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Background. Renal epithelium lesions can cause renal cell carcinoma. This kind of tumor is common among all renal cancers with
poor prognosis, of which more than 70% belong to kidney renal clear cell carcinoma. As the pathogenesis of KIRC has not been
elucidated, it is necessary to be further explored. Methods. The Genomic Spatial Event database was used to obtain the analysis
dataset (GSE126964) based on the GEO database, and The Cancer Genome Atlas was applied for KIRC data collection. edgeR
and limma analyses were subsequently conducted to identify differentially expressed genes. Based on the systems biology
approach of WGCNA, potential biomarkers and therapeutic targets of this disease were screened after the establishment of a
gene coexpression network. GO and KEGG enrichment used cluster Profiler, enrichplot, and ggplot2 in the R software
package. Protein-protein interaction network diagrams were plotted for hub gene collection via the STRING platform and
Cytoscape software. Hub genes associated with overall survival time of KIRC patients were ultimately identified using the
Kaplan-Meier plotter. Results. There were 1863 DEGs identified in total and ten coexpressed gene modules discovered using a
WGCNA method. GO and KEGG analysis findings revealed that the most enrichment pathways included Notch binding, cell
migration, cell cycle, cell senescence, apoptosis, focal adhesions, and autophagosomes. Twenty-seven hub genes were identified,
among which FLT1, HNRNPU, ATP6V0D2, ATP6V1A, and ATP6V1H were positively correlated with OS rates of KIRC
patients (p < 0:05). Conclusions. In conclusion, bioinformatic techniques can be useful tools for predicting the progression of
KIRC. DEGs are present in both KIRC and normal kidney tissues, which can be considered the KIRC biomarkers.

1. Introduction

Renal tubular epithelial lesions can cause renal cell carci-
noma (RCC) [1]. Pathological classification of RCC mainly
consists of papillary renal cell carcinoma, kidney renal clear
cell carcinoma (KIRC), renal collecting duct carcinoma,
chromophobe renal cell carcinoma, and unclassified renal
cell carcinoma [2]. KIRC takes up around 70% to 80% of
RCC [3, 4]. The incidence in males is twice as high as in
females, with the peak age at 60-70 years old [5]. KIRC
patients may develop early atypical symptoms of mild fever
and fatigue or no symptoms. Hemorrhage, cystic degenera-
tion, necrosis, and calcification in advanced tumor tissues
are common, which causes the RCC triad: hematuria, flank
pain, and flank masses, greatly affecting the patients’ quality
of life [6].

KIRC is a common subtype of kidney cancer, and it is
hard to manage as there are few identified effective therapeu-
tic targets and molecular drugs for KIRC treatment. Lately,
its incidence has been increasing gradually. Over the past
decade, RCC-associated therapeutic options have changed
from nonspecific immune pathways (cytokines) to targeted
therapy against vascular endothelial growth factor (VEGF)
then to recent novel immunotherapeutic agents [7]. Typi-
cally, KIRC is not sensitive to radiotherapy, chemotherapy,
and immunotherapy, and surgery is the current primary
option against it [1]. The survival time of 60% of KIRC
patients is 1 to 2 years after diagnosis, and there are 30% dis-
tant metastasis when being diagnosed [8]. Hence, effective
therapeutic targets and prognostic molecular markers are
helpful for early diagnosis of KIRC, providing evidence for
early intervention treatment.

Hindawi
Journal of Immunology Research
Volume 2022, Article ID 2818777, 22 pages
https://doi.org/10.1155/2022/2818777

https://orcid.org/0000-0002-8744-3992
https://orcid.org/0000-0001-8773-5269
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2818777


The Cancer Genome Atlas (TCGA) database is available
for data retrieval related to clinical case, gene mutation,
mRNA expression, miRNA expression, and methylation.
The platform is recognized as an important data source for
cancer research. Gene Expression Omnibus (GEO) is also
extensively applied as an online cancer research data repos-
itory related to high-throughput gene expression data glob-
ally. This research screened differentially expressed genes
(DEGs) through TCGA and GEO data mining in KIRC
and normal kidney tissues, which were analyzed utilizing
several bioinformatic analyses including PPI, WGCNA,
functional module analysis, and Cytoscape-hub survival
analysis, and hub genes related to the regulation of KIRC
development were identified ultimately. The findings are
expected to identify novel possible prognostic biomarkers
and drug target candidate genes for the reference of treating
KIRC patients in clinic. This study was aimed at finding new
biomarkers related to KIRC tumor growth and clinical
parameters to offer evidence for the early diagnosis of KIRC
and improve prognosis, thereby providing a theoretical basis
for designing new effective diagnosis and treatment
programs.

