
Research Article
Isthmin 1 is Expressed by Progenitor-Like Cells in the Lung:
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The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered
inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a
process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal,
endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further
characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage- Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched
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in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and
this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We
also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we
observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with
progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-
producing cells and dangerous inflammatory responses like sepsis.

1. Introduction

Hematopoietic stem and progenitor cells (HSPCs) are a het-
erogeneous group of cell subpopulations that give rise to
blood cells during the lifetime of an organism. In both
humans and mice, the fetal liver is the main source of hema-
topoietic progenitors during gestation, before being replaced
by bone marrow in adulthood. Hematopoietic stem cells
(HSCs) derived from the bone marrow are enriched in the
cellular fraction lacking cell-surface markers present in
lineage-committed hematopoietic cells, but they express the
stem-cell antigen 1 (Sca-1) and stem cell factor receptor (c-
kit); these Lin-c-kit+Sca-1+ cells are identified as the LSK sub-
set [1, 2]. This LKS fraction also contains the metabolically
active subset of the HSCs known as multipotent progenitors
(MPPs). Globally, HSPCs may be classified as long-termHSC
(LT-HSC; LSKCD150+CD48-), short-term HSC (ST-HSC;
LSKCD150-CD48-), MPP2 (LSK CD150+CD48+), or
MMP3/4 (LSKCD150-CD48+) [3].

Hematopoiesis can also take place in the spleen [4], liver
[5, 6], and lungs [7–9] under severe stress or pathological
conditions in a process called extramedullary hematopoiesis
(EMH) [10]. Most of these findings have been derived from
radiological studies; there are several reviews that sum up
these rare hematological phenomena [11]. However, recent
evidence indicates that the lung [12, 13] and the small intes-
tine [14, 15] support EMH under homeostatic conditions.

Current knowledge on EMH indicates that murine lungs
are active hematopoietic organs, which can account for 50%
of platelet production. Resident lung HSPCs exhibit the
same phenotype as their counterparts in bone marrow and,
importantly, they can produce both lymphoid and myeloid
lineages [12, 13]. However, there is no additional informa-
tion about molecular markers or mediators characterizing
the cells responsible for lung EMH during homeostasis or
inflammation.

ISM1 is a secreted protein characterized by the presence
of two functional domains: a thrombospondin type 1 repeat
(TSR1) and the adhesion-associated domain in MUC4 and
other proteins (AMOP) [16]. ISM1 is involved in embryonic
hematopoiesis in zebrafish and is highly expressed in the
respiratory track during development, both in chicken and
mice [17, 18]. Nevertheless, it is still not known whether
ISM1 is related to lung EMH.

We previously reported the initial identification of
ISM1-expressing tissues in humans. ISM1 is expressed in
several human tissues such as the lung, skin, small intestine,
and activated peripheral blood mononuclear cells (PBMC).
In the mouse, ISM1 is expressed at high levels in the respira-
tory track (trachea and lung), and initial studies also
detected intracellular protein expression of ISM1 in subsets

of T cells and NK cells [19]. However, detailed analysis
about the cells expressing ISM1 in the lung is still missing.

In the present study, we describe that in murine lungs,
ISM1 is present in progenitor cells resembling mesenchymal
progenitor cells (MSC), endothelial progenitor cells (EPCs)
and HSPCs. We also evaluated the tissue resident properties
of ISM1+ cells. Moreover, we characterized changes in
ISM1+ cells in the LSK compartment both in homeostasis
and during infection with P. aeruginosa. These observations
strongly suggest a role for ISM1 in the field of progenitor
cells.

2. Materials and Methods

2.1. Animals and Ethics Statement. Male C57BL/6 mice (5-8
weeks old) were obtained from Envigo RMS S.A. All animal
experiments were performed according to protocols
approved by Mexican NOM-062-ZOO-1999 (SAGARPA)
and in agreement with the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health
(NIH) and internal guidelines. The protocol was approved
by the Mexican Children’s Hospital Federico Gomez ethics
committee.

