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Backgrounds. Infection and inflammation play an important role in prostate cancer (PCa) etiology and pathogenesis. However, the
environmental drivers for PCa are not fully understood. Methods. In a cross-sectional study, we analyzed circulating fungal
microbiome in plasma samples from age and race-matched healthy control men (n = 34) and preoperative PCa patients (n = 31).
Results. The fungal community in the plasma exhibited differences between individuals with PCa and healthy controls according to
the beta diversity; there was no difference in the alpha diversity. Moreover, the relative abundance of several fungi differed between
the two study groups from the class to species levels. The most significant differences were Filobasidiales family, Pyronemataceae
family, and Cryptococcus ater species, which were enriched in PCa patients compared to controls. The increased Bipolaris genus
was associated with low prostate-specific antigen (PSA) levels, increased Sordariomycetes class was associated with severe
pathological stage, and decreased Phoma herbarum species was associated with disease relapse, compared to corresponding
controls. Several fungi from class to species levels were increased in the controls compared to patients. Conclusion. This is the first
study to show plasma distinct fungal microbiome and its associations with PSA levels, relapse, and pathology stages in PCa patients.

1. Background

Prostate cancer (PCa) is one of the most common causes of
morbidity andmortality in men. The upper part of the urethra
is surrounded by prostate. Retrograde translocation of micro-
organisms from the urethra to the prostate may lead to
chronic bacterial colonization of the prostate [1–4]. Other
possible ways of entry of pathogenic organisms into the pros-
tate may be through hematogenous and lymphatic dissemina-
tion from the distant locations of infection [5]. Human
microbiota affects cancer etiology, progression, and treatment
outcomes [6–10]. However, no report has been published on

the fungal microbiome in PCa patients in vivo. In this study,
we report that the plasma fungal microbiome was different
in PCa patients compared to controls.

2. Methods

2.1. Study Subjects. This study was approved by the Institu-
tional Review Board for Human Research at the Medical Uni-
versity of South Carolina (MUSC). Briefly, the plasma samples
were deidentified and obtained from theMUSC Biorepository.
PSA and pathological grades as well as follow-up clinical data
were obtained from existing medical records. PCa relapse was
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defined to have at least two measurements of blood PSA levels
above 0.2ng/mL after two years of prostatectomy.

2.2. Isolation of Microbial DNA from Plasma Samples.
Microbial DNA was extracted from 400μL of plasma and
endotoxin-free water control using the QIAamp UCP path-
ogen Mini kit (catalog number: 50214, Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions.
We used a DU 640 spectrophotometer (Beckman, city, state)
to determine DNA concentration.

2.3. Fungal Microbiome Analysis. The detailed method of fun-
gal sequencing was performed using the manufacturer’s rec-
ommended instructions (http://www.mrdnalab.com). Briefly,
forward primer ITS-1 (CTTGGTCATTTAGAGGAAGTAA)
and reverse primer ITS-2 (GCTGCGTTCTTCATCGATGC)
were used to amplify fungal ITS sequences. The amplicon
was sequenced by MR DNA (Shallowater, TX). Sequences
were demultiplexed and processed using the UPARSE opera-
tional taxonomic unit (OTU) identification pipeline of
USEARCH (Edgar) for filtering, removing singletons, and
assembling identical sequences. Sequencing data was proc-
essed via a proprietary analysis pipeline (MR DNA).
Sequences were denoised, and OTUs were defined by cluster-
ing at 3% divergence (97% similarity) followed by removal of
singleton sequences and chimeras. Final OTUswere taxonom-
ically classified using BLASTn against a database derived from
RDPII (http://rdp.cme.msu.edu) and NCBI (http://www.ncbi
.nlm.nih.gov). The final OTUs were calculated by the values
in plasma samples minus values in the water control.