2. Methods

2.1. Data Collection. The databases TCGA (https://www
.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga) and GEO (GSE126964) (https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126964) were
applied for data collection.

2.2. Data Analysis. The expression of sample DEGs were
analyzed through edgeR and limma packages. p values
obtained were corrected using multiple hypothesis tests,
and the threshold was determined using false discovery rate
(FDR). Hence, q values indicated the corrected p values. The
folds of differential expression were also calculated as per
fragments per kilobase of exon model per million mapped
fragments (FPKM) value, that is, fold change. The over-
lapped differential results from the edgeR and limma analy-
ses were obtained.

2.3. WGCNA Analysis. The WGCNA systematically depicts
association patterns of genes in multiple samples through a
biological approach and allows to discrimination of highly
covarying gene sets. The R software package of WGCNA
can realize several functions for module detection, network
construction, gene selection, and data simulation, etc. Source
codes and software packages can be downloaded at http://
www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/
Rpackages/WGCNA [9]. We used the WCCNA R package
to construct the coexpression network. First, the samples
are clustered to assess the presence of any significant out-
liers. Second, the coexpression network is constructed using
the automatic network construction function. The R func-
tion pickSoftThreshold is used to calculate the soft threshold
power β, and coexpression similarity is proposed to calculate
the adjacency.

2.4. Module-Trait Relationship. As module eigengene (ME)
allows to summarize of modular gene expression, the corre-
lation between ME and input clinical parameters is calcu-
lated, which is called module-trait relationship analysis. To
clarify the module-trait relationship of gene modules, we
first ranked the corresponding module genes as per the con-
structed modules by WGCNA. ME of each module was cal-
culated and correlated with clinical parameters.

2.5. Survival Analysis and DEG Extraction. Survival analysis
was conducted employing the software package Survminer.
DEGs were analyzed through limma software package, and
DEGs were analyzed. DEGs (high score group/low score
group) with absolute values of log2 (fold change) more than
1.0 and DEGs with FDR less than 0.05 were considered sta-
tistically significant.

2.6. GO and KEGG Enrichment Analyses. The obtained
DEGs were analyzed through GO and KEGG enrichment
using cluster Profiler, enrichplot, and ggplot2 in the R soft-
ware package. The p and q values of enriched pathways
(<0.05) were considered significantly enriched.

2.7. PPI Network Construction and Hub Gene Screening.
STRING platform [10] (http://string-db.org) was employed
for PPI construction. All DEGs were imported into the
STRING database, with the confidence levels more than or
equal to 0.4 considered significant. Meanwhile, a PPI net-
work was constructed using the STRING platform and
Cytoscape 3.6.1 for protein-molecular interaction visualiza-
tion. Degrees between the genes were calculated based on
degree algorithm using the plugin Cytohubba of Cytoscape;
thereby, the hub genes are screened from the PPI network.
The Gene Expression Profiling Interactive Analysis (GEPI
A) web server (http://gepia.cancer-pku.cn/detail.php?gene=
fabp5) [11] was used to analyze the hub DEGs, and the sur-
vival curve was plotted subsequently in terms of the associa-
tion of gene expression and prognosis under a set condition
as log 2FC < 1 and p < 0:05.

3. Results

3.1. The KIRC DEGs Are Screened from the GEO-TCGA
Database. An expression analysis dataset GSE126964 was
exported from GEO database and DEGs of KIRC, and
healthy people were obtained and analyzed utilizing edgeR
and limma to collect overlapped genes. There were 4972
DEGs screened with 2866 upregulated and 2106 downregu-
lated (Figures 1(a) and 1(b)). Transcriptome data of 528
KIRC tumor samples and 71 adjacent healthy tissues were
collected from TCGA database, and DEGs were analyzed
using edgeR and limma, and overlapped genes were
obtained. There were 2769 DEGs screened with 1413 upreg-
ulated and 1356 downregulated (Figures 1(c) and 1(d)).
There were a total of 1863 overlapped DEGs obtained from
the two databases with 1010 upregulated and 853 downreg-
ulated (Figures 1(e)–1(g)).

