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Purpose. To elucidate the clinical and prognostic role of PDZ and LIM domain protein (PDLIM) genes and the association to
epithelial-mesenchymal transition (EMT) and immune cell infiltration in patients with prostate cancer (PRAD). Methods. The
data of RNA-seq, DNA methylation, and clinical features of PRAD patients were collected from The Cancer Genome Atlas
(TCGA) database to define the prognostic value of PDLIM gene expression and the association with EMT and immune cell
infiltration. A tissue microarray including 134 radical prostatectomy specimens was served as validation by
immunohistochemistry (IHC) staining analysis. Results. The mRNA levels of PDLIM1/2/3/4/6/7 were significantly
downregulated, while PDLIM5 was upregulated in PRAD (P < 0:05). High expression of PDLIM2 mRNA suggests poor
progression free interval in PRAD patients. DNA methylation of PDLIM2 was correlated with its mRNA expression level, and
that the cg22973076 methylation site in PDLIM2 was associated with shorter PFI (P < 0:05) in PRAD. Single-sample gene-set
enrichment and gene functional enrichment results showed that PDLIM2 was correlated with EMT and immune processes.
Spearman’s test showed a significant correlation with six reported EMT signatures and several EMT signature-related genes.
Tumor microenvironment analysis revealed that the PDLIM2 mRNA expression was positively correlated with the immune
score, stromal score, and various tumor infiltrating immune cells. Additionally, the results showed that patients in the high-
PDLIM2 mRNA expression group may be more sensitive to immune checkpoint blockade therapy. Finally, IHC analysis
further implicated the protein level of PDLIM2 was upregulated in PRAD and acts as a novel potential biomarker in predicting
tumor progression. Conclusion. Our study suggests that PDLIM family genes might be significantly correlated with oncogenesis
and the progression of PRAD. PDLIM2 correlated with EMT and immune cell infiltration by acting as an oncogene in PRAD,
which may serve as a potential prognostic biomarker for PRAD patients.
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1. Introduction

Prostate cancer (PRAD) is a frequently diagnosed cancer
type and a leading cause of cancer mortality in males world-
wide [1]. Radical prostatectomy and radiotherapy are poten-
tially curative strategies for localized PRAD, while androgen
deprivation therapy (ADT) is the conventional treatment for
metastatic PRAD. Unfortunately, despite high temporary
response rates, cancer relapse often occurs in most patients
and leads to deterioration into castration-resistant prostate
cancer (CRPC). Treatment of metastatic, particularly CRPC,
remains challenging. Emerging studies [2, 3] have shown
that epithelial-mesenchymal transition (EMT) causes CRPC
metastasis and development and enhances immunosuppres-
sion in the tumor microenvironment (TME). Currently,
immunotherapy has gained wide attention for cancer treat-
ment. However, the immunosuppressive tumor microenvi-
ronment limits the efficacy of immunotherapy [4].
Recently, studies [5, 6] have linked EMT-associated genes
to immune components. However, the relationship between
EMT activity and the efficacy of immunotherapy remains
controversial. Some literatures [3, 5] suggested that patients
with tumors exhibiting higher EMT-related gene expression
may benefit from immune-checkpoint blockade (ICB)
immunotherapy, while others have linked the expression of
EMT regulators with immunotherapy resistance [6]. There-
fore, further exploration of EMT-related genes and cancer
immunotherapy may provide prognostic makers and poten-
tial therapeutic targets for patients with PRAD.

Currently, the PDLIM family comprises seven members,
PDLIM1−7 [7]. The PDZ domain mediates protein binding
and protein–protein interactions, thereby exerting various
functions such as in cell proliferation, migration, polarity,
EMT, and recognition of immune cells [8]. Recently, several
studies reported that PDLIMs were linked with PRAD.
PDLIM2 expression was abundant in CRPC-like cell lines
but was not detectable in androgen-sensitive cell lines
[9–11]. Furthermore, in vitro and in vivo results demon-
strated that knockdown of PDLIM2 significantly inhibited
tumor cell growth and invasiveness in human CRPC-like
cells [9]. In contrast, PDLIM4 functions as a tumor suppres-
sor and is hypermethylated and suppressed in PRAD cell
lines compared to normal prostate cells [12–14]. Although
research in prostate cancer has already given clues to the cer-
tain pathogenicity of PDLIMs, to date, the clinicopathologi-
cal and prognostic value of PDLIM expression levels in
PRAD remains unknown. In the present study, we aimed
to elucidate the role of PDLIMs in EMT and immune cell
infiltration, which can lead to a deeper understanding of
the role of PDLIMs in PRAD, and more in-depth research
in the future.

