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Objective. Cuproptosis is a newly discovered copper-independent cell death modality, and limited evidence suggests the critical
implications in human cancers. Nonetheless, the clinical impacts of cuproptosis-relevant lncRNAs in lung adenocarcinoma
(LUAD) remain largely ill-defined. The present study was aimed at defining a cuproptosis-relevant lncRNA signature for
LUAD and discuss the clinical utility. Methods. We collected transcriptome expression profiling, clinical information, somatic
mutation, and copy number variations from TCGA-LUAD cohort retrospectively. The genetic alterations of cuproptosis genes
were systematically assessed across LUAD, and cuproptosis-relevant lncRNAs were screened for defining a LASSO prognostic
model. Genomic alterations, immunological and stemness features, and therapeutic sensitivity were studied with a series of
computational approaches. Results. Cuproptosis genes displayed aberrant expression and widespread genomic alterations across
LUAD, potentially modulated by m6A/m5C/m1A RNA modification mechanisms. We defined a cuproptosis-relevant lncRNA
signature, with a reliable efficacy in predicting clinical outcomes. High-risk subset displayed higher somatic mutations, CNVs,
TMB, SNV neoantigens, aneuploidy score, CTA score, homologous recombination defects, and intratumor heterogeneity,
cytolytic activity, CD8+ T effector, and antigen processing machinery, proving that this subset might benefit from
immunotherapy. Increased stemness indexes and activity of oncogenic pathways might contribute to undesirable prognostic
outcomes for high-risk subset. Additionally, high-risk patients generally exhibited higher response to chemotherapeutic agents
(cisplatin, etc.). We also predicted several small molecule compounds (GSK461364, KX2-391, etc.) for treating this subset.
Conclusion. Accordingly, this cuproptosis-relevant lncRNA signature offers an efficient approach to identify and characterize
diverse prognosis, genomic alterations, and treatment outcomes in LUAD, thus potentially assisting personalized therapy.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths
globally, with 1.8 million deaths in 2020 [1]. This disease
leads to more deaths in contrast to breast, cervical, and
colorectal cancer combined [2]. When asymptomatic early

(I/II) disease with potentially curative treatment, >70% of
cases diagnosed with advanced (III/IV) disease have rarely
curative treatment, highly contributing to undesirable prog-
nostic outcomes, with only 16.2% of cases diagnosed with
the disease alive at 5 years [3]. About 85% of tumors are
diagnosed as non-small-cell lung cancer (NSCLC), with
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lung adenocarcinoma (LUAD) as the most prevalent sub-
type [4]. The incidence of LUAD is increasing among cur-
rent smokers, former smokers, and even nonsmokers [5].
LUAD tumors are highly heterogeneous, as proven by
thousands of distinct mutations identified per cancer
genome. Molecular genetic studies have revealed crucial
driver oncogenes (TP53, TTN, KRAS, etc.) that may be
druggable targets for newly developed therapeutic agents
[6]. Driver mutation-based LUAD subtypes are of benefit
in clinical settings and are becoming more frequent [7, 8].
Nonetheless, driver mutations themselves do not appear
to be a direct determinant of malignancy, because subtypes
on the basis of driver mutations alone cannot be sufficient
to support prognostic outcomes. In addition, traditional
histological subtypes are limited in determining histogene-
sis and malignancy.

Copper is an essential mineral nutrient, and its redox
properties are both beneficial and toxic to cells [9]. It is an
essential cofactor for enzymes mediating numerous key cel-
lular functions, mitochondrial respiration, antioxidant
defense, hormone, neurotransmitter, and pigment biosyn-
thesis. [9]. However, dysregulated copper storage induces
oxidative stress and cytotoxicity. Accumulated evidence
demonstrates that copper is implicated in cellular prolifera-
tion and deaths and constitutes an exploitable dependency
in LUAD [10]. For instance, copper is required for the
autophagic kinases ULK1/2 to trigger LUAD [11]. Meta-
analysis reveals that high serum copper level is linked to
the increased risk of lung cancer [12]. Recently, Tsvetkov
et al. discovered a novel form of cell death triggered by tar-
geted accumulation of copper in mitochondria that induces
lipoylated tricarboxylic acid cycle enzyme aggregation
through directly binding to copper [13]. Thus, determining
the molecular features of cuproptosis-relevant genes may
assist in elucidating the heterogeneity of LUAD. Evidence
suggests that cuproptosis-relevant genes exhibit aberrant
expression and correlate to prognostic outcomes for clear
cell renal cell carcinoma [14] and hepatocellular carcinoma
[15]. The clinical impacts and mechanisms of cuproptosis
in most cancer types remain largely ill-defined. Long non-
coding RNAs (lncRNAs) are transcripts with >200 nucleo-
tides but not translated into proteins, which modulate gene
expression at multiple levels and participate in diverse bio-
logical processes, especially cell death mechanisms [16].
Thus, relationships of lncRNA with cuproptosis have poten-
tial implications in clinical research of LUAD. The present
study defined a cuproptosis-relevant lncRNA signature that
unveiled diverse prognostic outcomes, genomic alterations,
and therapeutic implications in LUAD, which might assist
guide personalized therapy.