3.2. Construction of WGCNA. Based on the systems biology
approach of WGCNA, a diagram of gene coexpression
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Figure 1: Continued.
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Figure 1: DEGs screening. DEGs of cancer patients and healthy group are screened from GEO database using (a) edgeR and (b) limma.
DEGs of cancer patients and normal groups are screened from TCGA database using (c) edgeR and (d) limma. Overlapped DEGs of all
(e), upregulated (f), and downregulated (g) are obtained from GEO and TCGA databases.
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network was constructed, and potential biomarkers and
therapeutic targets of this disease were screened. In our
study, a weighted gene correlation network was constructed
using 1863 DEGs and 528 KIRC samples. The soft threshold
power β was calculated first, coexpression similarity was ele-
vated to calculate the adjacency, and the WGCNA network
was ultimately established. By using WGCNA pickSoft-
Threshold function, network topology analysis was per-
formed. The soft threshold power β was adjusted to 14 in
subsequent analysis, and average connectivity was relatively
high when scale independence was 0.9 (Figure 2(a)). Gene
networks were constructed, and modules were identified
using the WGCNA R package. As shown in Figure 2(b),
there were ten identified coexpressed gene modules with dif-
ferent colors. Gray defaulted genes that could not be classi-
fied into any module. When there are too many genes in

the gray module, the previous procedures of expression
matrix for gene screening may not be appropriate
(Figure 2(b)). MEgray contained genes that did not belong
to any module, and it was the largest module. The connectiv-
ity of eigengenes was analyzed, which provided pair associa-
tion of gene coexpression modules. Based on eigengene
clustering, the 10 modules could be classified into two
groups (Figure 2(c)). Among the modules, MEbrown had a
significant positive correlation with MEblue, whereas
MEpink was negatively correlated with MEblack, MEblue,
and MEbrown (Figure 2(d)).

3.3. Module-Trait Relationship Validation. WGCNA can
also be used for correlation analysis (r values) between mod-
ules and clinical parameters. In terms of gene expression
profiles by module eigengenes (ME), its correlation with
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Figure 2: DEGs were analyzed using the WGCNA and gene clustering tree analyses of module eigengenes. (a) Scale-free exponential
analysis of various soft threshold powers (β). (b) Clustered module dendrogram (top) and colored bands (bottom) of DEGs, and each
dendrogram represents module color. (c) Gene cluster dendrogram based on dissimilarity of topological overlap and module color
assignment. (d) Correlation analysis of modules. ME: module eigengenes.
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input clinical parameters was analyzed, which is called
module-trait relationship analysis. To identify module-trait
relationships of gene modules, we assigned genes into corre-
sponding modules with reference to the initially constructed
modules. The correlation of each module with clinical
parameters was calculated using a function of WGCNA
module eigengene [12]. Additionally, the difference is statis-
tically significant if p values < 0.05. MEpink has a positive
correlation with early KIRC (r = 0:85, p = 2 × 10−171) but
has a negative correlation with third-stage KIRC (r = −0:21
, p = 2 × 10−7), while MEgreen was also negatively related
to KIRC at the third stage (r = −0:21, p = 4 × 10−7) but posi-
tively related to KIRC at the first stage (r = 0:27, p = 1 × 10−5
); MEmagenta has a positive correlation with the fourth
KIRC stage (r = 0:3, p = 5 × 10−14) (Figure 3). As early KIRC
is often asymptomatic, it can be discovered only when the
tumor volume is big enough. Major clinical manifestations
included renal flank pain, hematuria, and flank mass, and
the modules of the other four stages were selected for
follow-up analysis.

3.4. GO and KEGG Enrichment Analyses. To clarify the bio-
logical processes (BP), cellular components (CC), and
molecular functions (MF) as well as signaling pathways
related to module-trait, we applied several modules with sig-
nificant module-trait relationships for analysis. Most of the
MEblack module gene enrichment included ameboidal-
type cell migration, extracellular matrix organization, and
epithelial cell migration in BP. Collagen-containing extracel-
lular matrix was enriched in CC; extracellular matrix struc-
tural constituent was enriched in MF (Figure 4(a)). The
mediated signaling pathways included the Notch signaling
pathway, Rap1 signaling pathway, PI3K-Akt signaling path-
way, and focal adhesion (Figure 4(b)).