2. Materials and Methods

2.1. Data Acquisition and Expression Analysis of PDLIMs in
PRAD. All RNA HTseq data in FPKM (fragments per kilo-
base of exon per million reads mapped) format including
551 PRAD tissues and 56 paired noncancerous normal tis-
sues were obtained through The Cancer Genome Atlas

(TCGA) database (https://portal.Gdc.cancer.gov/). DNA
methylation data based on the Illumina Human Methylation
450 Bead chip and the clinicopathological data of TCGA-
PRAD were also acquired from TCGA-PRAD dataset.

2.2. Survival Analysis of PDLIMs in PRAD. TCGA-PRAD
tumor cohort was split into high and low groups for each
PDLIM based on the median mRNA expression levels. Sur-
vival outcomes including overall survival (OS) and progres-
sion free interval (PFI) were estimated using the Kaplan–
Meier and log-rank tests. Univariate and multivariate Cox
proportional hazard models were used to assess the influ-
ence of PDLIMs on the survival outcomes of PRAD patients.
The PFI events in this study were based on data from TCGA
database, as described by Liu et al. [15]. Patients without sur-
vival data were excluded from the survival analysis.

2.3. Mutation Data Analysis of PDLIMs in PRAD. To iden-
tify driver mutated genes in TCGA-PRAD cohort, we
adopted the R package TCGA mutations [16]. Additionally,
the tumor mutation burden (TMB) of each TCGA-PRAD
sample was calculated using a previously reported method
[17]. In this study, tumor mutation burden (TMB) for
TCGA cohorts is obtained from TCGA MC3 study. For con-
sistency, TMB is estimated by restricting variants within
Agilent Sureselect capture kit of size 35.8MB. A Wilcoxon
test was applied to compare the TMB distribution differ-
ences between the high and low-PDLIM2 mRNA expression
groups. Furthermore, a Wilcoxon test was used to compare
the mRNA expression levels of PDLIM2 between mutated
and wild-type (WT) cases, using the Tumor Immune Esti-
mation Resource (TIMER) 2.0 [18] database (http://time-
r.cistrome.org/).

2.4. Prognostic Potential of DNA Methylation of PDLIM2
Loci in PRAD. DNA methylation samples were divided into
low and high groups based on the median methylation beta-
value of each locus in PDLIM2. The Kaplan–Meier method
was used to assess the association between the methylation
status of PDLIM2 and PFI. The correlation between each
methylation level of the selected loci and the mRNA expres-
sion of PDLIM2 was determined with the “corrplot” R
package.

2.5. Functional Enrichment Analysis of PDLIM2
Coexpression Networks. PDLIM2 coexpressed genes in
TCGA-PRAD were identified using Spearman’s rank corre-
lation (∣r ∣ >0:4, P < 0:05). Functional enrichment analysis
was performed to predict the function of PDLIM2 coex-
pressed genes using the online Metascape tool [19].

2.6. Gene-Set Enrichment Analysis of Published EMT
Signatures. Single-sample gene-set enrichment analysis
(ssGSEA) methods [20] were used to score individual sam-
ples against the EMT status based on previously reported
findings in PRAD or pancancer. Furthermore, the EMT sig-
nature score and the EMT signature-related genes that were
highly related to PDLIM2 were visualized using the online
Evenn website [21]. Spearman’s correlation coefficients were
employed to explore the correlation between PDLIM2 and
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different EMT signature enrichment scores and EMT
signature-related genes. The EMT scores from different pub-
lished EMT signatures and the normalized expression level
of each EMT signature-related gene that was significantly
related to PDLIM2 are shown in the heatmap constructed
using the “pheatmap” package (v_1.0.8) (https://CRAN.R-
project.org/package=pheatmap). Kaplan–Meier curves com-
bined with a log-rank test for PFI were constructed to pre-
dict the value of the signature using the R package
“survival.” The expression correlation between PDLIM2
and different EMT signature intersection genes was visual-
ized using the package “ggstatsplot” (https://CRAN.R-
project.org/package=ggstatsplot) in R.

