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Preeclampsia remains a high cause of incidence and death for mothers and fetuses in developing nations. Preeclampsia has
numerous clinical and biochemical markers that have been tested, but they have failed to provide a conclusive diagnosis in the
different phases of the disease’s progression. Herein, our team intended to determine potential diagnostic biomarkers for
preeclampsia and analyzed associations with immune cells. Two microarray data from mankind’s preeclampsia and control
specimens were acquired from GSE75010 and GSE44711 datasets. Differentially expressed genes (DEGs) were identified
between77 normal samples and 80 preeclampsia samples. Candidate biomarkers were discovered using the least absolute
shrinkage and selection operator (LASSO) and the support vector machine recursive feature elimination (SVM-RFE) analysis.
The expressions and diagnostic values of genes in preeclampsia were further demonstrated in the GSE44711 dataset (8 control
samples and 8 preeclampsia samples). The correlation of critical genes with the proportion of immune cells was analyzed. We
identified 20 DEGs in preeclampsia. Diseases enriched by DEGs were mainly related to preeclampsia, gestational diabetes,
ovarian disease, female reproductive system disease, and endocrine system disease. COL17A1, FLT1, FSTL3, and SERPINA3
were identified as diagnostic genes of preeclampsia and validated in the GSE44711 datasets. Immune cell infiltration assays
suggested that COL17A1, FLT1, FSTL3, and SERPINA3 were related to several immune cells. Overall, we identified four
critical diagnostic genes in preeclampsia. Furthermore, more well-designed research studies with larger cohorts were warranted
to confirm the value of the four genes for the diagnosis and outcome of preeclampsia patients.

1. Introduction

Two percent to eight percent of all pregnant females have
the complication of preeclampsia, which occurs when high
blood pressure and proteinuria develop suddenly and with-
out warning during pregnancy [1]. It has long-term effects
on vascular and kidney health, as well as long-term distur-
bances of kidney and systemic physiology [2]. Although
maternal mortality is especially high in developing countries,
preeclampsia and its complications are one of the top four
causes of maternal death even in developed societies [3, 4].
In addition, although some clinical and biochemical pre-
eclampsia markers have been studied, they have been shown

to be ineffectual in delivering a definitive diagnosis through-
out the different phases of the disease’s progression [5, 6].
Therefore, it is quite necessary to discover novel biomarkers
which may provide more powerful and reliable diagnostic
information for preeclampsia management.

Generally, in the absence of a definitive cause, pre-
eclampsia is thought to be the result of a complex interplay
between a number of maternal genes, environment factors
(contamination, corpulence), and/or a deregulated immu-
noresponse on behalf of the mother in response to the pater-
nal component of the fetal genotype [7, 8]. Several candidate
biomarkers that have been associated with preeclampsia are
implicated in placentation, regulation of blood pressure,
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Figure 1: The dysregulated genes were shown in the (a) volcanic map and (b) heat map via analyzing GSE75010 datasets. 20 DEGs were
identified between preeclampsia samples and normal samples.
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Figure 2: Continued.
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inflammation, vascular formation, and function of endothe-
lial cells [9, 10]. These markers included TLR4, LEP, INHA,
Apo E, HIF-1a, HO-2, sFlt-1, PlGF, and EGF [11–13]. How-
ever, the sensitive biomarkers for prognosis and diagnosis
were limited.

More and more interest has been aroused in terms of
determining gene expression profiles on the foundation of
gene chips and high-throughput sequencing for diagnoses
and risk forecasts of substantial multifactor disorders, like
preeclampsia [14–16]. Herein, our team intended to deter-
mine diagnostic biomarkers in preeclampsia based on
machine learning.

2. Materials and Methods

2.1. Downloading and Preprocessing of Data. Firstly, our
team acquired a set of preeclampsia chip data, GSE75010
and GSE44711, from the GEO datasets. GSE75010 datasets
included 77 preeclampsia samples and 80 normal samples.
GSE44711 included 8 preeclampsia samples and 8 normal
samples. The data were processed via the following: (1) the
multiple probes were mapped to the same gene, (2) the null
probes were removed, (3) the probes were first mapped to
the gene, and (4) the acquired dataset was log2-
transformed quantile-normalized signal strength.

2.2. DEGs in Preeclampsia. Package limma in R was used to
study data on gene expression differences between pre-
eclampsia samples and normal samples, using thresholds of
∣log2 fold change ðFCÞ ∣ >0:8 and a modified P value of 0.05
or less.