This study was carried out with the approval and under
the guidelines of the Institutional Review Boards (IRB) of the
Ethics Committee of the Mexican Children’s Hospital Feder-
ico Gómez.

2.2. Lung, Lamina Propria, Spleen, and Blood Single-Cell
Preparation for Flow Cytometry

2.2.1. Lung Digestion. Lungs from C57BL/6 mice were
removed after intracardiac perfusion with 5ml of cold
phosphate-buffered saline 1x (PBS 1x), minced, and placed
in 20ml of RPMI medium containing 20mg of Collagenase
I and 10mg of DNase I (Sigma). Samples were placed in
an orbital shaker incubator (200 rpm) for 15min at 37°C,
mechanically disaggregated, strained through a 70μm mesh,
then through a 40μm mesh, and centrifuged. The cell pellet
was treated with erythrocyte lysis buffer, washed, and finally,
resuspended in PBS 1x supplemented with 5% fetal bovine
serum (FBS) prior to counting and stain.

2.2.2. Lamina Propria Digestion. Small intestine was
removed from C57BL/6 mice, intestinal content was flushed
out and then minced in pieces of 2 cm long. These pieces
were placed inside a 50ml conical tube with 20ml Hanks’s
buffer with 0.5mM EDTA. This tube was placed in the
orbital shaker incubator (250 rpm) during 20min. at 37°C.
Following this, the content of the tube was filtered with a
stainless steel 20 mesh strainer; the cell tissue remaining in
the strainer was washed with PBS 1x. The tissue was
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collected on a 50ml conical tube with 20ml of RPMI. The
tissue was thoroughly minced with a pair of dissecting scis-
sors. Then, 20mg of Collagenase I and 10mg of DNase I
(Sigma) placed in an orbital shaker incubator (200 rpm) at
37°C for 20 minutes. The cell suspension was strained trough
a 70μm mesh inside a new 50ml tube, then centrifuged
(5min., 1500 rpm). The supernatant was discarded, and the
pellet was treated with 5ml of erythrocyte lysis buffer during
5min. at 4°C. Following this, 5ml of cold PBS1x were added
to the pellet and then centrifuged (5min., 1500 rpm). The
pellet was resuspended in approximately 500μl in PBS 1x
with 0.5mM EDTA and supplemented with 5% FBS prior
to count.

2.2.3. Blood Recovery. Blood was recovered by simultaneous
perfusion of 1x PBS with 0.5mM EDTA and retrieved with
an insulin syringe through the abdominal aorta. Blood was
recovered inside a 15ml conical tube to a volume of 10ml
(with PBS 1x 0.5mM EDTA), then centrifuged (5min.,
1500 rpm). The supernatant was discarded, and the pellet
was incubated with 5ml of erythrocyte lysis buffer during 5
minutes at 4°C. Following this, 5ml of PBS 1x were used to
wash the cells and then centrifuged (5min., 1500 rpm). Cel-
lular pellet was finally resuspended in approximately 500μl
of PBS 1x supplemented with 5% FBS prior to count.

2.2.4. Bone Marrow Recovery. Bone marrow cells were
flushed from the femurs and tibias into 1x PBS with
0.5mM EDTA using a syringe and a 21-Gauge needle.
Residual bone marrow red blood cells were lysed with eryth-
rocyte lysis buffer, washed, and resuspended in PBS 1x sup-
plemented with 5% FBS prior to count.

