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Background. Ovarian cancer (OC) is a malignant tumor that seriously threatens women’s health. Molecular classification based on
metabolic genes can reflect the deeper characteristics of ovarian cancer and provide support for prognostic evaluation and the
guidance of individualized treatment. Method. The metabolic subtypes were determined by consensus clustering and CDF. We
used the ssGSEA method to calculate the IFNγ score of each patient. The CIBERSORT method was used to evaluate the score
distribution and differential expression of 22 immune cells, and LDA was applied to establish a subtype classification feature
index. The Kaplan-Meier and ROC curves were generated to validate the prognostic performance of metabolic subtypes in
different cohorts. WGCNA was used to screen the coexpression modules associated with metabolic genes. Results. We obtained
three metabolic subtypes (MC1, MC2, and MC3). MC2 had the best prognosis, and MC1 and MC3 had poor prognoses.
Consistently, MC2 subtype had higher T cell lytic activity and lower angiogenesis, IFNγ, T cell dysfunction, and rejection
scores. TIDE analysis showed that MC2 patients were more likely to benefit from immunotherapy; MC1 patients were more
sensitive to immune checkpoint inhibitors and traditional chemotherapy drugs. The multiclass AUCs based on the RNASeq
and GSE cohorts were 0.93 and 0.84, respectively. Finally, we screened 11 potential gene markers related to the metabolic
characteristic index that could be used to indicate the prognosis of OC. Conclusion. Molecular subtypes related to metabolism
are crucial to comprehensively understand the molecular pathological characteristics related to metabolism for OC
development, explore reliable markers for prognosis, improve the OC staging system, and guide personalized treatment.

1. Introduction

Ovarian cancer (OC) is a malignant tumor that seriously
threatens women’s health. In 2020, 308,069 new cases of
OC worldwide and 193811 deaths due to OC were estimated
[1]. Because of the lack of effective screening methods and
early diagnosis measures, 70% of OC patients are diagnosed
in advanced stages (stage III or IV) [2], and 50% to 70%
relapse within 2 years after treatment. At the same time,
because OC is prone to recurrence, metastasis, and severe
drug resistance, the 5-year overall survival rate of patients
is only 25% to 35% [3, 4].

Increasingly understanding of the complexity of tumor
biology improved the current knowledge of tumor metabo-

lism. Changes in cell metabolism meet the needs of tissue
internal environment homeostasis and growth. In cancer,
malignant cells obtain metabolic adaptability through
responding to various endogenous and exogenous signals.
In the process of cancer progression, the metabolic charac-
teristics and preferences of the tumor will change. Therefore,
in the process of cancer development, how to use the meta-
bolic changes in the tumor microenvironment (TME) to
develop better treatment strategies has become the focus of
our attention. The occurrence and development of OC is a
complex multistage process in which the TME, particularly
the tumor immune microenvironment (TIME), plays a vital
role in the process of OC. The TME comprises cancer cells,
surrounding blood vessels, extracellular matrix, signaling
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molecules, fibroblasts, and infiltrating immune cells, [5].
Using the negative regulatory mechanism of the body’s
immune system, tumor cells can regulate the TME. A full
range of immunosuppressive states can be used to counter
the body’s antitumor immunity [6, 7]; individual differences
in the efficacy of tumor immunotherapy are closely related
to immunosuppression in the TME [5]. Stromal cells and
immune cells infiltrating tumor tissues constitute the main
components of the dynamic network of the TME. Research
has confirmed that the microenvironment of OC is closely
related to the growth and proliferation of tumor cells, forma-
tion of new blood vessels, tumor invasion and metastasis,
immunosuppression, and drug resistance [8, 9].

Currently, clinical pathological staging is commonly
used to assess the prognosis of patients with OC. Patients
with early (stage I-II) epithelial OC shows a significantly bet-
ter prognosis than that those at advanced stage (stage III-
IV), with an increased 5-year survival rate up to 60%~90%
after operation, according to the International Federation
of Obstetrics and Gynecology (FIGO) staging standards
[10]. However, an increasing number of studies have shown
that OC is a group of highly heterogeneous diseases with dif-
ferent molecular phenotypes, pathogeneses, and prognoses.
A single FIGO staging or WHO histological classification
has an effect on the prognosis. The predictive value is very
limited [11]. In 2004, based on the pathomorphology and
molecular genetic analysis of OC, Shih and Kurman [12]
established a dualistic model and classified OC into type I
and type II. Although traditional WHO histological classifi-
cation and binary classification have far-reaching signifi-
cance in the research process of OC, with the gradual in-
depth research of OC at the molecular genetic level in recent
years, its limitations have become increasingly obvious.
According to the WHO classification, the reproducibility
between observers is poor, particularly for the prognostic
evaluation of advanced OC, and it cannot be used as an
independent factor to predict the prognosis of OC [13].