2.3. Functional Enrichment Analysis of the DEGs. Then, GO
enrichment and KEGG pathway enrichment analyses were
completed to find the major biological attributes of DEGs.
Adjusted P < 0:05 had significance in statistics. The
“ggplot2” and “GOplot” packages in R were used to create
the visual GO enrichment maps generated by the annotation
analysis. Using R’s “clusterProfiler” and “DOSE” packages,
we ran enrichment analyses for disease ontology (DO) terms
on DEGs [17].

2.4. Candidate Diagnostic Biomarker Screening. Preeclamp-
sia diagnostic markers were classified using the least absolute
shrinkage and selection operator (LASSO) method and sup-
port vector machine (SVM) arithmetic. glmnet’s LASSO
package was used, with the response type set to binomial
and alpha set to 1. In addition, as a surveillant machine
learning approach to support vectors, the support vector
machine recursive feature elimination (SVM-RFE) identified
the optimal variates via the deletion of the SVM-produced
eigenvectors [18]. For the categorization analyses of the
screened markers in the preeclampsia diagnoses, the SVM
classifier from the R package e1071 was utilized.

2.5. Diagnostic Value of the Critical Genes in Preeclampsia.
Using mRNA expression data from 77 normal samples and
80 preeclampsia samples, we created a ROC curve to inves-
tigate the predictive usefulness of the suggested biomarkers.
Preeclampsia and control samples were separated using
ROC assays, which were further validated in the GSE44711
datasets which included 8 control samples and 8 preeclamp-
sia samples.
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Figure 2: (a) DO, (b) GO, and (c) KEGG pathway analyses of 20 DEG in preeclampsia.
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2.6. Immune Analysis. In each preeclampsia sample, CIBER-
SORT (http://cibersortx.stanford.edu) was utilized to iden-
tify the relative proportions of 22 invading immunocyte
types. Every specimen’s immunological scores were calcu-
lated using the ESTIMATE algorithm.

2.7. Analysis of Genes Identified and Immune Cells
Infiltrated. The association of diagnostic genes with the
amount of infiltration immunocytes was determined by the
use of Spearman’s rank correlative analyses in the R pro-

gram. The ggplot2 package’s chart approach was used to dis-
play the resulting correlations.

2.8. Statistical Analysis. The entire statistical analysis was
completed via R program 4.0.2. t-tests and Wilcoxon rank-
sum tests were used in the analysis of quantitative variables,
depending on the type of data. The relationships between the
expressions of the diagnostic genes and infiltration immuno-
cytes were studied via the utilization of Spearman’s correla-
tion. The P value less than 0.05 was considered statistically
significant.
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Figure 3: Selection procedure of diagnostic markers for preeclampsia diagnoses. (a) Tuning feature selection in the LASSO model. (b) An
illustration of biological marker screening through the SVM-RFE arithmetic. (c) Venn graph presenting 4 diagnostic biomarkers shared by
the LASSO and SVM-RFE arithmetic methods.
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Figure 4: The expression pattern of the 9 critical genes in preeclampsia. (a) FAM26D and SPX were lowly expressed in preeclampsia. (b–d)
FLT1, FSTL3, COL17A1, DIO2, BHLHE40, NPNT, and SERPINA3 were highly expressed in preeclampsia.
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3. Results

3.1. Determination of DEGs in Preeclampsia. To identify the
DEGs in preeclampsia, our team studied GSE75010 datasets
and screened 20 DEGs in preeclampsia, including 18 upreg-
ulated genes and 2 downregulated genes (Figures 1(a) and
1(b) and Table S1).

3.2. Functional Correlation Analysis. DO pathway enrich-
ment analysis was completed to explore the roles of DEGs.
The outcomes revealed that DEG-enriched illnesses were
predominantly related to preeclampsia, gestational diabetes,
ovarian disease, female reproductive system disease, and
endocrine system disease (Figure 2(a) and Table S2). The
results of GO analyses revealed that DEGs were mainly
enriched in gonadotropin secretion, regulation of the endo-
crine process, endocrine hormone secretion, the endoplas-
mic reticulum lumen, extracellular matrix blood
microparticles, dense core granules, hormonal activities,
peptide hormonal acceptor binding, and neural peptide hor-
monal activities (Figure 2(b) and Table S3). KEGG assays
revealed that DEGs were mainly enriched in the HIF-1 sig-
naling pathway (Figure 2(c)).