2. Materials and Methods

2.1. Data and Resources. Transcriptome expression profiling
(containing 535 LUAD and 59 normal tissues), somatic
mutation data (mutation annotation format), and copy
number variations (CNVs) were acquired from TCGA-
LUAD cohort (https://portal.gdc.cancer.gov/). In addition,
we collected the relevant clinical features (Supplementary

table 1), with the removal of patients without survival infor-
mation. The annotation file of Genome Reference Consor-
tium Human Build 38 (GRCh38) from the GENCODE
(version 36) was adopted to annotate the lncRNAs. The
tumor mutation burden (TMB), single-nucleotide variation
(SNV) neoantigens, aneuploidy score, cancer-testis antigen
(CTA) score, homologous recombination defects, intratu-
mor heterogeneity, immune checkpoints, and cytolytic activ-
ity- and IFN-γ response-relevant markers of TCGA-LUAD
patients were acquired from the UCSC Xena database or
previously published literature [17]. Stemness scores
(mDNAsi and mRNAsi) were computed based on one-
class logistic regression machine learning algorithm [18].
Supplementary figure 1 illustrates the schematic diagram of
the study design.

2.2. Gene Set of Cuproptosis. Ten cuproptosis genes
CDKN2A, FDX1, DLD, DLAT, LIAS, GLS, LIPT1, MTF1,
PDHA1, and PDHB were acquired from a previously pub-
lished literature [13]. Univariate-cox regression approach
was adopted to analyze the relationships between cupropto-
sis genes and LUAD patients’ overall survival (OS) utilizing
survival package. At the transcriptional levels, associations
between cuproptosis genes were estimated across LUAD
utilizing Pearson’s correlation test. The STRING website
(https://string-db.org/) integrates all known and predicted
interactions between proteins, covering physical and func-
tional associations [19]. Interactions between proteins from
cuproptosis genes were inferred through the STRING web-
site by default, which were visualized through Cytoscape
software [20].

2.3. Genetic Alteration Analysis. The mutation data were
analyzed and visualized utilizing maftools package with
default parameter settings [21]. CNVs were evaluated utiliz-
ing GISTIC2.0 for identifying arm-level alterations [22]. To
quantify the overall fraction of genomic alterations, the frac-
tions of genome altered, gained, and lost were computed,
respectively.

2.4. Selection of Cuproptosis-Relevant lncRNAs. The relation-
ships of cuproptosis genes with lncRNAs were computed
through adopting Pearson’s correlation test. Cuproptosis-
relevant lncRNAs were screened in accordance with the cri-
teria of jcorrelation efficientj > 0:4 and p value < 0.0001.

2.5. Definition of a Cuproptosis-Relevant lncRNA Signature.
Prognostic cuproptosis-relevant lncRNAs with p < 0:05
were selected through univariate-cox regression approach,
which were incorporated into least absolute shrinkage and
selection operator (LASSO). This analysis was achieved uti-
lizing glmnet package [23]. The optimal λ was selected to
minimize the overfitting. The cuproptosis-relevant lncRNA
signature was computed with the formula: risk score =
∑n

i=1Li ∗ βi, where n indicates the number of prognostic
cuproptosis-relevant lncRNAs; Li denotes the expression
value of lncRNA i; and βi represents the regression coeffi-
cient of lncRNA i. With the median score as the cut-off
value, we classified LUAD cases as low- and high-risk
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Figure 1: Landscape of transcriptional, genetic, and epitranscriptomic features and prognostic significance of cuproptosis genes across
LUAD. (a) Heatmap visualizing the transcriptional levels of cuproptosis genes across normal and LUAD tissues. (b) Forest diagram for
the univariate-cox regression results of cuproptosis genes with LUAD patients’ OS. (c) Pearson’s correlations between cuproptosis genes
at the transcriptional levels. (d) Associations between proteins from cuproptosis genes through the STRING website. (e) Waterfall plot
depicting the mutation events of cuproptosis genes across individual LUAD patients. Statistical plots of mutation events for each gene
are displayed in the right panel. Variant classifications are marked by unique colors. (f) Bar chart for the CNV frequency of cuproptosis
genes. Blue and red circles denote arm-level CNV gains and losses, respectively. (g–i) Heatmaps showing the interactions of m6A, m1A,
and m5C modifiers with cuproptosis genes across LUAD. ∗p < 0:05; ∗∗p < 0:01.
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subsets. Principal component analysis (PCA) was adopted
for verifying this classification.