2.7. Tumor Microenvironment Analysis. Immune infiltration
analysis of PRAD was assessed using the xCell method from
the TIMER 2.0 database (http://timer.cistrome.org/) [18]. To
identify the correlation between PDLIM2 and the infiltration
levels of various immune cells [22], Spearman and Wilcoxon
rank sum tests were performed to explore P values. The
immune checkpoint gene expression differences between
the high and low of PDLIM2 expression groups were ana-
lyzed. The detailed relationships between PDLIM2 and
hematopoietic stem cells, cancer associated fibroblasts,
immune scores, and microenvironment scores were also
plotted using the ggscatterstats function in the “ggstatsplot”
package.

2.8. Correlation between PDLIM2 mRNA Expression and
Biomarkers for Predicting Immunotherapy Response. The
potential immunotherapy response prediction between
PDLIM2 mRNA high and low groups was estimated with
immune checkpoint genes and mismatch repair (MMR)
genes. The expression levels of eight representative immune
checkpoint genes, namely, SIGLEC15, TIGIT, CD274,
HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2, were
selected to explore differences in the mRNA expression of
above eight genes between the PDLIM high and low groups
via a Wilcoxon test. The association between PDLIM2

expression and MMR genes (MLH1, MSH2, MSH6, PMS2,
and EPCAM) was evaluated using the Spearman method.

2.9. Immunohistochemical (IHC) Analysis. For IHC analysis,
a tissue microarray (TMA) containing 134 PRAD tissue
samples and 31 adjacent tissue samples was purchased from
Shanghai OUTDO Biotech Co. (Shanghai, China;
HproA180PG09). The correlation between PDLIM2 protein
expression and clinicopathological parameters, such as age,
PSA value, Gleason score, pathology TNM stage, and vari-
ous biomarkers of PRAD patients was also analyzed. Immu-
nostaining was performed using the EnVision Flex+ system
(K8002, Dako, Glostrup, Denmark). Immunohistochemical
analysis was performed as previously described [23]. Speci-
mens were incubated with PDLIM2 primary antibody
(1 : 200, Invirtrogen, MA5-25512) at 4°C overnight. The
results were analyzed by two pathologists (ZHH and
ZMY). The immunostaining for PDLIM2 was semiquantita-
tively scored according to the intensity of cell staining and
the proportion of stained tumor cells. Only a cytoplasmic
expression pattern was considered as positive staining.
Briefly, the staining intensity was scored as “0” (negative,
no staining), “1” (weak staining), “2” (moderate staining),
or “3” (strong staining). If the total score
(percentage score × intensity score) was 1 or less, PDLIM2
protein expression was considered low, and if the total score
was more than 1, the samples were considered to have high-
PDLIM2 expression.

2.10. Statistical Analysis. Statistical analysis was performed
using R (version 4.03) and R studio (version 1.2.5042) soft-
ware. Numerical data are described as the median and/or
range; intergroup comparisons were performed with a Wil-
coxon signed-rank test or Mann–Whitney U test. For cate-
gorical data, we used a chi-square test or Fisher exact test
to perform intergroup comparisons. The Kaplan–Meier
method and univariant and multivariant Cox regression
tests were performed using the survival package. Correlation
coefficients were determined via Spearman correlation

0

2

4

6

8

10

Th
e e

xp
re

ss
io

n 
le

ve
ls

Lo
g 2 (

FP
KM

+1
) ⁎⁎⁎

⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎

PD
LI

M
1

PD
LI

M
2

PD
LI

M
3

PD
LI

M
4

PD
LI

M
5

LD
B3

PD
LI

M
7

Normal
Tumor

(a)

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

PD
LI

M
1

PD
LI

M
2

PD
LI

M
3

PD
LI

M
4

PD
LI

M
5

PD
LI

M
6

PD
LI

M
7

0

2

4

6

8

10

Th
e e

xp
re

ss
io

n 
le

ve
ls

lo
g 2 (

FP
KM

+1
)

Normal
Tumor

(b)

Figure 1: Expression patterns of PDLIMs in prostate cancer. (a) The expression of PDLIM family genes in prostate cancer tissues (n = 499)
compared to normal adjacent tissues (n = 42) in in TCGA-PRAD cohort. (b) Expression of PDLIM family genes in paired prostate cancer
tissues and normal tissues (52 vs. 52). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:0001.
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Figure 2: Continued.
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analysis, and ∣r ∣ >0:40 and P < 0:05 were considered signifi-
cant. The relationship between PDLIM2 expression and
clinicopathologic features was evaluated with a Wilcoxon
rank sum test, chi-square test, or Fisher’s exact test. P values
less than 0.05 for a two-tailed test were accepted as statisti-
cally significant.