2.4. Statistical Analysis. The OTU table of raw counts was
normalized to an OTU table of relative abundances, and taxa
of the same type were aggregated at the phylum, class, order,
family, and genus levels. Statistical analysis was performed by
GraphPad Prism 8.0 (GraphPad, San Diego, USA) using the
Mann-Whitney’s U test (unpaired) and ANOVA. P values
were adjusted for multiple comparisons by the Benjamini-
Hochberg false discovery rate (FDR) or Bonferroni procedure.
P values of ≤0.05 were considered statistically significant.

3. Results

3.1. Fungal Diversity of Plasma Fungal Microbiome in PCa
Patients and Healthy Control Men. The diversity of plasma
fungal microbiome in PCa patients and healthy control men
We first analyzed the alpha and beta diversities of the fungal
microbiome in plasma and found similar alpha diversity
between the two study groups (Figure 1(a)). However, the beta
diversity of the circulating fungal microbiome differed in PCa
patients and healthy control men (Figure 1(b)). These results
imply that the plasma fungal community differs in PCa
patients and controls.

3.2. Differences in the Relative Abundance of Fungal Classes,
Families, Order, and Species in PCa Patients Compared to
Controls. At the class level, Sordariomycetes was significantly
increased in patients with PCa compared to controls
(P = 0:006, Figure 2(a)). In contrast, class Dothideomycetes
was significantly decreased in PCa patients compared to con-
trols (P = 0:003, Figure 2(a)). At the order level, Capnodiales
was significantly enriched in the healthy control (P < 0:0001,
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Figure 1: Alpha and beta diversities in prostate cancer patients and healthy men. (a) Alpha diversity and (b) beta diversity of plasma
microbiome.
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Figure 2: Continued.
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Figure 2(b)). At the family level, Filobasidiales and Pyronema-
taceaewere significantly increased in PCa patients compared to
controls (P < 0:001, Figure 2(c)). In contrast, family Cladospor-
iaceae was reduced in PCa patients compared to controls
(P < 0:001, Figure 2(c)). At the genus level, Cladosporium was
enriched in the healthy control group compared to patients
(P < 0:001, Figure 2(d)). At the species level, Cryptococcus ater
was increased in PCa patients compared to controls
(P < 0:0001, Figure 2(e)), and Cladosporium cladosporioides
was decreased in patients compared to healthy controls
(P < 0:0001, Figure 2(e)).

3.3. Circulating Fungal Microbiome and PCa Pathogenesis.
Among PCa patients, the enrichment of class Sordariomy-
cetes was significantly increased in patients with advanced
pathological grade (pT3 or pT4) compared to patients with
pathological grades equal or less than pT2 (P = 0:003,
Figure 3(a)). The genus Bipolaris was enriched in PCa
patients with PSA levels lower than 10ng/mL in plasma
compared to patients with PSA levels equal or above 10ng/
mL (P = 0:03, Figure 3(b)). The abundance of species Phoma
herbarum tended to increase in PCa patients without relapse
from prostatectomy after two years of following-up com-
pared to patients with relapse, but there was no statistical
significance (P = 0:076, Figure 3(c)).

4. Discussion

Blood and tissues were previously thought sterile unless in
the condition of sepsis or infection. However, several recent
studies show evidence of a systemic microbiome in the blood
and tissues from individuals with cancer as well as other dis-
eases [1–5, 11]. In cancer, microbial communities that
occupy specific cancer areas often differ from those at the
mucosal sites. Research interests have focused on the role
of cancer-associated microbial enrichment in cancer etiology
and disease progression [12–16]. Furthermore, infection and
inflammation in the prostate are associated with an
increased risk of PCa [7], which may result from the infiltra-
tion of inflammatory cells to the prostatic and may contrib-
ute to the development and progression of PCa [13]. Indeed,
microbial toll-like receptor downstream inflammatory cyto-
kines (e.g., IL-6) contribute to proliferative inflammatory
atrophy (PIA), which is a precursor of prostatic intraepithe-
lial neoplasia (PIN) and PCa [11, 14].