2.6. Survival Analysis. Uni- and multivariate-cox regression
methods were implemented for investigating the relation-
ships of variables with OS. Hazard ratio, 95% confidence
interval together with p-value were visualized through ggfor-
est function. The OS, disease-free survival (DFS), disease-
specific survival (DSS), and progression-free survival (PFS)
between groups were estimated through Kaplan–Meier (K-
M) curves. Significant differences were computed with log-
rank test utilizing survival and survminer packages. Receiver
operating characteristic curves (ROCs) were drawn to pres-
ent the prediction efficacy with survivalROC package. LUAD
patients were stratified by clinicopathological parameters,
and survival analysis was conducted between low- and
high-risk subsets in each subgroup.

2.7. Generation of a Nomogram Scoring System. A nomo-
gram was created through incorporating the cuproptosis-
relevant lncRNA signature and clinicopathological parame-
ters utilizing rms package. In this scoring system, each vari-
able was assigned a score, and the total score was computed
through adding the scores from all variables in individuals.
Calibration curves were drawn to evaluate the consistency
of the nomogram-predicted and clinically observed OS
outcomes.

2.8. Tumor-Infiltrating Immune Cells. TIMER [24], CIBER-
SORT [25], CIBERSORT-ABS, QUANTISEQ [26], MCP-
counter [27], xCell [28], and EPIC [29] approaches were
adopted to infer the abundance of tumor-infiltrating
immune cells across LUAD.

2.9. Multiomics Analysis of Immunomodulators. Multiomics
regulation landscape (including mRNA expression, CNV,
and DNA methylation) of immunomodulators was analyzed.
For surveying associations of mRNA expression of immuno-
modulators with DNA methylation, each methylation site

Table 1: Fifty-five cuproptosis-relevant lncRNAs in LUAD.

Cuproptosis gene LncRNA Correlation p value

MTF1 AC024075.3 0.4368 2:07E − 25
FDX1 SLFNL1-AS1 0.5978 3:31E − 51
MTF1 LINC02035 0.4189 2:69E − 23
LIAS AC008966.1 0.4154 6:71E − 23
DLD AC099850.3 0.4306 1:15E − 24
DLAT AC099850.3 0.4479 8:90E − 27
FDX1 AC005532.1 0.6145 8:51E − 55
DLAT AC115837.1 0.4322 7:45E − 25
FDX1 AC110619.1 0.4223 1:07E − 23
GLS AC019080.5 0.4164 5:11E − 23
FDX1 AC092809.2 0.8266 3:64E − 130
MTF1 NORAD 0.443 3:62E − 26
MTF1 AC008764.2 0.4138 1:00E − 22
MTF1 AL049840.3 0.4292 1:71E − 24
GLS AC008063.1 0.5563 3:50E − 43
MTF1 AC073046.1 0.5224 2:09E − 37
MTF1 AL035587.1 0.4301 1:31E − 24
FDX1 AC245041.2 0.6145 8:57E − 55
GLS AC012020.1 0.4377 1:62E − 25
LIPT1 OSER1-DT 0.4231 8:87E − 24
DLAT AC005288.1 0.4073 5:34E − 22
MTF1 AC005288.1 0.428 2:34E − 24
GLS AL354989.1 0.4637 8:08E − 29
MTF1 AC073073.2 0.4027 1:69E − 21
GLS SP2-AS1 0.4495 5:54E − 27
MTF1 AC005034.5 0.4184 3:01E − 23
MTF1 LINC01128 0.4058 7:79E − 22
MTF1 AL049840.2 0.4522 2:57E − 27
MTF1 AC012313.5 0.4349 3:50E − 25
FDX1 AL161431.1 0.607 3:61E − 53
LIAS LINC00467 0.4128 1:31E − 22
GLS AL158166.2 0.4357 2:86E − 25
MTF1 AL122010.1 0.4016 2:24E − 21
MTF1 AC024075.1 0.4938 5:20E − 33
MTF1 AL731577.2 0.523 1:67E − 37
FDX1 AC026785.3 0.4953 3:11E − 33
GLS PRR7-AS1 0.4248 5:65E − 24
MTF1 AC108010.1 0.4496 5:36E − 27
FDX1 LINC00189 0.5468 1:72E − 41
LIAS SRP14-AS1 0.4359 2:70E − 25
MTF1 AC098484.1 0.45 4:86E − 27
FDX1 AC090541.1 0.6222 1:67E − 56
MTF1 LINC01963 0.4266 3:41E − 24

Table 1: Continued.