2.3. Flow Cytometry. Flow cytometry was performed using
the following monoclonal antibodies: AF700 anti-CD45,
PercP anti-CD45, PercPCy5.5 anti-CD19, PercPCy5.5 anti-
TER119, PercPCy5.5 anti-CD8a, PercPCy5.5 anti-NK1.1,
PercPCy5.5 anti-FceR1a, PercPCy5.5 anti-CD34,
PercPCy5.5 anti-EpCAM, APC anti-Sca-1, FITC anti-Sca-
1, PECy7 anti-c-kit, APC anti-ST2, APC-Cy7 anti-NK1.1,
FITC anti-CD31/PECAM, PacificBlue anti-flk1/VEGFR2/
KDR, VB605 anti CD140a/PDGFR, FITC anti-CD49d,
APC anti-CD49a, PECy7 anti-CD49b, APC-fire 750 anti-
CD48, VB605 anti-CD150, FITC anti TLR9 (CD289),
AF647 anti TLR5 (CD285), PECy7 anti TLR4 (CD284), PE
anti-ISM1, and PE anti-IgG2b all from Biolegend (San
Diego, CA) and PercePCy5.5 anti-CD3e, PercPCy5.5 anti-
Ly6G, PercPCy5.5 anti-CD11b, and VF450 anti-CD127
from TONBO (San Diego, CA). Live cells were detected
using Zombie Violet Fixable Viability Kit from Biolegend
or ViaKrome 808 Fixable Viability Dye from Beckman Coul-
ter (Table S1). Data acquisition was performed on
CytoFLEX LX Flow Cytometer (Beckman Coulter) and
analyzed using FlowJo v10.7.2.

2.4. ImageStream. We harvested 2 × 106 freshly isolated lung
cells as described above, and the cells were stained with the
extracellular markers FITC anti-Sca-1 and APC anti-CD45
followed by intracellular staining with PE anti-ISM1 and
DRAQ5 for nuclear staining (All from Biolegend). Images

were captured using the Amnis ImageStream Mark II Imag-
ing Flow Cytometer with 60x magnification (EMD Milli-
pore). Data were acquired using Amnis INSPIRE software
and analyzed using Amnis IDEAS software.

2.5. Extravascular Localization of ISM1+ Cells. To test for
extravascular localization (tissue residency), mice were
injected intravenously with APC anti-Sca-1 antibody 5min
before lung cell recovery as indicated before. Isolated cells
were stained with FITC anti-Sca-1 and intracellular PE
anti-ISM1 antibodies followed by flow cytometry
acquisition.

2.6. Pseudomonas Aeruginosa Infection. C57BL/6 were
infected by intraperitoneal injection of 2 × 107 CFU of Pseu-
domonas aeruginosa strain UCBPP-PA14 diluted in 200μl
of sterile PBS 1x. 8 h postinfection, mice were euthanized,
and blood, bone marrow, and lungs were recovered. Cells
were analyzed by flow cytometry. Plasma was recovered
and stored at -80°C.

2.7. Toll-Like Receptor Stimulation in Lung Cells. Following
lung digestion, cells were recovered in RPMI 1640 (Caisson)
with FBS 10%, antibiotic 1x (Sigma), and L-glutamine solu-
tion (Sigma) and were seeded in a 48-well plate (1 × 106 cells
per well). TLR ligands LPS-EK, FLA-ST, and ODN1826 were
purchased from InvivoGen. LPS-EK final concentration in
media was 500 ng/ml, FLA-ST 10ng/ml, and ODN1826
5μM. The plates were incubated during 4 h at 37°C and
5% CO2. Following incubation, cells were recovered for flow
cytometry protocol.

2.8. Statistics. Mouse data are reported as mean ± SEM and
were analyzed by unpaired Student’s t-test, whereas multi-
group comparisons were performed using a one-way
ANOVA test and Bonferroni’s post hoc. GraphPad PRISM
version 7.0, GraphPad Software Inc. (La Jolla, CA), was used
for all these analyses.