With the development of gene chip and high-throughput
sequencing technologies, based on the big data of the GEO
and TCGA databases, the comprehensive and systematic anal-
yses of tumor-related genes and their regulatory mechanisms
using bioinformatics methods are an important part of the
current tumor genomics group [14]. Metabolic disorders, as
an essential characteristic of tumors [15], have an overall
impact on various tumor biological behaviors, including
occurrence, development, metastasis, and recurrence [16, 17].

In the present study, we have established a molecular
classification model of OC based on metabolic characteris-
tics and have constructed the immune characteristic index
of each subtype to supplement the deficiencies of the clinical
staging system. Our study findings will provide research
ideas and a theoretical basis for prognostic estimation and
individualized treatment of OC patients.

2. Materials and Methods

2.1. Expression Profile Data Preprocessing and Metabolism-
Related Genes. TCGA-Ovarian cancer cohort containing
RNASeq data and clinical information was downloaded

from The Cancer Genome Atlas database (TCGA, https://
portal.gdc.cancer.gov/). ICGC cohort with OC samples con-
taining RNASeq data and clinical information was obtained
from International Cancer Genome Consortium database
(ICGA, https://dcc.icgc.org/). Microarray chip data of
GSE26193, GSE30161, GSE63885, and GSE9891 (including
survival time) were obtained from Gene Expression Omni-
bus database (GEO, https://www.ncbi.nlm.nih.gov/geo/).
Fragments per kilobase million (FPKM) of RNASeq data
was converted to transcript per million (TPM) format. OC
samples without survival status and survival time were elim-
inated. For GSE data, probes were converted to gene symbol
and the probes that correspond to multiple genes were
removed. The median value was selected when one gene
had multiple probes.

“Remove Batch Effect” function in the limma package
[18] was used to remove batch effects among different
cohorts (Supplementary Figure S1). The expression profiles
of GSE26193, GSE30161, GSE63885, and GSE9891 were
combined (hereinafter referred to as GSE cohort). The
RNASeq data of TCGA and ICGC cohorts were combined
(hereinafter referred to as RNASeq cohort). After
preprocessing, 465 and 511 OC samples were remained in
RNASeq and GSE cohorts, respectively. In the metabolism-
related gene sets from previous studies [19], a total of 2752
genes were selected.

2.2. Classification of OC Subtypes. First, single-factor analysis
was used to screen prognostic-related “metabolic genes.” OC
samples were clustered using the ConsensusClusterPlus R
package [20], and stable clustering results were determined
according to the cumulative distribution function (CDF)
and CDF delta area curve, and the metabolism of OC was
constructed using the selected metabolic genes. Consensu-
sClusterPlus is a method based on resampling to verify the
rationality of clustering. The resampling method can disrupt
the original cohort. Thus, cluster analysis is performed on
each resampled sample and then comprehensively evaluated.
The results of subcluster analysis provide an assessment of
consistency (Consensus). The main purpose was to evaluate
the stability of clustering.

2.3. Single-Sample Gene Set Enrichment Analysis (ssGSEA).
ssGSEA is an extension of gene set enrichment analysis
(GSEA) [21]. Each ssGSEA enrichment score represents
the absolute degree of enrichment of genes in a specific gene
set in the sample. The gene expression values of a given sam-
ple were sorted and normalized, and the empirical cumula-
tive distribution function (ECDF) of the genes in the
signature and the remaining genes was used to generate an
enrichment score. To analyze the Th1/IFNγ expression dif-
ferences in metabolic subtypes, we used the ssGSEA method
to calculate the IFNγ score of each patient.

2.4. Features of Immune Infiltration. To study the immune
characteristics between different metabolic subtypes, we
used the CIBERSORT method to evaluate the score distribu-
tion and differential expression of 22 immune cells in the
RNASeq cohort. CIBERSORT [22] is a tool for
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deconvolution of the expression matrix of immune cell sub-
types based on the principle of linear support vector regres-
sion. Using the CIBERSORT function, the tissue
transcriptome sequencing expression profile was statistically
analyzed, and the deconvolution method was used to
denoise and remove the unknown mixture content to esti-
mate the relative proportion of 22 immune cell subpopula-
tions. According to the expression profile data of each
sequenced sample, the relative expression of specific genes
was analyzed to predict the proportion of 22 types of
immune cells.