Cuproptosis gene LncRNA Correlation p value

GLS AC000123.1 0.4008 2:69E − 21
CDKN2A MELTF-AS1 0.4042 1:17E − 21
GLS PPP1R12A-AS1 0.4023 1:86E − 21
MTF1 AC068768.1 0.4746 2:77E − 30
MTF1 Z68871.1 0.4857 7:66E − 32
MTF1 AC105206.2 0.4015 2:28E − 21
FDX1 LINC00592 0.4133 1:15E − 22
MTF1 AP003486.1 0.4943 4:43E − 33
MTF1 STARD7-AS1 0.4353 3:16E − 25
GLS AC005540.1 0.5446 4:17E − 41
MTF1 AL160006.1 0.5039 1:65E − 34
GLS AL158166.1 0.4251 5:13E − 24
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was matched to the corresponding gene. Afterwards, we com-
puted Spearman’s correlations of each immunomodulator
expression with the corresponding methylation sites. A single
correlation value for each gene was acquired through averag-
ing the correlation coefficients.

2.10. Gene Set Variation Analysis (GSVA). GSVA was
adopted to probe the potential biological function variations
of low- and high-risk subsets [30]. The gene sets of Hallmark
and known biological processes were acquired from the
Molecular Signatures Database or previously published liter-
ature [31].

2.11. Prediction of Clinical Chemotherapeutic Response.
Through adopting pRRophetic algorithm [32], clinical chemo-
therapeutic response was inferred on the basis of transcriptome
expression profiling. This analysis was implemented through
establishing statistical models from the gene expression and
drug sensitivity information from the Genomics of Drug Sensi-
tivity in Cancer (https://www.cancerrxgene.org) [33].

2.12. Prediction of Small Molecule Compounds. Expression
profiles and somatic mutation data of the human cancer cell
lines (CCLs) were downloaded from the Cancer Cell Line
Encyclopedia project [34]. In addition, drug sensitivity data
of the CCLs were collected from the CTRP and PRISM data-
bases. Compounds with >20% missing data were removed
before K-nearest neighbor imputation. Thereafter, pRRo-

phetic package was applied to compute the AUC value of
each compound [32].

2.13. Statistics. Appropriate R packages (version 4.0.2) were
adopted for statistical analysis. A parametric test (Student’s
test or Pearson’s correlation) was conducted for Gaussian
data, while nonparametric test (Wilcoxon’s test or Spear-
man’s correlation) was used for non-Gaussian data. p <
0:05 indicated statistical significance.

3. Results

3.1. Landscape of Transcriptional, Genetic, and
Epitranscriptomic Features and Prognostic Significance of
Cuproptosis Genes across LUAD. The notable difference in
transcriptional levels of cuproptosis genes was observed
between normal and LUAD tissues, especially downregu-
lated MTF1, LIAS, CDKN2A, PDHA1, and DLAT together
with upregulated FDX1 in LUAD (Figure 1(a)). Through
adopting univariate-cox regression approach, the relation-
ships between cuproptosis genes and OS were assessed
across LUAD. Among ten cuproptosis genes, DLD and
PDHA1 served as risk factors of LUAD patients’ OS
(Figure 1(b)). Further, we observed the notable interactions
between cuproptosis genes at the transcriptional levels, espe-
cially DLD and DLAT, LIAS and LIPT1, etc. (Figure 1(c)). In
addition, associations between proteins from cuproptosis
genes were found (Figure 1(d)). As illustrated in
Figure 1(e), cuproptosis genes occurred the widespread
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Figure 2: Definition of a cuproptosis-relevant lncRNA signature for LUAD. (a) Interactions of cuproptosis genes with lncRNAs across
LUAD under the criteria of ∣correlation efficient ∣ >0:4 and p value < 0.0001. (b) Forest diagram visualizing the prognostic cuproptosis-
relevant lncRNAs. (c) Partial likelihood deviance under diverse log ðλÞ values for LASSO. (d) LASSO regression coefficients under
diverse log ðλÞ values. (e) LASSO regression coefficients of each prognostic cuproptosis-relevant lncRNA. (f) Distribution of risk score
derived from the cuproptosis-relevant lncRNA signature, survival time and status, and expression levels of prognostic cuproptosis-
relevant lncRNAs. (g) PCA plots visualizing the difference between low- and high-risk subsets at the transcriptional levels.
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mutations across LUAD, especially DLD (23.7%). Missense
mutation was the most frequent variant classification of
cuproptosis genes. MTF1, GLS, DLD, LIAS, and LIPT1 had
higher frequencies of copy-number gains, with higher
frequencies of copy-number losses for DLAT, FDX1,
CDKN2A, PDHA1, and PDHB (Figure 1(f)). Epitranscrip-
tomic features of cuproptosis genes were then evaluated.
We observed that most m6A and m1A together with m5C
modifiers were positively linked to cuproptosis genes at the
transcriptional levels (Figures 1(g)–1(i)).