3. Results

3.1. SM1+ Cells Are Enriched in the Lung and Express
Markers of Stem Cells. To better characterize ISM1+ cells,
we focused our study in the lung, which is one of the tissues
with the highest mRNA expression of ISM1, both in mouse
and human [18, 19]. To this end, we performed flow cytom-
etry analyses on lung cells and confirmed that around 20%
of them were ISM1+ (Figure 1(a)). Compared to other
immunological tissues (including lamina propria, bone mar-
row, and blood), we observed a 4-fold higher level of ISM1+

cells in the lung (Figure 1(b)).
Since the lung is a mucosal tissue with significant cell

diversity, we sought to identify which cells produce ISM in
this organ. To this end, we evaluated different cell types
including hematopoietic, mesenchymal, endothelial, and
epithelial cells. A small fraction of ISM1 expressing cells also
coexpress CD45, indicating that a portion of ISM1+ cells
have a hematopoietic origin. Interestingly, around 90% of
ISM1+ cells coexpressed high levels of Sca-1, CD105,
CD146, and CD31, markers found in hemogenic
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endothelium and mesenchymal cells [20, 21] (Figure 2(a)).
Furthermore, a fraction of ISM1+ cells also expressed c-kit
and CD34, which represent markers of hematopoietic pro-
genitors [22].

Our data also revealed that a small proportion of ISM1+

cells may be endothelial or epithelial cells, since we found
low percentages of ISM1+ cells expressing VEGFR2 [23]
and EpCAM (Figure 2(a)) [24].

3.2. ISM1+ Cells Have Properties of Lung Resident Cells. Stem
cells have properties of resident cells. We therefore investi-
gated the presence of CD49a, an integrin expressed by cells
that bind extracellular matrix in the lung [25], and we
observed that the majority of ISM1+ Sca-1+cells coexpressed
CD49a (Figure 2(b)). We then took advantage of the fact
that the majority of ISM1+ cells coexpressed Sca-1
(Figure 2(a)) and determined the relative proportions of
intravascular and extravascular ISM1+ Sca-1+ cells by using
an intravascular labeling technique previously described
[13]. We observed that the majority of lung Sca-1+ cells were
located in the extravascular compartment and coexpressed
ISM1 (Figure 2(c)). Interestingly, we also identified a small
subset of Sca-1+ ISM1+ in the intravascular compartment,
indicating the presence of circulating ISM1+ cells as we pre-
viously observed (Figure 1(b)). Taken together, our data sug-
gest that ISM1+ cells are resident cells of the lung.

3.3. ISM1 Identifies Subsets of Hematopoietic, Epithelial, and
Mesenchymal Progenitor-Like Cells. Our data suggest that
ISM1 production is strongly associated with cells expressing

progenitor-cells-associated markers. To further clarify this,
we performed a multiparametric panel analysis to determine
the presence of ISM1 in EPCs [26], MSCs [27], and HSPCs
[13] subpopulations as described. As shown in Figure 3,
ISM1+ cells were mainly EPCs (ISM1+CD45-CD31+CD105+-

c-kit+) and HSPCs (ISM1+CD45+CD31-CD105+c-kit+),
although some ISM1+ cells resemble classic MSCs
(ISM1+CD45-CD31-CD105+CD90+).

Since we found that ISM1+ cells share markers with
already described lung HSPCs [13], we suspected that some
lung hematopoietic stem cells may be characterized by the
expression of ISM1. As shown in Figure 4, a fraction of
ISM1+ cells coexpress CD45, Sca-1, and c-kit, further sup-
porting the conclusion that ISM1 is expressed by a subpop-
ulation of lung HSPCs. We confirmed the coexpression of
CD45, Sca-1, and ISM1 by ImageStream in single cells
(Figure 4(b)).

3.4. A Subset of ISM1+ Cells are Likely Hematopoietic
Progenitors. The diversity of HSPCs characterized by the
expression of Sca-1 and c-kit and by members of the SLAM
family such as CD48 and CD150 has already been identified
in the lung. Therefore, we sought to determine whether
ISM1+ was also expressed by those subpopulations. We
characterized hematopoietic progenitors and stem cells by
following a flow cytometry gating strategy previously
reported for lung HSCs [13]. We analyzed the Lineage-

CD45+ ISM1+ and Lineage- CD45+ ISM1- subsets, then we
also looked for the presence of Sca-1 and c-kit expression
to obtain a fraction of cells we called ISM1+LSK (Lineage-
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CD45+ ISM1+ c-kit+ Sca-1+) or ISM1- LSK (Lineage- CD45+