MEyellow module genes were mostly enriched in posi-
tive regulation of MAP kinase activity and necrotic cell death
in BP, protein serine/threonine kinase activity in MF, and
nuclear speck, presynapse, and autophagosome in CC
(Figure 4(c)). The mediated signaling pathways included
glycerophospholipid metabolism and MAPK signaling path-
way (Figure 4(d)).

MEgreen module genes were mainly enriched in mono-
valent inorganic cation homeostasis and sodium ion trans-
port in BP; MF were anion transmembrane transporter
activity and actin binding; CC included mitochondrial
matrix, basolateral plasma membrane, apical plasma mem-
brane, and basal part of cell (Figure 4(e)). The main medi-
ated signaling pathways were tight junction and mTOR
signaling pathway (Figure 4(f)).

MEmagenta module genes were mainly enriched in
organelle fission, nuclear division, and chromosome segrega-
tion in BP; condensed chromosome, chromosomal region,
and spindle in MF; and microtubule binding and tubulin
binding in CC (Figure 4(g)). The mediated signaling path-
ways included cell cycle, p53 signaling pathway, cellular
senescence, microRNAs in cancer, and FOXO signaling
pathway (Figure 4(h)).

3.5. PPI Network Construction and Key Gene Screening. To
identify key genes, DEGs of several modules with significant
module-trait relationships were analyzed using STRING.
Meanwhile, a diagram of PPI network was built through
Cytoscape. Hub genes of the PPI network diagram were
screened out using degree algorithm of a Cytoscape plugin
Cytohubba. Five key genes, DLL4, NOTCH4, FLT1, CDH5,
and PECAM1, were obtained in the MEblack module
(Figures 5(a) and 5(e)). Key genes from the MEyellow mod-
ule were VEGFA, POU5F1, AGER, NFKB2, EIF4A1, and
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and KEGG enrichment analysis (h) of MEmagenta module.
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Figure 5: Continued.
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Figure 5: Continued.
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(h)

Figure 5: Construction of a PPI network diagram and key gene screening. (a and e) PPI network of DEGs in the MEblack module. (c and f)
PPI network of DEGs in the MEyellow module. (b and g) PPI network of DEGs in the MEgreen modules. (d and h) PPI network of DEGs in
the MEmagenta module.
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Figure 6: Continued.
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Figure 6: Continued.
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HNRNPU (Figures 5(c) and 5(f)). Key genes from the
MEgreen module included ATP6V0D2, ATP6V1A,
ATP6V1H, ATP6V0A4, ATP6V1C2, and ATP6V1B1
(Figures 5(b) and 5(g)). Key genes from the MEmagenta
module were KIF20A, UBE2C, CCNA2, TOP2A, PLK1,
RRM2, CDC20, AURKB, CCNB2, and TPX2 (Figures 5(d)
and 5(h)).

3.6. Hub Gene Expression Analysis. The levels of the five hub
genes DLL4, NOTCH4, FLT1, CDH5, and PECAM1 in the
MEblack module were markedly increased in the KIRC
group vs. normal (p < 0:05, Figure S1), and those of
VEGFA, POU5F1, AGER, and NFKB2 in the MEyellow
module were also markedly increased in the KIRC group
(p < 0:05, Figure S2). The expression of key genes
ATP6V0D2, ATP6V1A, ATP6V1H, ATP6V0A4,
ATP6V1C2, and ATP6V1B1 in the MEgreen module in
the KIRC group was substantially lower vs. normal
(p < 0:05, Figure S3). The expression of KIF20A, UBE2C,
CCNA2, TOP2A, PLK1, RRM2, CDC20, AURKB, CCNB2,
and TPX2 in the MEmagenta module in KIRC tissues was
markedly higher vs. normal (p < 0:05, Figure 6).

3.7. Overall Survival (OS). The results of expression survival
analysis showed that FLT1, HNRNPU, ATP6V0D2,
ATP6V1A, and ATP6V1H were positively correlated with
the OS rate of KIRC patients (p < 0:05, Figure S4, S5, S6).
AGER, ATP6V1C2, KIF20A, UBE2C, CCNA2, TOP2A,
PLK1, RRM2, CDC20, AURKB, CCNB2, and TPX2 were
negatively correlated with the OS rate of KIRC patients
(p′ < 0:05, Figures S4, S6, and Figure 7).