3.2. Identification of Cuproptosis-Relevant lncRNAs in
LUAD. On the basis of the criteria of jcorrelation efficientj
> 0:4 and p value < 0.0001, fifty-five cuproptosis-relevant
lncRNAs were determined in LUAD (Table 1, Figure 2(a)).
Eleven cuproptosis-relevant lncRNAs were significantly
linked to LUAD patients’ OS outcomes, with AL122010.1,
AL035587.1, AC098484.1, AC024075.3, AC008764.2, and
AC024075.1 as protective factors and AC245041.2,
AL161431.1, AC099850.3, AC090541.1, and LINC00592 as
risk factors (Figure 2(b)).

3.3. Definition of a Cuproptosis-Relevant lncRNA Signature
for LUAD. Prognostic cuproptosis-relevant lncRNAs were

incorporated into LASSO to overcome the overfitting. On the
basis of the optimal λ value, eight lncRNAs were applied for
generating a prognostic signature (Figures 2(c) and 2(d)).
Figure 2(e) depicts the LASSO coefficient of each lncRNA.
The risk score was computed in line with the formula:
risk score = AL122010:1 level∗ ð−0:124158664Þ + AC
024075:3 level∗ ð−0:081144659Þ + AC098484:1 level∗ ð−
0:059433042Þ + AC024075:1 level∗ ð−0:047301757Þ + AL
035587:1 level∗ ð−0:004423536Þ + AL161431:1 level∗
0:088703142 + AC099850:3 level∗ 0:129487682 + AC
090541:1 level∗ 0:22936017. Thereafter, we classified LUAD
patients as low- andhigh-risk subsets (Figure 2(f)).More dead
cases were observed in high-risk subset. PCA confirmed the
prominent difference between two subsets (Figure 2(g)).

3.4. The Excellent Efficacy of the Cuproptosis-Relevant
lncRNA Signature in Prognosis Prediction. In contrast to
low-risk subset, poorer OS outcomes were observed in
high-risk subset (Figure 3(a)). ROC curves were plotted
to estimate the efficacy of the cuproptosis-relevant lncRNA
signature in OS prediction. The AUC values at 1-, 3-, and
5-year OS were all >0.6, indicating the high sensitivity and
specificity of this signature in predicting OS outcomes
(Figure 3(b)). In addition, the risk score reliably enabled
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Figure 3: The excellent efficacy of the cuproptosis-relevant lncRNA signature in predicting LUAD prognosis. (a, b) K-M curves of OS
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to differentiate DFS and DSS together with PFS outcomes
of low- and high-risk subsets (Figures 3(c)–3(h)). The
above evidence suggested that the cuproptosis-relevant
lncRNA signature might possess the potential in reflecting
LUAD patients’ clinical outcomes and benefits. Further, the
prognostic value of each prognostic cuproptosis-relevant
lncRNAwas assessed. As illustrated in Figure 3(i), upregulated
AC024075.1, AC024075.3, AC098484.1, AL035587.1, and
AL122010.1 were linked to more favorable OS outcomes, with
poorer OS for upregulated AC090541.1, AC099850.3, and
AL161431.1.

3.5. The Sensitivity and Independency of the Cuproptosis-
Relevant lncRNA Signature in Predicting LUAD Prognosis.
To further appraise the prediction efficacy of the
cuproptosis-relevant lncRNA signature, LUAD patients
were stratified by distinct clinicopathological parameters
(age, sex, histological stage, and TNM). In each subgroup,

high-risk subset exhibited more unfavorable OS outcomes
(Figure 4(a)). Uni- and multivariate cox regression results
confirmed that the cuproptosis-relevant lncRNA signature
was an independent risk factor of LUAD (Figures 4(b)
and 4(c)).