ISM1- c-kit+ Sca-1+). We observed that Lineage- CD45+

ISM1+ cells represented around 1% of all Lineage- CD45+

cells, and, interestingly, these ISM1+LSK cells express

CD150 and CD48, indicating that phenotypically they are
hematopoietic progenitors that can be classified as LT and
ST-HSCs and MPP2-4 cells (Figure 5(a)). Furthermore, the
ISM1- LSK cells represented the classical LSK subset since
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they comprised around 99% of the Lineage- CD45+ analyzed
cells, and they also expressed CD150 and CD48
(Figure 5(a)). However, when we analyzed the different
HSC cell subsets found in ISM1+LSK and ISM1-LSK popula-
tions, we detected a higher proportion of ST-HSC precursors
in the ISM1+LSK compartment. Conversely, we observed a
higher proportion of MPP3/4 precursors in the ISM1-LSK
compartment. We found no significant differences in the
proportions of LT and MPP2 (Figure 5(b)). Considering that
ST-HSCs are above MPP3/4 precursors (in the hierarchy of
stemness properties) [22], our data suggest that ISM1+LSK
cells represent a subset of hematopoietic progenitors
enriched in a compartment of less-differentiated cells than
those located in the ISM1-LSK compartment.

3.5. Changes in the Compartment of Lung LSK and
ISM1+LSK Cells during Bacterial Infection. An important
property of bone marrow HSCs is their capacity to prolifer-
ate during emergencies caused by pathogens [28]. However,
it is still unknown whether lung HSCs respond in the same
way as their bone marrow counterparts during bacterial
challenges, and more importantly, whether the ISM1+-HSC

compartment identified in this study is similarly affected.
To answer this, we used a mouse model of sepsis generated
by IP inoculation of the opportunistic bacterial pathogen P.
aeruginosa, and 8h after infection, we successfully detected
bacteria in the lungs (Figure 6(a)). While we did not detect
significant changes in the analysis of total lung cells (data
no shown), we observed small increases in the percentage,
absolute number, and mean intensity fluorescence of
CD45+ISM1+ lung cells from infected mice (Figure S1). We
hypothesized that this outcome could be associated with an
increase in the hematopoietic progenitor cell subset. To
explore this, we analyzed the LSK compartment and
confirmed that bacterial infection increased the percentage
and absolute numbers of LSK cells (Figures 6(b)–6(d)).
Therefore, bacterial infection changes the lung HSC
compartment in a similar fashion as its bone marrow
counterpart [28]. Next, we sought to evaluate whether the
hematopoietic ISM1+ cell compartment was also affected.
We initially observed a slight increase in the percentage
and absolute numbers of Lin- CD45+ ISM1+ cells
(Figures 6(e)–6(g)). Furthermore, when we analyzed the
ISM1+LSK subset (Lin- CD45+ ISM1+ c-kit+ Sca-1+), we
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found that the absolute numbers of ISM1+LSK cells were
significantly increased (Figure 6(i)), indicating that ISM1+-
HSC cells are also altered during bacterial infection.

The lung is a target of P. aeruginosa, and its products
have been reported to stimulate HSPCs through Toll-like
receptors (TLRs), particularly TLR4 [28]. However, TLR5
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and TLR9 are also involved in lung infections [29–31]. We
therefore examined the presence of these TLRs on ISM1+c-
kit+CD45+ lung cells. We observed that around 50% of
ISM1+c-kit+CD45+ express TLR4 and TLR5 and approxi-
mately 90% express TLR9 compared to ISM1-c-kit+CD45+

cells (Figure 7(a)). Furthermore, in vitro stimulation of puri-
fied lung cells with TLR4, -5, and -9 agonists reduced the
percentage of ISM1+ cells (Figure 7(b)), suggesting that
ISM1+ cells have the molecular pathways required to
respond to bacterial challenges.