3. Results

3.1. Dysregulation of PDLIM Genes in PRAD. To investigate
the mRNA expression levels of PDLIMs in PRAD, PDLIM
mRNA expression between PRAD and normal samples
was evaluated using unpaired (n = 551) and paired (n = 56)
data from TCGA database. The results showed that PDLIM5
mRNA expression was upregulated in the PRAD group
compared to the normal group, but PDLIM1/2/3/4/6/7 were
downregulated in both unpaired (Figure 1(a)) and paired
samples (Figure 1(b)).

3.2. High Expression of PDLIM2 mRNA in PRAD Is
Correlated with Poor Prognosis. Kaplan–Meier plotter
showed that high-PDLIM2 expression was correlated with
poor PFI (P = 0:004), but high PDLIM6 expression was cor-
related with favorable PFI (P = 0:01) (Figure 2(b)). However,
the other PDLIM genes showed no significant effect on OS
or PFI in PRAD patients (Figures 2(a) and 2(b)). Univariate
Cox analysis (HR = 1:856, 95% CI: 1.223-2.816, and P =
0:004) and multivariate Cox analysis (HR = 2:127, 95% CI:
1.375-4.291, and P < 0:001) indicated that PDLIM2 was a
risk prognostic factor for PFI, while PDLIM6 (HR < 1, P <
0:05) was identified as a favorable prognostic factors in
PRAD patients (Figure 2(c)). Thus, PDLIM2 was selected
for further analysis in this study.

3.3. Correlations between PDLIM2 mRNA Expression and
Clinicopathological Parameters of PRAD. A total of 499 pri-
mary PRAD patients with both clinical and gene expression
data from TCGA-PRAD cohort were enrolled (Table 1).
According to the median value of PDLIM2 mRNA expres-
sion, the patients were divided into high (n = 250) and low
(n = 249) expression groups according to the median value
of PDLIM2 mRNA expression. A chi-square test or Fisher’s
exact test showed that PDLIM2 mRNA expression was cor-
related with primary therapy outcome (P < 0:001) and Glea-
son score (P = 0:003).

3.4. Somatic Mutation Landscape. TCGA-PRAD somatic
mutation data showed that TP53, SPOP, TTN, MUC16,
KMT2D, and FOXA1 were the top six genes with the highest
genetic mutations, and the mutation rates were 12, 11, 11, 6,
and 6%, respectively (Figure 3(a)). TMB, immune check-
point genes, and impaired DNA MMR have been found to
affect the response of cancer cells to ICB treatment [24].
The PDLIM2 high expression group showed lower TMB
than the low expression group (P < 0:01, n = 498)
(Figure 3(b)). To determine the correlations between these
gene mutation phenotypes and PDLIM2 expression, the
TIMER 2.0 database [18] was applied using a Wilcoxon rank
sum test. In this cohort, patients with PTEN-mutated
tumors had higher PDLIM2 mRNA expression levels than
patients with PTEN wild-type (WT) tumors (P = 0:039). In
contrast, increased PDLIM2 mRNA expression was
observed in patients with WT-FOXA1 (P = 0:036) and
WT-TTN (P = 0:015) compared with those with mutations
(Figures 3(c)–3(e)), indicating that mutation of PTEN,
FOXA1, and TTN showed a significant influence on aber-
rant PDLIM2 expression. No significant differential
PDLIM2 expression could be found between the WT and
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Figure 2: High-PDLIM2 expression was an independent predictor of poor prognosis in prostate cancer. (a, b) Kaplan–Meier survival plots
of overall survival (OS) and progression free interval (PFI). (c) Univariate and multivariate Cox proportional analyses for PFI.
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mutant genes for SPOP, KMT2D, or MUC16 (P > 0:05)
(data not shown).