3.6. Generation of a Cuproptosis-Relevant lncRNA Signature-
Based Nomogram Scoring System. To facilitate clinical
application of the cuproptosis-relevant lncRNA signature,
we created a nomogram that incorporated this signature
together with clinicopathological parameters (histological
stage, TNM) for individuals, as illustrated in Figure 4(d).
Calibration curves proved the high consistency between
this nomogram scoring system-estimated and clinically
observed 1-, 3-, and 5-year OS (Figure 4(e)).

3.7. Genomic Alteration Features of the Cuproptosis-Relevant
lncRNA Signature. Waterfall plots displayed that notably
higher somatic mutation frequencies (TP53, TTN, CSMD3,
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Figure 4: Evaluation of the sensitivity and independency of the cuproptosis-relevant lncRNA signature in prognosis prediction and
generation of a nomogram for LUAD. (a) K-M curves of OS between low- and high-risk subsets in diverse subgroups stratified by
known clinicopathological parameters. (b, c) Forest diagrams depicting uni- and multivariate-cox regression results of the relationships
of the cuproptosis-relevant lncRNA signature and clinicopathological parameters with OS outcomes. (d) Generation of a nomogram
scoring system incorporating the cuproptosis-relevant lncRNA signature together with clinicopathological parameters (histological stage,
TNM). Each variable corresponds to a point, and total point refers to the total score obtained by adding up the corresponding points of
all variables. (e) Calibration curves illustrating the nomogram scoring system-estimated and clinically observed 1-, 3-, and 5-year OS
outcomes.
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Figure 5: Genomic alteration features of the cuproptosis-relevant lncRNA signature. (a) Waterfall plot illustrating the first 20 mutated genes in
high-risk subset. Statistical plots of mutation events for each mutated gene are exhibited in the right panel. Variant classifications are labeled by
unique colors. (b) Waterfall plot depicting the first 20 mutated genes in low-risk subset. (c, d) Significant focal copy-number gains (red) and
losses (blue) in high-risk subset. (e, f) Significant focal copy-number gains and losses in low-risk subset. (g) Distribution of fraction of
genome altered, lost, and gained in low- and high-risk subsets. (h–m) Comparison of TMB, SNV neoantigens, aneuploidy score, CTA score,
homologous recombination defects, and intratumor heterogeneity between two subsets. ∗p < 0:05; ∗∗∗p < 0:001; ∗∗∗∗p < 0:0001.
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Figure 6: Implication of the cuproptosis-relevant lncRNA signature in immunotherapy. (a) The abundance levels of tumor-infiltrating
immune cells calculated by diverse computational approaches in low- and high-risk subsets. (b) Expression patterns of immune
checkpoints, cytolytic activity- and IFN-γ response-relevant markers across low- and high-risk subsets. (c) Landscape of mRNA
expression, expression vs. methylation (mRNA expression correlated to DNA-methylation β values), amplification, and deletion
frequencies for immunomodulators in low- and high-risk subsets.
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etc.) were observed in high- than low-risk subset (Figures 5(a)
and 5(b)). In addition, GISTIC2.0 was adopted for delineating
the significant CNVs of each subset. Consequently, high-risk
subset had more copy-number gains and losses in contrast to
low-risk subset (Figures 5(c)–5(f)). As expected, there were
higher fractions of genome altered, lost, and gained in high-
risk subset (Figure 5(g)). The above findings unveiled the
diverse genomic alteration preferences in two subsets.

3.8. Implication of the Cuproptosis-Relevant lncRNA
Signature in Immunotherapy. Immunogenomic indicators
were measured across LUAD. Higher TMB, SNV neoanti-
gens, aneuploidy score, CTA score, homologous recombina-
tion defects, and intratumor heterogeneity were observed in
high-risk subset (Figures 5(h)–5(m)). Seven computational
approaches were adopted for inferring the abundance levels
of tumor-infiltrating immune cells across LUAD. The results
derived from most approaches showed the widespread het-
erogeneity in immune cells within the tumor microenviron-
ment between low- and high-risk subsets (Figure 6(a)).
High-risk subset exhibited higher expression of cytolytic
activity-relevant markers (Figure 6(b)). However, modest
differences in immune checkpoints and IFN-γ response-
relevant markers were observed between subsets. In
Figure 6(c), immunomodulators had little differences in

two subsets. On the basis of above evidence, high-risk LUAD
might benefit from immunotherapy.