4. Discussion

ISM1 is a highly conserved gene among species [16], and it is
highly expressed in barrier tissues including the respiratory
track, mucosal tissues, and hematopoietic cells [19]. We pre-
viously reported that immune cells located in the lung,
including T and NK cells, expressed ISM1[19]. However, a
more comprehensive characterization of the cells expressing
this secreted protein has not been done.

By evaluating the presence of intracellular soluble ISM1
in the lungs and other immune tissues including lamina pro-
pria, bone marrow, and blood, we confirmed that ISM1+

cells are enriched in the lung as mRNA expression has sug-
gested [18, 19]. Furthermore, the enrichment of ISM1+ cells
in the lung suggests that the lung milieu may be important
for the maintenance of ISM1+ cells.

ISM1 is expressed by mesodermal tissues during devel-
opment [16–18]. However, previous studies have described
a strong presence of ISM1 lining lung’s bronchi, suggesting
that ISM1 may be associated with epithelial cells [18, 32].
Interestingly, we found a small percentage of ISM1+ cells
expressing EpCAM, a bona fide marker of epithelial cells
[24]. This observation suggests that ISM1 expression may
be reduced in differentiated epithelial cells. Thus, we
hypothesized that ISM1 may be expressed by a subtype of
mesodermal-derived cell population. Since endothelial cells
[33], mesenchymal cells [34], and hematopoietic progenitor
cells [35] are derived from mesoderm, we confirmed the
presence of ISM1 in cells coexpressing Sca-1, CD105,
CD146, c-kit, CD34, and CD45, suggesting that ISM1
expression may be a novel biomarker of progenitor-like
cells. Furthermore, the presence of CD49a on Sca-
1+ISM1+ cells (Figure 2) (along with their extravascular
localization) suggests that these cells are tissue residents
and require signals from a niche located in the lung (which
remains uncharacterized) [36].

Our data strongly suggest that ISM1+ cells may help to
identify EPCs (ISM1+CD45-CD31+CD105+c-kit+) and HSPCs
(ISM1+CD45+CD31-CD105+c-kit+) and in minor degree
MSCs (ISM1+CD45-CD31-CD105+CD90+) (Figure 3). Thus,
ISM1 may identify endothelial-like and mesenchymal-like
cells that are part of a lung stromal niche [37]. Furthermore,
since the majority of ISM1+ lung cells seem to be EPCs akin
to zebra fish stroma [38], ISM1 could have a similar key role

Figure 5: Characterization of ISM1+ LSK cells. (a) Gating strategy to visualize ISM1+ LSK (LIN- CD45+ ISM1+ c-kit+ Sca-1+) and ISM1-

LSK (LIN- CD45+ ISM1- c-kit+ Sca-1+) cell subsets. LIN-CD45+ISM1+ cells were analyzed for the presence of Sca-1 and c-kit and then
analyzed for CD150 and CD48 expression. (b) Percentages of different HSCs and progenitors are depicted, n = 3. Data are mean plus
SEM n = 3 independent experiments. Statistical analysis was performed one-way ANOVA test, ns: nonsignificant; ∗∗p < 0:01, ∗∗∗p < 0:001.
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in the support of hematopoiesis. This is a possibility that
deserves further studies [17].

Mucosal tissues are important reservoirs of hemato-
poietic progenitors [3, 39, 40]; thus, we performed a
detailed analysis of ISM1+ cells in the context of HSPCs.
We found that ISM1 is present in a fraction of LSK cells
(ISM1+ LSK cells) that coexpress CD150 and CD48,
revealing a novel subpopulation of ISM1+ cells enriched
in the compartment of ST-HSCs progenitors which have
elevated differentiation potential [22]. Since ISM1 is
required for normal hematopoiesis in zebrafish [17], this
novel subpopulation of ISM1+-HSPC cells may be impor-
tant for the regulation of extramedullary hematopoiesis in
the lung. Although the function of ISM1 in the HSPC
compartment remains a matter of further studies, ISM1
may help to maintain the lung HSPC niche given its rela-

tionship with the TGF-β superfamily through the
NODAL/Activin axis [41, 42].