3.5. DNA Methylation of PDLIM2 in PRAD. As previous
studies reported that PDLIM mRNA expression levels are
regulated by DNA methylation in many cancer types [12,

25], and we further investigated the DNA methylation on
PDLIM2 mRNA expression and survival in PRAD patients.
The PDLIM2 mRNA expression was positively correlated
with the methylation sites cg23696886 and negatively corre-
lated with methylation site of cg20449614, cg26366616,
cg05698069, and cg22973076 (Figures 4(a) and 4(c)–4(g)).

Table 1: Association between low- or high-PDLIM2 mRNA expression and clinicopathological features in TCGA-PRAD cohort.

Characteristic Low expression of PDLIM2 High expression of PDLIM2 P

n 249 250

Age, n (%) 0.054a

≤60 123 (24.6%) 101 (20.2%)

>60 126 (25.3%) 149 (29.9%)

T stage, n (%) 0.150a

T2 105 (21.3%) 84 (17.1%)

T3 136 (27.6%) 156 (31.7%)

T4 5 (1%) 6 (1.2%)

N stage, n (%) 0.057a

N0 180 (42.3%) 167 (39.2%)

N1 31 (7.3%) 48 (11.3%)

M stage, n (%) 1.000b

M0 226 (49.3%) 229 (50%)

M1 1 (0.2%) 2 (0.4%)

Primary therapy outcome, n (%) <0.001a

PD 14 (3.2%) 14 (3.2%)

SD 10 (2.3%) 19 (4.3%)

PR 9 (2.1%) 31 (7.1%)

CR 183 (41.8%) 158 (36.1%)

Race, n (%) 0.215a

Asian 9 (1.9%) 3 (0.6%)

Black or African American 28 (5.8%) 29 (6%)

White 205 (42.4%) 210 (43.4%)

Residual tumor, n (%) 0.051b

R0 169 (36.1%) 146 (31.2%)

R1 62 (13.2%) 86 (18.4%)

R2 3 (0.6%) 2 (0.4%)

Zone of origin, n (%) 0.196b

Central zone 3 (1.1%) 1 (0.4%)

Overlapping/multiple zones 53 (19.3%) 73 (26.5%)

Peripheral zone 62 (22.5%) 75 (27.3%)

Transition zone 6 (2.2%) 2 (0.7%)

PSA (ng/ml), n (%) 0.801a

<4 212 (48%) 203 (45.9%)

≥4 15 (3.4%) 12 (2.7%)

Gleason score, n (%) 0.003a

6 28 (5.6%) 18 (3.6%)

7 138 (27.7%) 109 (21.8%)

8 31 (6.2%) 33 (6.6%)

9 51 (10.2%) 87 (17.4%)

10 1 (0.2%) 3 (0.6%)

Abbreviations: CR: complete response; PD: progressive disease; SD: stable disease; PR: partial response; R0: no residual tumor; R1: microscopic residual tumor;
R2: macroscopic residual tumor; PSA: prostate-specific antigen. All results are presented as n (%); achi-square test; bFisher test.
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The cg22973076 methylation site in PDLIM2 was correlated
with poor PFI in PRAD patients (Figure 4(b)).

3.6. Identification of PDLIM2 Coexpressed Genes and Their
Functional Enrichment. The genes positively (r > 0:4, P <
0:05, and n = 1352) and negatively (r < 0:4, P < 0:05, and n
= 225) correlated with PDLIM2 were selected for enrich-
ment analysis. As shown in Figure 5(a), the red dots and
blue dots indicate upregulated and downregulated genes,
respectively. The expression of the top 50 genes that were
most positively (including PAIP2B, ZNF24, and SELENOI)
and negatively (including TSPAN4, VAMP5, and GYPC)
associated with PDLIM2 is shown in the heatmap
(Figures 5(b) and 5(c)). Furthermore, gene functional
enrichment analysis showed that PDLIM2 coexpressed
genes were correlated with the regulation of cell activation,
collagen-containing extracellular matrix, regulation of cyto-
kine production, actin filament-based process, and blood
vessel development among other processes (Figure 5(d)). It
is important to note that PDLIM2 is also involved in the
positive regulation of immune response or cell migration
and in negative regulation of the immune system process
and leukocyte differentiation.