2.5. Prediction of Immunotherapy/Chemotherapy and
Construction of the Subtype Characteristic Index. To compare
the similarities between different metabolic subtypes and the
GSE91061 cohort (melanoma cohort receiving anti-PD-1
and anti-CTLA-4 treatment) between immunotherapy
patients, we adopted a subclass mapping method (SubMap
analysis) [23]. This methodology allows to compare the simi-
larity of expression profiles between two groups. The
Bonferroni-corrected P values were employed to determine
the similarity between two groups, where the more obvious
significance represented the higher similarity of two them. R
package of pRRophetic [24] was applied to calculate the bio-
chemical half maximal inhibitory concentration (IC50) of tra-

ditional chemotherapy drugs (cisplatin, vinorelbine, embelin,
and pyrimethamine) in different subtypes.

To better quantify the immune characteristics of patients
in different sample cohorts, we used linear discriminant
analysis (LDA) to establish a subtype classification feature
index.

2.6. Weighted Correlation Network Analysis (WGCNA). We
selected the RNASeq cohort (MAD > 50%), used the R soft-
ware package WGCNA [25] to cluster the samples, and
screened the coexpression modules of metabolic genes. The
coexpression network conforms to the scale-free network
(correlation coefficient > 0:85). Based on TOM, we used
the average-linkage hierarchical clustering method to cluster
genes (gene network modulemin = 80). Using the dynamic
shear method, we calculated the eigengenes and merged
the modules into a new module (height = 0:25; DeepSplit =
3; minModuleSize = 80).

2.7. Statistical Analysis. Statistical analysis was performed
using R software (v4.1). To compare the measurement data
between groups, one-way analysis of variance or t test was
used for data that conform to a normal distribution, the
Kruskal-Wallis H test or Mann-Whitney U test was used
for nonnormal data; chi-squared test or Fisher’s exact
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Figure 1: The flow chart of this study.
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probability method was used for count data. In difference
analysis, test level α = 0:05 was determined and data with P
< 0:05 was selected for further analysis. Log-rank test was
conducted in Kaplan-Meier survival analysis and Cox
regression analysis. ANOVA test was performed among
three groups. In all statistical analysis, P < 0:05 was consid-
ered as significant.

3. Results

3.1. Molecular Subtype Based on Metabolic Gene
Construction. The work flow of this study is shown in
Figure 1. We first calculated the univariate analysis of meta-
bolic genes from the two cohorts. Univariate survival analy-
sis showed that 253 genes (RNASeq data) and 415 genes
(GSE microarray data) were associated with prognosis,
respectively. The number of overlapped genes was 50
(Figure 2(a) and Supplementary Table S1), indicating that
the consistency of metabolic genes is poor among cohorts
of different platforms. Therefore, we used the 50 metabolic
genes that were identified as prognostic-related for
subsequent analysis (log-rank test, P < 0:05).

In the RNASeq cohort, 465 OV samples were clustered
by consensus clustering (ConsensusClusterPlus), and the

optimal number of clusters was determined by the cumulative
distribution function (CDF). Using the CDF delta area curve,
we observed relatively stable clustering when the cluster was
selected as 3 (Figures 2(b) and 2(c)). Ideally, an optimal cluster
could be determined in the situation when a CDF curve mildly
descending and the area under CDF curve maintaining a high
value. Simultaneously, a small number of clusters were prior to
be chosen for effectively subtyping samples. Therefore, we
chose k = 3 to obtain three metabolic subtypes (metabolism
cluster, MC) with different expression patterns of the 50 genes
(Figure 2(d) and Supplementary Figure S2). Further analysis
of the prognostic characteristics of these three metabolic
subtypes showed that the prognosis of MC1 and MC3 was
poor, and the prognosis of MC2 was good, with significant
differences (log-rank test, P = 0:025, Figure 2(e)).
Additionally, we observed the same phenomenon in the GSE
queue using the same method (log-rank test, P < 0:0001,
Supplementary Figure S2, S4 and Figure 2(f)). These results
indicate that the three molecular subtypes based on
metabolic genes are replicable in different research cohorts.

3.2. Expression of Chemokines and Immune Checkpoint
Genes in Metabolic Subtype. To analyze the differences in
the expression of chemokines in the three metabolic
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Figure 2: Metabolism cluster in OV. (a) Intersection Venn diagram of metabolic genes with significant prognosis in the two cohorts.
(b and c) RNASeq cohort sample CDF curve and CDF delta area curve and delta area curve of consensus clustering, indicating the
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subtypes, we calculated the differences in these genes in the
RNASeq cohort (Figure 3(a)). Twenty-seven of the 33 che-
mokines (81.82%) vary in the subtypes. Significant differ-
ences were found in the immune system, suggesting that
the degree of immune cell infiltration of different metabolic
subtypes may be different. These differences may lead to dif-
ferences in tumor progression and immunotherapy effects.
Additionally, we calculated and compared the expression
of chemokine receptor genes in the metabolic subtypes
(Figure 3(b)) and found that 16 (88.89%) of the 18 chemo-
kine receptor genes were expressed in the metabolic sub-
types, with significant differences (P < 0:05).