Acute inflammation due to bacterial challenges or inju-
ries has been demonstrated to activate HSPCs in the bone
marrow [43]. Inflammatory mediators including IL-6 [44],
TNF-α [45], IFN-α [46], IFN-γ [47], TGF-β [48], and M-
CSF [49] regulate HSC activation, mobilization, and prolif-
eration. Such mediators are secreted upon a pathogen
response and promoted the mobilization of HSPCs within
the bone marrow [50]. However, it is unknown whether
the lung HSPCs described by Lefrançais et al. [13] share
the same response properties as bone marrow HSPCs.
Our data indicates that systemic challenge with P. aerugi-
nosa amplified total lung LSK cell counts and proportions
(Figure 6). This finding strongly suggests that lung HSPCs
act similarly to bone marrow LSK cells under bacterial
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Figure 6: Changes in LSK and ISM1+LSK cell subsets after P. aeruginosa challenge. (a) CFU from lung tissues after P. aeruginosa infection.
(b) LKS cells (Lineage-CD45+c-kit+Sca-1+) from control and septic mice were analyzed, and percentages (c) and absolute numbers (d) are
depicted. (e) ISM1+LSK cells were analyzed, and percentages and absolute numbers are depicted (f–i). Data are means plus SEM n = 3
independent experiments. Statistical analysis was performed by Student’s t-test for unpaired data, ∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001.
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infections like P. aeruginosa [28], M. tuberculosis [51], and
E. muris [52]. Importantly, the absolute numbers of ISM1+

LSK cells were increased too, suggesting that, in vivo, bac-
terial challenges elicit an expansion of ISM1+ LSK cells.

It is well known that both mature and immature hema-
topoietic cells can be directly stimulated by pathogen-
associated molecular pattern (PAMP) recognition due to
the activation of pathogen recognition receptors (PRRs)
such as Toll-like receptors [50, 53]. We wanted to know
whether lung ISM1+ cells expressed some common TLRs
that could account for the effects observed by the bacterial
challenge. As shown in Figure 7, we found that ISM1+c-kit+-

CD45+ expresses the most common TLR in the lungs, TLR9,
TLR4, and TLR5 [54], in analogy to bone marrow HSPCs
[55]. Direct stimulation of those TLRs in vitro resulted in a
decrease of ISM1+ cells, suggesting that TLR stimulation
may trigger the secretion of ISM1 from lung cells and there-
fore explaining the increased levels of ISM1 in bronchoalve-
olar lavage that were observed in a mouse model challenged
with intratracheal LPS [56].

These observations are potentially important given the
emerging importance of the lung as a site for hematopoiesis.
For example, Lefrancais et al. (2017) have reported that the
lung is a particularly important site of platelet biogenesis
and may account for approximately 50% of total platelet
production or 10 million platelets per hour. In this context,
future studies may focus on a potential role for ISM1 in
platelet biogenesis, among other important aspects of poten-
tial hematopoiesis in the lung.

5. Conclusions

Taken together, our study demonstrates that ISM1 is
expressed by several lung cell subsets. Some of these have a
phenotype of progenitor cells and also exhibit properties of
lung tissue resident cells. Thus, ISM1 is likely a novel bio-
marker associated with progenitor-like cells. Moreover, we
identified a novel subset of ISM1+-ST-HSCs in the compart-
ment of LSK cells. Finally, bacterial infection increased both
LSK and ISM1+LSK cell numbers, most likely through acti-
vation of TLRs.

Overall, our data strongly suggests that ISM1 has a role
in hematopoiesis in the lung, specifically, through the phys-
iology of lung HSPCs. Consequently, a detailed exploration
of the function of ISM1 in lung extramedullary hematopoie-
sis during both homeostasis and infection/inflammation will
help to define the function(s) of ISM1 in this emerging area.
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