4. Discussion

RCC is a heterogeneous group of tumors; over 70% belongs
to the KIRC category [13] with a high mortality. KIRC is
most among all RCC victims, and it is characterized by clear
cells pathologically. As a frequent urinary system tumor, a
majority of KIRC cases are primary malignancies. The
metastasis rate is relatively high at the absent of effective
cure [14]. Accumulating evidence indicates that KIRC is a
cellular metabolic disease characterized by a low rate of early
diagnosis, high metastasis, drug resistance, and disappointed
prognosis [15, 16]. Therefore, the exploration of the occur-
rence and development mechanism is of vital importance
for KIRC research in a novel perspective. To improve the
early diagnosis rate and prognosis of KIRC patients, great
efforts have been made in the research and identification of
KIRC biomarkers. Unluckily, no specific biomarker has
shown satisfactory results in the clinical application of KIRC
diagnosis, classification, and prognosis to date [17, 18].
Hence, elucidating the occurrence and development mecha-
nism of KIRC is urgently needed, and identifying its bio-
markers is of great significance for early clinical diagnosis
and prognosis for the early screening and treatment of
KIRC.

The present study performed a systematic biological
approach WGCNA to identify DEGs of KIRC and patholog-
ical stage-related gene modules. We identified a total of 1863
DEGs and 10 module-trait relationships, including MEpur-
ple, MEred, MEgreen, MEpink, MEblack, MEmagenta,
MEyellow, MEgrey, MEblue, and MEbrown, which were
positively associated with pathological grades, implying that
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Figure 6: Key gene expression analysis in MEblack, MEyellow, MEgreen, and MEmagenta modules. (a) KIF20A, (b) UBE2C, (c) CCNA2,
(d) TOP2A, (e) PLK1, (f) RRM2, (g) CDC20, (h) AURKB, (i) TPX2, and (j) CCNB2. Red: KIRC group; gray: normal group.
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ME was important in the occurrence and development of
KIRC. GO analysis indicated that the genes in the four mod-
ules (MEyellow, MEblack, MEmagenta, and MEgreen) sig-
nificantly associated with grades were mainly binding to
Notch and related to cell migration, cell cycle, cell senes-
cence, apoptosis, focal adhesions, and autophagosomes. In
KEGG pathway analysis, we found that several module
eigengenes were enriched in the cytokine-cytokine receptor
interaction, PI3K-Akt signaling pathway, MAPK signaling
pathway, Notch signaling pathway, forkhead box O (FOXO)
signaling pathway, p53 signaling pathway, and mTOR sig-
naling pathway. We speculate that these modular genes
may mediate the occurrence of KIRC through some signal-
ing pathway.

Some studies have indicated that the PI3K/AKT pathway
has a specific therapeutic target for KIRC management,
which produces possible values for MTOR and/or related
pathway inhibitor drugs against the tumor [19, 20]. The
NOTCH pathway is oncogenic in T-cell acute lymphoblastic
leukemia and head and neck cancer, which has been
reported in such tumors with NOTCH mutations activated
[21, 22]. The components of this pathway are also active in
RCC [23, 24]. The NOTCH pathway has also been reported
overexpressed in a majority of KIRC cases [25]. FOXO
belongs to the forehead transcription factor family that plays
an essential role in cell fate determination. Meanwhile, it
plays a key functional role as a tumor suppressor in various
cancers. In different types of cancer, the most important
pathway interacting with FOXO is the PI3K/AKT pathway
[26]. Therefore, the next focus was to identify the hub genes
involved in these signaling pathways.

After identifying KIRC-related module eigengenes using
GO and KEGG enrichment analyses, the network diagram of

the obtained genes was built based on WGCNA and the cor-
relation of module eigengenes was analyzed. Meanwhile,
hub genes were identified using the Cytohubba package.
Twenty-seven hub genes including DLL4, NOTCH4, FLT1,
and CDH5 were identified, and a total of 25 genes were iden-
tified closely related to survival rates of KIRC patients, which
might be potential biomarkers for prognosis prediction of
KIRC patients. Additionally, potential hub gene transcrip-
tion was validated using GEO database, in which the expres-
sion of ATP6V0D2, ATP6V1A, ATP6V1H, ATP6V0A4,
ATP6V1C2, and ATP6V1B1 in KIRC tissues was markedly
lower than normal tissues. These findings might provide
fundamental evidence for potential biomarker identification
and/or anticancer target discovery in future research.