To analyze the differences in Th1/IFNγ expression
among the three metabolic subtypes, we extracted Th1/IFNγ
gene signatures from previous studies [26], calculated the
IFNγ score of each patient using the ssGSEA method, and
observed each subtype. Significant differences were found
in the IFNγ scores among the three groups. The MC1 sub-
group had higher IFNγ scores, while the MC2 and MC3 sub-
groups had the lower IFNγ scores (Figure 3(c)).

Furthermore, according to a previous study by Rooney
et al. [27], the average value of the GZMA and PRF1 expres-
sion levels was used to evaluate the intratumoral immune T
cell lysis activity of each patient. Significant differences were
found among the three subgroups (Figure 3(d)). Interest-
ingly, MC1 and MC2 had the highest immune T cell lytic
activity, while MC3 had the lowest immune T cell lytic
activity.

The angiogenesis-related gene set obtained from a pre-
vious study [28] was used to evaluate the angiogenesis
score of each patient. Significant differences were found

among the subgroups (Figure 3(e)). The angiogenesis score
of MC1 was significantly higher than that of MC2 and
MC3.

Furthermore, we obtained 47 immune checkpoint-
related genes from previous studies [26] and analyzed their
differences among the metabolic subtypes. Forty-two
(89.36%) genes showed significant differences in the meta-
bolic subtypes (Figure 3(f)), and most of the immune
checkpoint-related genes were expressed at significantly
higher levels in MC1 and MC2 than in MC3. Among them,
T cell exhaustion markers, such as LAG3, CTLA4, PDCD1,
CD276, and HAVCR2, were highly expressed in MC1 sub-
type. Thus, different subgroups may have different responses
to immunotherapy.

3.3. Immune Characteristics and Pathway Characteristics
among the Metabolic Subtypes. In the RNASeq cohort, the
CIBERSORT method was used to evaluate the scores of 22
immune cells in each sample, observe the distribution of
these immune cell scores in the three subgroups and the dif-
ference results (Figures 4(a) and 4(b)), and observe the
immune cell scores in the three subgroups. Overall, signifi-
cant differences were found in the immune characteristics
among the subgroups. Activated NK cells and M1 macro-
phages were significantly highly expressed in the MC2 sub-
types, immune infiltration analysis showed that MC1 had
the highest immune microenvironment infiltration, and
MC3 had the lowest immune infiltration score (Figure 4(d)).

We analyzed the differences in the 10 oncogenic path-
ways of the three subgroups in the previous study [29],
revealing that 9 of the 10 pathways showed significant

ns ns ns ns ns

0

3

6

9

CD
44

TN
FR

SF
9

LA
G

3
CD

20
0

N
RP

1
CD

40
CD

40
LG

CD
27

6
V

SI
R

CD
86

H
H

LA
2

CD
48

CD
16

0
TN

FS
F4

CD
27

4
TN

FS
F1

8
TN

FR
SF

8
CD

80
CD

24
4

TN
FS

F9
CD

70
TN

FS
F1

4
A

D
O

RA
2A

ID
O

1
V

TC
N

1
H

A
V

CR
2

CD
27

TN
FR

SF
14

IC
O

SL
G

CT
LA

4
IC

O
S

CD
20

0R
1

LA
IR

1
KI

R3
D

L1
TM

IG
D

2
LG

A
LS

9
CD

28
TN

FS
F1

5
TI

G
IT

BT
LA

TN
FR

SF
4

TN
FR

SF
18

PD
CD

1
ID

O
2

PD
CD

1L
G

2
BT

N
L2

TN
FR

SF
25

G
en

e e
xp

re
ss

io
n

MC1
MC2
MC3

Category

⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎⁎ ⁎⁎⁎⁎⁎

(f)
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differences among the subtypes, including cell cycle, HIPPO,
NOTCH, TGF-Beta, RAS, WNT, and other pathways, with
low scores in the MC2 subtype (Figure 4(c)).

To observe the relationship among the three metabolic
molecular subtypes and six previous pancancer immunophe-
notypes, we extracted and compared the molecular subtype
data of these samples from previous studies [30]. Significant
differences were found in immunophenotyping (Figure 4(e)),
but no difference was observed between the survival curves
of OV samples in pancancer immunophenotyping. This result
suggested that the three subtypes can be used as a supplement
to the six subtypes in the previous study.