3.9. Biological State, Process, and Stemness Features of the
Cuproptosis-Relevant lncRNA Signature. Among the 50
Hallmark gene sets, oncogenic pathways (mTORC1,
MYC, E2F, glycolysis, etc.) exhibited higher activity in
high- than low-risk subset (Figure 7(a)). In addition,
increased stemness indexes mDNAsi and mRNAsi were
observed in high-risk subset (Figures 7(b) and 7(c)). Fur-
ther, the risk score displayed notably positive interactions
with CD8+ T effector, antigen processing machinery,
nucleotide metabolism, and cell cycle (Figures 7(d) and
7(e)). The above data revealed the reasons for the poor
prognosis of high-risk population.

3.10. Clinical Therapeutic Benefit of the Cuproptosis-Relevant
lncRNA Signature for Chemotherapeutic Agents and Small
Molecule Compounds. Lower IC50 values of chemotherapeu-
tic agents (cisplatin, docetaxel, etoposide, gemcitabine, pacli-
taxel, and vinorelbine) were observed in high-risk subset
than in low-risk subset (Figure 8(a)). On the basis of this
evidence, high-risk patients generally displayed higher
response to chemotherapy. Considering poor prognostic
outcomes of high-risk patients, the current study predicted
small molecule compounds for aiming at this patient subset.
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Figure 7: Biological state, process, and stemness features of the cuproptosis-relevant lncRNA signature. (a) Distribution of the
variations of Hallmark gene set activity across low- and high-risk subsets. (b, c) Comparison of mDNAsi and mRNAsi between two
subsets. (d) Correlations of risk score with the activity of known biological processes. (e) Comparison of the activity of known
biological processes between two subsets. ∗p < 0:05; ∗∗∗p < 0:001.
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Consequently, five CTRP-derived small molecule com-
pounds (GSK461364, KX2-391, methotrexate, paclitaxel,
and SB-743921; Figure 8(b)) together with PRISM-derived
small molecule compounds (AMG900, danusertib, dolasta-
tin-10, epothilone-b, gemcitabine, ispinesib, and vincristine;
Figure 8(c)) were inferring for high-risk patients.

4. Discussion

Prominent treatment improvement, immunotherapy, etc.
has resulted in improved prognosis for a small number of
patients with advanced (stage IV) LUAD [2]. Nonetheless,
clinical outcomes of most patients remain undesirable.
Cuproptosis is a newly discovered copper-dependent
regulated cell death that depends upon mitochondrial respi-
ration, unlike known death mechanisms (ferroptosis,
necroptosis, pyroptosis, etc.) [13]. Cuproptosis genes dis-
played aberrant expression and widespread genomic alter-
ations across LUAD, which were potentially modulated by
m6A/m5C/m1A RNA modification mechanisms, proving
the potential impacts of cuproptosis in LUAD.

Previously, cuproptosis-related lncRNA signatures have
been conducted for hepatocellular carcinoma [15], colon
adenocarcinoma [35], and osteosarcoma [36]. Herein, we
defined a cuproptosis-relevant lncRNA signature (compris-
ing AC024075.1, AC024075.3, AC098484.1, AL035587.1,
AL122010.1, AC090541.1, AC099850.3, and AL161431.1)
for LUAD through adopting LASSO computational
approach, which might be a potential prediction tool of OS
that was independent of other clinicopathological parame-
ters. An individualized nomogram based on the
cuproptosis-relevant lncRNA signature together with clini-
copathological parameters (histological stage, TNM) was

developed for predicting OS outcomes, which might act as
a supplementary tool to assess the probabilities of OS in
LUAD. Surgery provides the optimal prognostic outcomes
for patients with primary NSCLC, though long-term survival
following surgery is still low. Recurrence of postoperative
NSCLC occurs within the first 5 years, ranging 20%~75%
of cases. Most recurrences (>80%) occur in the first 2 years
following surgery [37]. The cuproptosis-relevant lncRNA
signature potentially predicted LUAD recurrence, with
poorer DFS for high-risk subset.