3.3. Determination and Verification of Diagnostic Genes in
Preeclampsia. Two diverse arithmetic methods were
employed to select underlying markers. The DEGs were

identified via the LASSO regressive arithmetic, leading to
the determination of 9 genes as diagnostic markers for pre-
eclampsia (Figure 3(a)). A subgroup of 5 characteristics
among the DEGs was identified via the SVM-RFE arithmetic
(Figure 3(b)). The 9 overlapped genes (FLT1, FSTL3,
COL17A1, DIO2, BHLHE40, FAM26D, NPNT, SERPINA3,
and SPX) between both arithmetic methods were eventually
acquired (Figure 3(c)). The expression of FAM26D and SPX
was distinctly downregulated in preeclampsia (Figure 4(a)),
and the expression of FLT1, FSTL3, COL17A1, DIO2,
BHLHE40, NPNT, and SERPINA3 was distinctly upregu-
lated in preeclampsia (Figures 4(b)–4(d)). In addition, to
produce more precise and dependable outcomes, the
GSE44711 dataset was employed to validate the expression
level of the 9 characteristics. The distinct upregulation of
COL17A1, SERPINA3, FSTL3, and FLT1 in preeclampsia
was further demonstrated (Figure 5). The diagnostic value
of nine overlapping genes was shown by the use of ROC
assays (Figure 6). Moreover, we further determined the diag-
nostic value of COL17A1, SERPINA3, FSTL3, and FLT1 in
GSE44711 datasets, and the results are shown in Figure 7.

3.4. Correlation between the Four Critical Genes and the
Immune Infiltration Level in Preeclampsia. For the purpose
of determining the proportion of infiltrating immune sub-
sets, the CIBERSORT method was used in conjunction with
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Figure 5: The expression pattern of the 9 critical genes was further demonstrated in GSE44711 datasets.
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21 different immune cell profiles built from samples of renal
fibrosis in order to determine the relationship between the
ISG20 and SERPINA expression and the immune microen-
vironment (Figures 8(a) and 8(b)). Several immune cells
were observed to exhibit a dysregulated level in preeclampsia
samples compared with normal samples (Figure 8(c)). We
further explored the relationship between the expression of
COL17A1, SERPINA3, FSTL3, and FLT1 and the immune
infiltration level. As shown in Figure 9(a) and Figure S1,
COL17A1 was positively correlated with plasma cells, eosin-
ophils, B cells naïve, macrophages M0, NK cells stimulated,
and T cells CD8 and related to NK cells resting in a negative
way, including B cells memory, macrophages M2, and neu-
trophils. FLT1 was positively correlated with plasma cells,
eosinophils, T cells CD8, B cells naïve, macrophages M0, T
cells CD4 naïve, and NK cells stimulated and related to B

cells memory in a negative way, including neutrophils and
macrophages M2 (Figure 9(b) and Figure S2). FSTL3 was
positively correlated with plasma cells, eosinophils, B cells
naïve, NK cells stimulated, macrophages M0, and T cells
CD8 and related to NK cells resting in a negative way,
including B cells memory, macrophages M2, and neutro-
phils (Figure 9(c) and Figure S3). Moreover, SERPINA3
was related to plasma cells in a positive way, including eosin-
ophils and NK cells activated, and related to macrophages
M2 in a negative way, including NK cells resting, monocytes,
B cells memory, and neutrophils (Figure 9(d) and Figure S4).

4. Discussion

Research on the pathogenesis of preeclampsia has unveiled
substantial pivotal molecule factors, like soluble endoglin
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Figure 6: The diagnostic value of the 9 critical genes was studied using ROC assays in GSE75010.
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(sEng), soluble FMS-like tyrosine kinase-1 (sFlt-1), placental
growth factor (PlGF), and vascular endothelial growth factor
(VEGF) [19–21]. Vascular growth factors VEGF and PlGF
are critical during embryonic development, while sFlt-1
and sEng exhibit antiangiogenic properties. Mounting stud-
ies have demonstrated that an imbalance between the above
genes is related to the occurrence of the disease [22, 23]. The
effects of those factors on the etiopathogenesis of the disease
offer a chance for them to be utilized as underlying markers.
However, more sensitive biomarkers were needed based on
different methods. In this study, we analyzed GSE75010
datasets and identified 20 DEGs between preeclampsia sam-
ples and normal samples, including FLT1, FSTL3,
COL17A1, SASH1, HTRA4, SH3BP5, LEP, DIO2,
BHLHE40, FAM26D, TMEM45A, NPNT, INHA, HK2,
SERPINA3, SPX, UCA1, TREM1, CRH, and CP. Interest-
ingly, DO pathway enrichment analyses based on the above
genes revealed that DEG-enriched illnesses were predomi-
nantly related to preeclampsia, gestational diabetes, ovarian
disease, and female reproductive system disease, highlighting

their involvement in the progression of preeclampsia. Our
findings suggested the above 20 genes may be new promis-
ing target genes.