3.4. MC1 Subtype May Have T Cell Depletion in the Immune
Microenvironment. Based on the RNASeq data, we used
MCP-Counter to analyze the scores of 10 immune cells, the
ssGSEA function of GSEA to analyze the scores of 28 immune
cells [31], and ESTIMATE to evaluate the overall immune
microenvironment infiltration score. MCP-Counter analyzed
10 immune cell scores, and 8 were higher in MC1 subtype
(Figure 5(a)). ssGSEA analyzed 28 immune cell scores, and
MC1 had higher immune scores (Figure 5(b)). ESTIMATE
evaluation revealed that the scores of the three metabolic sub-
types were consistent with MCP-Counter and ssGSEA
(Figures 4(d) and 5(c) and 5(d)). This finding combined with
the previous immune checkpoint analysis further confirmed
that the MC1 subtype may show T cell exhaustion.

3.5. MC2 Metabolic Subtype May Benefit from
Immunotherapy. To evaluate the potential clinical effects
of immunotherapy among the different metabolic sub-

types, we used TIDE. The higher is the TIDE prediction
score, the higher is the possibility of immune escape, indi-
cating that the patient is less likely to benefit from immu-
notherapy. In the RNASeq cohort, the TIDE scores of
MC1 and MC3 (P < 0:01) were significantly higher than
those of MC2, suggesting that MC2 can benefit from
immunotherapy more than MC1 and MC3 (Figure 6(a)).
Comparing the predicted T cell dysfunction scores and T
cell rejection scores among the different metabolic molec-
ular subtypes (Figures 6(b) and 6(c)) revealed that the T
cell dysfunction scores predicted by MC2 and MC3 were
lower than those predicted by MC1. In the comparison
of the predicted T cell rejection scores, MC2 had the low-
est T cell rejection score, while MC1 had the highest T cell
rejection score. We also observed similar results on the
GSE cohort (Figures 6(d)–6(f)).

We further used the subclass mapping method to com-
pare the similarities among the three metabolic subtypes
and immunotherapy patients in the GSE91061 cohort.
The cohort analysis revealed that the MC1 subtype was
more sensitive to CTLA4 and PD1 inhibitors than the
other two subtypes (Figures 7(a) and 7(c)). We also ana-
lyzed the response of the different subtypes to the tradi-
tional chemotherapy drugs cisplatin, paclitaxel, embelin,
and sorafenib and found that the MC1 subtype was more
sensitive to these four drugs than the other subtypes
(Figures 7(b) and 7(d)).

3.6. LDA and Construction of the Metabolic Subtype
Characteristic Index. Considering that different subtypes
have different molecular characteristics, we better quantified
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Figure 5: (a) Comparison of the subtypes of 28 immune cell scores evaluated by ssGSEA. (b) Comparison of the subtypes of 10 immune cell
scores evaluated by MCP-Counter. (c) Comparison of the subtypes evaluated by the ESTIMATE of StromalScore score. (d) Comparison of
the subtypes by the ESTIMATE score evaluated by ssGSEA Subtype comparison. ANOVA test was conducted among three groups. ns: no
significance. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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the immune characteristics of patients in different sample
cohorts using linear discriminant analysis (LDA) to estab-
lish a subtype classification feature index. LDA can be
used as a supervised dimensionality reduction technology
that is often suitable for multiple conditions; specifically,
we used the 50 prognostic-related features in the RNASeq
cohort, performed z-transformation on each feature, and
used Fisher’s LDA optimization standard to specify the
centroid of each group. We dispersed as much as possible
and found a linear combination A that maximizes the
between-class variance of A relative to the within-class
variance. The first two features of the model clearly distin-
guished among samples of the different subtypes
(Figure 8(a)). Based on the LDA model, we calculated
the subtype feature index of each patient in the RNASeq
cohort. Significant differences were found in the feature
index of the different subtypes (Figure 8(b)). ROC analysis
showed the classification performance of the feature index
in the different subtypes (Figure 8(d)). The category com-
prehensive forecast AUC was 0.93. Applying the metabolic
subtype feature index to the GSE cohort, we observed that
the results were similar to those of the RNASeq cohort.
Significant differences were found in the feature index of
the different subtypes (Figure 8(c)). ROC analysis showed
that the comprehensive AUC was 0.84 (Figure 8(e)).