3.7. Correlation Analysis between PDLIM2 Expression and
the EMT Process. Using six previously published EMT signa-
tures [26–31], we found that PDLIM2 was significantly cor-
related with EMT and the EMT signature-related genes
(Figure 6(a)). Furthermore, the relationship between EMT
signature-related genes and PDLIM2 expression is shown
directly in a heatmap (Figure 6(b)). Additionally, the EMT
signature reported by Mathews et al. [28] was significantly
associated with poor PFI in PRAD (Figure 6(c)). In addition,
PDLIM2 showed positive correlation with the EMT markers
of vimentin (VIM) and matrix metallopeptidases (MMP2)
and a negative correlation with tight junction protein 1
(TJP1), desmoplakin (DSP), E-cadherin (CDH1), and occlu-
din (OCLN) (Figures 6(d)–6(i)).

3.8. Correlation Analysis between PDLIM2 Expression and
Immune Infiltration. Immune cells in the tumor microenvi-
ronment play a vital role in the progression of PRAD [32,
33], and PDLIM2 has been reported [34] to participate in
immune process. Therefore, whether PDLIM2 expression
was correlated with immune infiltration levels in PRAD
was investigated via Spearman’s correlation analysis in the
pancaner TCGA database through the “xCell” algorithm
[35]. The results revealed that PDLIM2 expression was pos-
itively correlated with immune score, stromal score, micro-
environment score, common myeloid progenitors (CMPs),
effector memory CD4+ T cell, CD4+ type-1-helper (Th1)
T cell, CD4+ (nonregulatory) T cell, naïve CD4+ T cell,
CD8+ T cell, central memory CD8+ T cell, T cell NK, mono-
cyte, myeloid dendritic cell (mDC), myeloid dendritic cell
activated, macrophage M1, macrophage M2, B cell, naïve B
cell, memory B cell, granulocyte-monocyte progenitor
(GMP), endothelial cell, hematopoietic stem cell (HSC),
and cancer-associated fibroblast (CAF), while PDLIM2
expression was negatively correlated with common lym-
phoid progenitor (CLP), central memory CD4+ T cell, mem-
ory CD4+ T cell, master cell, plasma B cell, and regulatory T
cell (Treg) (Figures 7(a) and 7(d)–7(h)). These results pro-
vide evidence for the impact of PDLIM2 on immune infiltra-
tion in PRAD.

3.9. PDLIM2 Expression Could Predict the
Immunotherapeutic Response of PRAD. The PDLIM2 high
expression group showed higher mRNA expression levels
of checkpoint genes, including SIGLEC15, TIGIT, CD274,
HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2
(P < 0:05) (Figure 7(c)). Moreover, PDLIM2 mRNA expres-
sion was negatively correlated with MMR genes, including
MSH2, EPCAM, and PMS2 (r < −0:3, P < 0:05)
(Figure 7(b)), indicating that PDLIM2 may play a role in
PRAD by regulating MMR genes. These results indicate that
the high-PDLIM2 groups may be more sensitive to ICB
therapy.
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Figure 3: Correlation between PDLIM2 mRNA expression and mutation frequencies of prostate cancer-associated genes. (a) Gene mutation
frequencies in TCGA-PRAD. (b) TMB scores of the high- and low-PDLIM2 groups using data from TCGA database. (c–e) Violin plots
examining the effect of PTEN, FOXA1, and TTN gene mutations on PDLIM2 mRNA expression in prostate cancer.
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Figure 4: DNA methylation of PDLIM2 in TCGA-PRAD cohort. (a) The correlation between PDLIM2 methylation sites and PDLIM2
expression in patients with prostate cancer. Blue represents a negative correlation; red represents a positive correlation; “×” represents no
statistical significance. (b) Kaplan–Meier survival analysis showed that the cg22973076 methylation site in PDLIM2 was correlated with
poor PFI in prostate cancer patients (P < 0:05). (c–g) Spearman’s correlation analysis showed a correlation between the PDLIM2 mRNA
expression level and PDLIM2 methylation sites in prostate cancer patients.
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3.10. Immunohistochemistry Analysis of PDLIM2 in PRAD.
Next, we conducted immunohistochemical (IHC) assays in
an independent cohort of PRAD tissue slices to determine
the protein level of PDLIM2. Representative staining of
PDLIM2 in PRAD tissue is shown in Figure 8. The PDLIM2
was mainly observed in the cytosol, and low expression
levels were detected in the nucleus. As shown in Figure 8
and Table 2, the rate of positive PDLIM2 expression was sig-
nificantly higher in PRAD tissues (32.3%, 10/31) than in
tumor-adjacent tissues (9.7%, 3/28) (P = 0:029). The expres-
sion of PDLIM2 protein was significantly higher in Gleason
7 (57.14%, 24/42) or >7 (43.75%, 28/64) PRAD tissue than
in tissues scored Gleason 6 (33.33%, 7/28). Furthermore,
higher PDLIM2 levels were also correlated with advanced
T status and advanced N status in PRAD patients. The
expression levels of PDLIM2 protein were higher in T4
(64.71%, 11/17) than in T1-3 (36.74%, 18/49) cases
(P = 0:045). For the N status, the high expression rate of
PDLIM2 protein was 65.0% (13/20) in the N1 PRAD
patients, but only 40.71% (46/113) in N0 cases (P = 0:044).
However, high expression of PDLIM2 protein was not corre-
lated with age or various tumor biomarkers in patients with
PRAD (P > 0:05), except Ki67 (P = 0:034) (Table 3). These
results illustrate that the patients with higher PDLIM2
expression suffer from a high risk of developing more
advanced prostate tumors than those with lower PDLIM2
expression, suggesting a close association between this pro-
tein and the clinicopathological features of PRAD.