As a machine learning approach on the foundation of
SVM, SVM-RFE is applied to observe the optimal variates
via the deletion of SVM-produced feature vectors [24].
When the classification error is the lowest, the variable
LASSO logistic regressive method is utilized to determine it
[25]. In this study, we used SVM-RFE and LASSO logistic
regressive methods to screen the possible biomarkers in pre-
eclampsia and identified nine abnormally expressed genes,
including FLT1, FSTL3, COL17A1, DIO2, BHLHE40,
FAM26D, NPNT, SERPINA3, and SPX. ROC assays con-
firmed their diagnostic value in distinguishing preeclampsia
samples from nontumor samples. To further demonstrate
the above results, we further analyzed GSE44711 datasets
and confirmed two overlapping genes in GSE44711 and
GSE75010, including COL17A1, FLT1, FSTL3, and SER-
PINA3. A previous study has reported that an sFlt-1 : PlGF
ratio of 38 or lower can be utilized to forecast the short-
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Figure 7: Among the 9 critical genes, four genes (COL17A1, FLT1, FSTL3, and SERPINA3) were further demonstrated to be diagnostic
genes in GSE44711.
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term absence of the disease in females whose syndromes are
suspected [26]. Biron-Shental et al. reported that hypoxia
culture remarkably reinforced the expressions of FSTL3 via
trophoblasts [27]. The downregulated FSTL3 remarkably
inhibited the proliferative, migratory, and invasive abilities
and lipidic storage whereas elevated the programmed cell
death of trophoblasts. The abnormal expressions of FSTL3
in the disease induced the aberrant function of trophoblasts,
revealing its participation in the etiopathogenesis of the dis-
ease. These findings indicated the possible function of FLT1
and FSTL3 in the progression of preeclampsia. However, the
expression and effects of COL17A1 and SERPINA3 have not
been investigated. More studies should focus on the four
genes.

The precise pathogenesis of preeclampsia remains elu-
sive; nevertheless, endothelial aberrant function, improper
angiogenetic activity, insufficient trophoblast invasive abil-
ity, and spiral uterine artery remodeling have been deter-
mined as pivotal contributing factors [28, 29]. The
improper stimulation of the intrinsic immunosystem and
following inflammatory events can induce placental aberrant
function or unsatisfactory maternal blood vessels’ adaptative
ability and facilitate the progression of the disease [30, 31].
With the fast advancement of technologies, biological infor-
mation has offered a potent method for selecting molecule
biomarkers, and CIBERSORT kits have fostered the analyses

of immunocyte infiltrative features of illnesses as well [32].
For the sake of investigating the effects of immunocyte infil-
tration on the disease, our team utilized CIBERSORT to fin-
ish an all-round assessment of the disease’s immune
infiltration. Our team discovered an elevated infiltration of
B cells memory, plasma cells, NK cells activated, and eosin-
ophils and a reduced infiltration of NK cells resting and neu-
trophils. Moreover, we observed that the four genes were
associated with many immunocytes. The literature reveals
that decidual NK cells facilitate trophoblast invasive ability
via excreting chemotactic factors, and decidual macrophages
act as antigen-presenting phagocytic cells, excreting cell fac-
tors and modulating the immune equilibrium between
mothers and fetuses [33]. T cells and dendritic cells (DCs)
are pivotal cells modulating the immune equilibrium [34,
35]. This demonstrates the significance of immunocyte infil-
tration in the etiopathogenesis and immunotyping of pre-
eclampsia. Our findings together with previous findings
suggested COL17A1, FLT1, FSTL3, and SERPINA3 may
influence the immune function of preeclampsia patients.

This study also has some shortcomings. Firstly, our team
acquired data merely from the GEO datasets, and the sample
size was not quite large. More research studies with bigger
sample sizes ought to complete to verify the discoveries
herein. Secondly, although 4 critical genes were identified
as potential biomarkers for preeclampsia immunotyping,
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no in vivo or in vitro studies were carried out, so this should
be a focus in future work.

5. Conclusion

Our study identified COL17A1, FLT1, FSTL3, and SER-
PINA3 as novel diagnostic biomarkers for preeclampsia
patients. In addition, their associations with immune cell
infiltration may promote the development of immunother-
apy in patients with preeclampsia.
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