3.7. Identification of “Brown Module” of the Metabolic
Characteristic Index and Prognostic Genes. We used the R
software package WGCNA to identify the coexpression
modules of these immune genes. Specifically, we chose the
RNASeq expression profile cohort, first clustered the sam-

ples (Figure 9(a)), chose a soft threshold of 3, and screened
the coexpression modules. The coexpression network con-
forms to the scale-free network; that is, the logarithm log(k)
of the node with connection degree k and the logarithm
log ðPðkÞÞ of the probability of the node appearing are neg-
atively correlated, and the correlation coefficient is greater
than 0.85. To ensure that the network was a scale-free net-
work, we chose β = 3 (Figures 9(b) and 9(c)). In the next
step, the expression matrix was converted into an adjacency
matrix, and then, the adjacency matrix was converted into
a topological matrix. Based on TOM, we used the average-
linkage hierarchical clustering method to cluster genes
according to the standard of the hybrid dynamic shearing
tree and set the minimum number of genes in a gene net-
work module as 150. After determining the gene modules
using the dynamic shear method, we calculated the eigen-
genes of each module in turn, performed cluster analysis
on the modules, and merged the modules that were closer
to each other into a new module in the conditions of
height = 0:25, DeepSplit = 2, and minModuleSize = 150.
Seventeen modules were obtained (Figure 9(d)). Notably,
the gray module was a gene set that could not be aggre-
gated into other modules. The transcripts of each module
were counted (Figure 9(e)). We then analyzed the correla-
tion between each module and MC1, MC2, and MC3 to
figure out the key modules. The result displayed that
brown module was highly correlated with MC1 and MC2
with correlation coefficients of 0.77 and -0.58 (P = 1e − 90
and P = 7e − 43), respectively (Figure 9(f)). In addition,
turquoise module was closely associated with MC3
(R = −0:47, P = 1e − 26).
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Figure 6: (a) TIDE score difference among the metabolic subtypes of RNASeq. (b) T cell dysfunction score difference among the metabolic
subtypes of RNASeq. (c) T cell rejection score difference among the metabolic subtypes of RNASeq. (d) GSE TIDE score difference among
the metabolic subtypes. (e) T cell dysfunction score difference among the HCCDB18 metabolic subtypes. (f) T cell rejection score difference
among the GSE metabolic subtypes. (g) TIDE score difference among the GSE metabolic subtypes. ANOVA test was conducted among three
groups. ns: no significance. ∗∗P < 0:01, ∗∗∗P < 0:001, and ∗∗∗∗P < 0:0001.
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We calculated the correlation between the feature vector
of these 17 modules and the metabolic feature index
(Figure 10(a)), from which 17 blocks showed a significant
correlation with the immune feature index. Furthermore,

we selected modules that were significantly related to the
metabolic characteristic index for prognostic analysis
(Figure 10(b)). We further screened the brown module
based on our defined metabolic molecular subtypes and the
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Figure 7: (a) SubMap analysis in RNASeq cohort shows that MC1 is more sensitive to CTLA4 (Bonferroni-corrected P < 0:05). (b) Box
plots of the estimated IC50 in RNASeq cohort. (c) SubMap analysis in GSE cohort shows that MC1 is more sensitive to CTLA4
(Bonferroni-corrected P < 0:05). (d) Box plots of the estimated IC50 in GSE cohort. noR and R indicate no response and responsive to
immunotherapy, respectively. ANOVA test was conducted in (b) and (d). ∗∗P < 0:01 and ∗∗∗∗P < 0:0001.
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Figure 9: (a) Clustering tree of each sample. (b) Analysis of the scale-free fit index for various soft-thresholding powers (β). (c) Analysis of
the mean connectivity for various soft-thresholding powers. (d) Dendrogram of all differentially expressed genes/lncRNAs clustered based
on a dissimilarity measure (1-TOM). (e) Statistical analysis of the number of genes in each module. (f) Correlation between each module
and subtype.
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relationship between the module and prognosis. Based on
the module feature vector correlation coefficient > 0:8 and
significant prognostic genes as the module’s hub genes, as well
as selecting P < 0:05 as a threshold to filter, we finally identi-
fied 11 key genes in the brown module. These 11 genes were
GALNT5, COL8A1, FZD1, CCN4, ZEB1, ZCCHC24, CLMP,
LUM, FBN1, ITGA11, and ZNF469. To understand whether
the expression of 11 genes was associated with the immune
infiltration, we performed the Pearson correlation analysis
between their expression and the immune score in OC as well
as other 32 cancer types (Supplementary Figure S5). In ovarian
cancer, the expression of all 11 genes was significantly
associated with immune score. The correlation was also
found in other cancer types such as pancreatic
adenocarcinoma (PAAD), colon adenocarcinoma (COAD),
rectum adenocarcinoma (READ), prostate adenocarcinoma
(PRAD), and bladder urothelial carcinoma (BLCA).