It has been implicated that the Dll4-Notch signaling
pathway regulates tumor-initiating cells, i.e., cancer stem
cells [27, 28], which has been reported to be characterized
by self-renewal, tumor initiation, and differentiation. Fur-
thermore, the cells are essential for tumor growth, tumor
resistance, and metastasis [29]. Dll4 blockers can effectively
resist tumor activity and be helpful for targeting both Dll4
and VEGF signaling pathways, presenting strong potential
for RCC management [30]. Although most Notch4-related
studies suggest that Notch4 signaling activation is onco-
genic, a Notch4-induced tumor suppressor mechanism has
also been identified [31]. Abnormal Notch4 signaling trans-
duction can regulate multiple cellular behaviors to initiate
cancer occurrence and progression [32]. Vascular endothe-
lial growth factor A serves as an essential angiogenic cyto-
kine in tumor angiogenesis; it is therefore that it can be a
potential for the research of cancer therapy [33]. Previous
literature has revealed that RRM2 promotes tumorigenesis
and progression of several cancers including lungs [34, 35].
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Figure 7: OS analysis of ten hub genes in KIRC (TCGA data in GEPIA). The expression of (a) KIF20A, (b) UBE2C, (c) CCNA2, (d) TOP2A,
(e) PLK1, (f) RRM2, (g) CDC20, (h) AURKB, (i) TPX2, and (j) CCNB2 was highly related to OS rates of KIRC patients.
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CDC20 is one of the cell cyclins, which is highly expressed in
most tissues with malignant tumors. CDC20 acts as an inde-
pendent prognostic factor in colorectal cancer which might
be applied as a potential prognostic biomarker according
to Wu et al. [36]. The TOP2A gene encodes DNA topoisom-
erase, and it mediates DNA replication, chromosome segrega-
tion, chromatin condensation, and chromosomal structure
preservation during cellular biological processes. Highly
expressed TOP2A has been reported to promote breast cancer
progression [37, 38]. UBE2C, being a member of the E2 fam-
ily, has a positive correlation with cancer grades and the qual-
ity of outcome in various cancers [39, 40].

In conclusion, we identified pathological grade-related
gene modules and hub genes utilizing WGCNA approach.
After analysis via GO and KEGG pathway enrichment, mod-
ule eigengenes of GO terms included endothelial cell devel-
opment, phagosomal acidification, and Notch binding, and
KEGG pathways were associated with metabolism. Mecha-
nistically, these molecular genes might contribute to the pro-
gression of KIRC by regulating the previously mentioned
pathways. In addition, the twenty-seven hub gene mRNA
transcripts were validated in KIRC patients based on the
GEO database. It is worth mentioning that the key roles of
these hub genes in KIRC were only predicted based on
WGCNA theory, and if validated, our findings may provide
evidence for the investigation of anticancer targets in KIRC
patients. Of course, there are shortcomings in this experi-
ment; the screened hub gene was not experimented to verify
whether it plays a role in KIRC.
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Supplementary Materials

Supplementary 1. Figure S1: key gene expression analysis in
MEblack. The expression levels of (A) DLL4, (B) NOTCH4,
(C) FLT1, (D) CDH4, and (E) PECAM1. Red: KIRC group;
gray: normal group.

Supplementary 2. Figure S2: key gene expression analysis in
MEyellow. The expression levels of (A) VEGFA, (B)
POU5F1, (C) AGER, (D) NFKB2, (E) EIF4A1, and (F)
HNRNPU. Red: KIRC group; gray: normal group.

Supplementary 3. Figure S3: key gene expression analysis in
MEgreen. The expression levels of (A) ATP6V0D2, (B)
ATP6V1A, (C) ATP6V1H, (D) ATP6V0A4, (E) ATP6V1C2,
and (F) ATP6V1B1. Red: KIRC group; gray: normal group.

Supplementary 4. Figure S4: OS analysis of ten key genes in
MEblack. (A) DLL4, (B) NOTCH4, (C) FLT1, (D) CDH4,
and (E) PECAM1.

Supplementary 5. Figure S5: OS analysis of ten key genes in
MEyellow. (A) VEGFA, (B) POU5F1, (C) AGER, (D)
NFKB2, (E) EIF4A1, and (F) HNRNPU.

Supplementary 6. Figure S6: OS analysis of ten key genes in
MEgreen. (A) ATP6V0D2, (B) ATP6V1A, (C) ATP6V1H,
(D) ATP6V0A4, (E) ATP6V1C2, and (F) ATP6V1B1.
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