In this study, we found that class Sordariomycetes was
significantly increased in patients with PCa compared with
controls, as well as in patients with high pathological grade
of tumor compared to patients with low pathological grade.
However, a previous study shows that the chemical extract
of class Sordariomycetes has cytotoxicity activity against
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Figure 2: Plasma fungal microbiome in PCa patients and healthy men. (a) In the class level, enrichment of Sordariomycetes was increased in
the PCa group (P = 0:006) and enrichment of Dothideomycetes (P = 0:003) was decreased in PCa patients compared to healthy controls. (b)
Order Capnodiales was enriched in healthy controls compared to patients (P < 0:0001). (c) Family Filobasidiales and Pyronemataceae
(P < 0:001) were enriched in PCa patients, and family Cladosporiaceae was reduced in PCa patients compared to controls (P < 0:001).
(d) Genus Cladosporium was enriched in healthy controls compared to patients (P < 0:001). (e) Species Cryptococcus ater level was
enriched in PCa patients compared to controls (P < 0:0001), and species Cladosporium cladosporioides was enriched in healthy controls
compared to patients (P < 0:0001).
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PC3 cells [13]. We do not know whether the translocated
components of Sordariomycetes in PCa in vivo were different
from those in previous in vitro studies. Moreover, family
Filobasidiales, family Pyronemataceae, and species Crypto-
coccus ater were increased in PCa patients compared to con-
trols. However, there are no relevant studies to analyze the
relationship between these fungi and cancer pathology as
well as the mechanisms involved. In contrast, the species
Cladosporium cladosporioides was enriched in the healthy
control group compared to patients. In previous studies
using McF-7 cells, cladosporol A isolated from Cladosporium
cladosporioides prevented microtubule activation, induced
cell apoptosis through ROS-mediated mitochondrial path-
way, and upregulated the expression of p21 protein, which
contributes to apoptosis and autophagy death of human
breast cancer cells [14]. Thus, Cladosporium cladosporioides
may have a similar mechanism to prevent PCa and reduce
disease progression. In another study, demethoxyfumitre-
morgin C isolated from Marine fungus Aspergillus fumigatus
induced apoptosis of PC3 cells, one of the human PCa cell
lines via caspase cascade response and RAS/Bcl-2-related
signaling pathways [15]. These studies and ours may have
implications for the effect of fungi or fungal antigen translo-
cation to the circulation on PCa development and progres-
sion, but investigations are needed to verify their function.

There are several limitations in this study. First, the sam-
ples in this study were only peripheral blood without other
key specimens including pathological tissues, feces, urine,
or saliva to compare with the results from plasma. Fungi
can be found in the gut, oral cavity, and urine [2, 7, 16]; thus,
these samples may be important for identifying the origin,
sources, or locations and investigating the translocation
mechanism of fungi related to PCa. Secondly, the sample
size was relatively small and it is a cross-sectional study,
which prevent us to draw further conclusions. Nonetheless,
this is the first study to show fungal microbiome in plasma
from patients with PCa and healthy controls in vivo, which
may open a potent important field in PCa in the future.

5. Conclusion

This is the first study to show the plasma fungal micro-
biome in patients with PCa and healthy controls, poten-
tially opening a powerful and important area for future
PCa research.

Abbreviations
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Figure 3: Associations between plasma fungal microbiome and PCa pathogenesis. (a) Increased abundance of class Sordariomycetes was
observed in PCa patients with advanced stage tumor (pT3 to pT4) compared to healthy controls. (b) Enriched plasma Bipolaris genus in
patients with low level of PSA compared to patients with high level of PSA. Low PSA level was identified as equal or lower than 10 ng/
mL, and high PSA was identified as higher than 10 ng/mL. (c) Enriched plasma Phoma herbarum species was found in patients without
relapse compared to patients with relapse after two years of prostatectomy.
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