We also divided patients into high and low expression
groups based on gene expression and analyzed differences
in the prognosis between the high and low gene expression
groups (Supplementary Figure S6). Furthermore, the
survival curves of the GALNT5, FZD1, ZEB1, ZCCHC24,
FBN1, and ITGA11 genes were significantly different
(P < 0:05). Next, we used the clusterProfiler package to
enrich the genes of the brown module (Figures 10(c)–10(f
)) and observed the interaction of our brown module with
ECM receptors, cell adhesion molecules (CAMs),
proteoglycans in cancer, and the PI3K-Akt signaling
pathway. Thus, the tumor process is closely related.

4. Discussion

In recent years, researchers have focused on elucidating the
pathogenesis and epidemiology of OC. Targeted diagnosis
and treatment that fully consider the molecular heterogene-
ity of malignant tumors have emerged as the development
direction of malignant tumors in the future, and precise clas-
sification based on the molecular level is the basis for indi-
vidualized diagnosis and treatment. Tumors are systemic
diseases with multifactor origins and multistep development.
Tumors are highly heterogeneous at the molecular level,
with tumors of the same histological morphology showing
inconsistent molecular genetic changes. Additionally, the
growth of malignant tumors must cooperate with tumor-
related stromal cells and the microenvironment required
by tumors. Therefore, studies should establish a prognostic
evaluation model for OC with clinicopathological character-
istics and gene clusters. The model not only essentially ana-
lyzes and types the occurrence of OC but also effectively
improves the prediction accuracy of the prognostic evalua-
tion model.

In a previous study, 285 cases of ovarian endometrioid
carcinoma and serous carcinoma have been profiled for
miRNA gene expression, and molecular subtype has been
classified by the K-means method and 6 subtypes (C1~C6)
were determined. Subtypes are predictive of high-grade
serous OC prognosis [32]. In 2011, the TCGA team analyzed
the whole genome of a large sample of OC and found that
96% of patients with high-grade serous OC had mutations
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Figure 10: (a) Correlation analysis of the LDA score and metabolic characteristic index. (b) Prognostic correlation of modules related to the
immune characteristic index. Log-rank test was conducted. (c) Functional enrichment analysis of brown module genes.
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in TP53, while few mutations of NF1, BRCA1, BRCA2, RB1,
and CDK12 were observed, but they were significant. Serous
OC is classified into immunoreactive, proliferative, differen-
tiated, and mesenchymal cell types according to mRNA
expression, and this type is related to the prognosis; the
immunoreactive type has the best prognosis, and the leaf cell
type has the worst prognosis [33]. Afterward, Jönsson et al.
further combined clinicopathological factors with gene
expression characteristics based on TCGA classification,
used de novo sequencing to classify high-grade serous OC
into 4 types, and confirmed the survival of each de novo sub-
type. Significant differences were observed over time [34].
These reported molecular classifications are mainly for
serous cancer, particularly high-grade serous cancer of the
ovary. Therefore, a more accurate molecular classification
scheme for OC that can be applied to all histological types
must be established.

In tumorigenesis, tumor microenvironment has essential
regulatory function. The tumor microenvironment formed
in the process of dynamic changes is regulated by various
immunosuppressive signals, and its heterogeneity can lead
to many aspects, including patient prognosis and treatment
response [35, 36]. Recently, an increasing number of studies
have found that tumor initiation and progression show close
association with the microenvironmental factors surround-
ing tumor cells. In the expression of these genes, significant
differences were found, indicating that the degree of immune
cell infiltration in different metabolic subtypes is different
and likely leading to differences in tumor progression and
immunotherapy effects. At the same time, tumor-related
cytokines and chemokines can recruit and polarize immune
subpopulations and differentiate into protumor phenotypes,
thereby promoting tumorigenesis.

In the present study, we tried to molecularly classify OC
at the metabolic level and obtained new findings. Based on
2752 metabolic genes to classify OC, these samples can be
divided into three metabolic subtypes (MC1, MC2, and
MC3), which show significant differences in prognosis
(Figure 2). Immune characteristics of different metabolic
subtypes varied, which may also be related to differential
responses to immunotherapy (Figure 4). In different
research queues, metabolic subtypes are highly reproducible.
An immune characteristic index is established based on met-
abolic subtypes, which can better indicate patients’ immune
characteristics as well as differential immune infiltration. A
metabolic characteristic index is related to immune check-
points. Moreover, we screened 11 gene markers potentially
associated with the metabolic characteristic index, based on
the coexpression network analysis. Among them, the differ-
ential expression of 6 genes, GALNT5, FZD1, ZEB1,
ZCCHC24, FBN1, and ITGA11, showed significant signifi-
cance for the prognosis of OC.