Among the lncRNAs in the cuproptosis-relevant
lncRNA signature, upregulated AC024075.1, AC024075.3,
AC098484.1, AL035587.1, and AL122010.1 were associated
with better OS outcomes, with worse OS for upregulated
AC090541.1, AC099850.3, and AL161431.1. Limited
evidence has proven the roles of above lncRNAs in human
cancers. For instance, AC098484.1 is found to correlate to
autophagy of clear cell renal cell carcinoma [38].
AL035587.1 is potentially modulated by m6A, m5C, and
m1A RNA modifications in head and neck squamous cell
carcinoma [39]. AL122010.1 is an immune- [40], stemness-
[41], autophagy- [42], and m6A-relevant lncRNA [43] that
enables to predict survival outcomes breast cancer.
AC099850.3 is upregulated in LUAD and correlated to
advanced stage, undesirable prognostic outcomes together
with immune infiltration [44]. Evidence proves that
AC099850.3 is a necroptosis- [45] and ferroptosis-related
lncRNA [46] in cancer patients. Necroptosis and ferroptosis
are newly discovered programmed cell deaths recently [47].
AL161431.1 acts as an autophagy- and prognosis-relevant
lncRNA in NSCLC [48], with epigenetically aberrant regula-
tion in LUAD [49] and pancreatic adenocarcinoma [50]. In
addition, AL161431.1 is linked to hypoxia status and
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Figure 8: Clinical therapeutic benefit of the cuproptosis-relevant lncRNA signature for chemotherapy and small molecule compounds. (a)
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immune microenvironment of LUAD [51]. Suppression of
AL161431.1 results in enhanced cell death and cell cycle
arrest in pancreatic cancer [52].

Tumor heterogeneity can be attributed to genetic and
nongenetic alterations. Genomic instability (somatic muta-
tions, CNVs, etc.) is regarded as hallmark of cancer, result-
ing in genetic aberrations. Genome and transcriptome
unveiled that LUAD tumors exhibit increased TMB in con-
trast to other cancer types [53]. In addition, evidence sup-
ports that LUAD tumors arise from progenitor clones with
early genomic alterations that trigger tumorigenesis. Our
evidence proved that high-risk subset occurred higher fre-
quencies of somatic mutations and CNVs, together with
increased TMB. Immunotherapy may assist the immune
system recognize and attack tumor cells. The major targets
of ICB therapy are PD-L1 and PD1 together with CTLA4.
In contrast to conventional treatment, ICB is notably limited
to only one-third of patients responding to ICB. Theoreti-
cally, high TMB enhances the probability of tumor neoanti-
gen generation, thus improving immune recognition and
tumor cell killing [54]. In addition, genomic and transcrip-
tional changes in first-line chemotherapy have potential
adverse effects on subsequent immunotherapy in NSCLC
[55]. Higher SNV neoantigens, aneuploidy score, CTA score,
homologous recombination defects, and intratumor hetero-
geneity were observed in high-risk subset. Cytolytic activity,
CD8+ T effector, and antigen processing machinery exhib-
ited higher activity in this subset. Altogether, our evidence
proved that high-risk patients were more sensitive to
immunotherapy.

Most LUAD patients die of cancer metastasis and treat-
ment resistance [56]. Cancer stem cells possess the abilities
of normal stem cells, especially drug resistance, metastasis,
immune escape, etc. [57]. Active bronchioalveolar stem cells
are a potential origin of LUAD cells [58]. We computed the
stemness indices of LUAD, and observed higher mDNAsi
and mRNAsi in high-risk subset. Cisplatin-based adjuvant
chemotherapy is still the standard of care for patients with
resected stage II or III NSCLC [59]. High-risk patients gen-
erally displayed higher response to chemotherapeutic agents
(cisplatin, docetaxel, etoposide, gemcitabine, paclitaxel, and
vinorelbine). One goal of precision therapy is to determine
subpopulations of LUAD patients who may benefit from a
specific treatment strategy. Hence, to find druggable targets
together with compounds to mitigate oncogenic signaling
remains a key challenge in LUAD. Through combining drug
development and pharmacogenomics with molecular char-
acterization of LUAD, we screened five CTRP-derived small
molecule compounds (GSK461364, KX2-391, methotrexate,
paclitaxel, and SB-743921) and PRISM-derived small mole-
cule compounds (AMG900, danusertib, dolastatin-10,
epothilone-b, gemcitabine, ispinesib, and vincristine) for
potentially treating high-risk patients.

A few disadvantages in this study are pointed out. Firstly,
the LUAD lncRNA datasets are limited. The prediction per-
formance of the cuproptosis-relevant lncRNA signature in
LUAD prognosis will be further externally verified in larger
cohorts. Secondly, due to the lack of LUAD patients with
immunotherapy currently, we investigated only the relation-

ships of the cuproptosis-relevant lncRNA signature with
immune response indicators, which is required for further
verification, with in-depth investigations for practical appli-
cation of risk score into clinical cohorts. Thirdly, more
experimental verifications are required for comprehensively
interpreting risk score as well as the therapeutic effects of
small molecule compounds.

5. Conclusion

In summary, the current study defined the cuproptosis-
relevant lncRNA signature that unveiled diverse prognostic
outcomes, genomic alterations, and treatment outcomes
across LUAD, which might potentially guide clinical man-
agement and personalized treatment.
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