul-
monary fibrosis through inhibiting ER stress-induced
pyroptosis of type II AECs. Furthermore, it is unknown
the mechanism by which ER stress upregulates cAMP/
PKA pathway.

In summary, our study initially confirmed ER stress-
induced NLRP3 inflammasome activation in type II AECs,
promoted cell pyroptosis, and ultimately exacerbated
pulmonary fibrosis. Furthermore, we also indicated that
cAMP/PKA may act as a negative feedback regulator of ER
stress-induced NLRP3 inflammasome activation, thereby
inhibiting type II AEC pyroptosis and eventually alleviating
pulmonary fibrosis. These findings gave new insights into
the mechanism of pulmonary fibrosis.
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Figure 6: ER stress induced upregulation of the cAMP/PKA pathway. (a) A549 cells were pretreated with 4PBA (5mM) for 1 h before
exposure to tunicamycin (1 μg/mL) for 24 h. cAMP was detected by ELISA. (b) Western blot showed PKA protein level. (c, d)
Immunofluorescence staining showed colocalization of cAMP/Grp94 and cAMP/NLRP3. ∗P < 0:05 vs. control group, ∗∗P < 0:05 vs.
tunicamycin group.
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Supplementary Materials

Supplementary Figure 1: changes of NLRP3-related protein
levels in type II alveolar epithelial cells induced by ER stress.
(a–e) Relative protein levels were detected by Western blot.
∗P < 0:05 vs. control group; ∗∗P < 0:05 vs. tunicamycin
group. Supplementary Figure 2: changes of NLRP3-related
mRNA levels in type II alveolar epithelial cells induced by
ER stress. (a–f) Relative mRNA levels were detected by
RT-qPCR. ∗P < 0:05 vs. control group; ∗∗P < 0:05 vs. tuni-
camycin group. Supplementary Figure 3: changes of NLRP3
protein and mRNA levels after NLRP3 knockdown. (a)
Western blot showing NLRP3 protein level. ∗P < 0:05 vs.
control group; ∗∗P < 0:05 vs. tunicamycin group. (b) Relative
expression of NLRP3 mRNA was detected by RT-qPCR. ∗

P < 0:05 vs. control group ∗∗P < 0:05 vs. tunicamycin group.
(Supplementary Materials)
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