We have observed that NK cells and macrophages are
highly expressed in various metabolic subtypes, while
tumor-associated macrophages (TAMs) produce IL-10 and
TGF-β. IL-4 and IL-13 are polarized to the M2 macrophage
phenotype and support angiogenesis to drive tumor progres-
sion and recruit regulatory cells (Tregs) [37]. Poor cancer
prognosis, including OC, is often related to accumulation

of TAMs in the tumor area. Additionally, in the tumor
microenvironment, CD8+ T cells produce IFN-γ, stimulat-
ing upregulated expression ofPD-1/PD-L1 and IDO1 genes
[38, 39]. Studies have shown that upregulated PD-L1 expres-
sion in tumor cells, particularly when combined with PD-1
expressed by tumor infiltrating activated T cells, can induce
exhaustion and inhibit the antitumor immune activity of
these effector cells, thereby allowing tumor cell immunity
to escape [40]. The upregulation of IDO1 expression is pos-
itively correlated with a poor prognosis and tumor progres-
sion and metastasis [41, 42].

In our study, we calculated the IFNγ score, immune T
cell lytic activity, angiogenesis score, and immune
checkpoint-related gene expression in the three metabolic
subtypes. We found that the MC2 subtype with the best
prognosis has higher T cell lytic activity and lower angiogen-
esis, IFNγ, and TIDE scores, indicating that this subtype has
stronger immunogenicity and a good tumor microenviron-
ment and is more likely to benefit from immunotherapy.
In the differential analysis of immune checkpoint expression
among the different subtypes, the expression of most
immune checkpoint-related genes (LAG3, CTLA4, PDCD1,
CD276, and HAVCR2) was significantly increased in MC1
patients with a poor prognosis. This finding implies that T
cell exhaustion may exist in the MC1 subtype, likely explain-
ing why MC1 shows higher immune microenvironment
infiltration, but the prognosis is poor. Furthermore, the
MC1 subtype is more sensitive to immune checkpoint inhib-
itors (CTLA-4 and PD-1 inhibitors) than the other two sub-
types, further confirming this view.

Increasing evidence indicates that epigenetic changes
play an important role in the pathogenesis of cancer. Many
studies have reported epigenetic changes related to the clin-
ical prognosis of OC, making the molecular classification of
OC more complicated. Although the molecular prognostic
evaluation model of OC has broad clinical application pros-
pects and the relevant research results have been verified to a
certain extent, no unified and widely recognized molecular
prognostic evaluation model is available in clinical practice.
Van de Laar et al. believe that OCs of early and advanced
stages and different pathological types are different entities,
and the biological behavior of the tumor, treatment option,
prognostic factors and survival time are different, and differ-
ent prognostic models must establish [43]. Presently, contro-
versies exist concerning the scope of application of the
molecular prognostic assessment model. All the established
prognostic models are still in their infancy and require large
sample verification and clinical application research. This is
a huge task at this stage. When a prognostic model is not
well applicable to new populations, the new data should be
used to adjust the model first and recalibrated to improve
its stability and adaptability. Only through verification-
adjustment-reverification did the molecular prognostic
model obtained in this way have reliable accuracy [44].

Studies on the molecular classification and individual-
ized treatment of OC have only recently emerged. However,
according to the current clinical evidence, molecular classifi-
cation can be linked to individualized treatment and can
become an effective method for OC treatment. In summary,
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the clinical diagnosis and treatment of OC in the near future
will be based on molecular classification and prognostic
evaluation based on molecular prognostic models, and then
individualized molecular therapy will be performed, signifi-
cantly improving the therapeutic effect of OC and improving
the survival and prognosis of patients.

5. Conclusion

This study established a metabolic classification that can be
used as an independent prognostic factor for OC and analyzed
the differences in the characteristics of the tumor immune
microenvironment among the different subtypes. Three sub-
types performed significantly differential tumor microenvi-
ronment including immune cell infiltration and the
expression of immune checkpoints, suggesting that the
screened metabolic genes may play a role in immune modula-
tion. In addition, three subtypes were differentially sensitive to
immunotherapy, which could provide a guidance for assisting
decision-makings in personalized therapy. Moreover, we iden-
tified 11 key genes that may closely correlate with the meta-
bolic characteristic index, suggesting important roles of these
genes in cancer metabolism. The 11 genes had the potential
to be prognostic biomarkers for predicting OC prognosis,
and these genes may also be the potential targets for under-
standing further mechanism of metabolic genes in OC devel-
opment or therapeutic targets for treating OC.
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