4. Discussion

Emerging evidence has demonstrated that PDLIMs are dys-
regulated in variety of tumors and are involved in various
cellular and intercellular processes. For instance, PDLIM1
knockdown induces EMT and promotes invasion and
metastasis in hepatocellular carcinoma (HCC) cells [36];
overexpression of PDLIM2 and PDLIM7 could serve as

adverse prognostic factors for acute myeloid leukemia [37];
downregulation of PDLIM4 is correlated with aggressive
tumor growth and poor prognosis in ovarian cancer patients
[38]; PDLIM5 knockdown inhibited TGFβ-signaling and
TGFβ-induced epithelial-mesenchymal transition [39].
However, to date, the association between PDLIM expres-
sion and clinicopathological features and prognosis of
PRAD has not been elucidated. The present study found that
PDLIM1, PDLIM2, PDLIM3, PDLIM4, PDLIM6, and
PDLIM7 mRNA levels were decreased but that the PDLIM5
mRNA level was increased in both unpaired and paired sam-
ples in TCGA-PRAD cohort. Based on TCGA-PRAD data,
among those PDLIMs, only PDLIM2 overexpression showed
a significant correlation with adverse PFI. Moreover, the
univariate and multivariate Cox proportional hazard regres-
sion models identified that PDLIM2 was an effective inde-
pendent prognostic factor affecting PFI in patients with
PRAD. These results suggest that PDLIM2 is a potential bio-
marker for predicting the prognosis of PRAD patients.

Through IHC staining of PDLIM2 protein, we found
that the rate of positive PDLIM2 protein expression was
higher in PRAD tissues than in matched normal tissues.
The inconsistency between the mRNA and protein expres-
sion levels of PDLIM2 in PRAD tissues compared to normal
tissues might be related to a variety of reasons. First, a recent
study [40] reported that PDLIM2 mRNA downregulation is
associated with promoter hypermethylation. In this study,
we found that the methylation status of four methylation
sites (cg20449614, cg26366616, cg05698069, and
cg22973076) of PDLIM2 showed a negative correlation with
the gene expression. Therefore, we infer that DNA methyla-
tion might also be an important epigenetic mechanism for
PDLIM2 mRNA downregulation in PRAD. Additionally,
the cg22973076 methylation site in PDLIM2 was correlated
with poor PFI in PRAD patients. Remarkably, this associa-
tion was found in a nonlinear relationship. This phenome-
non may be due to the fact that methylation within a gene-
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Figure 5: Enrichment analysis of the coexpression genes of PDLIM2. (a) Spearman’s correlation analysis showed a correlation between
PDLIM2 and differentially expressed genes in prostate cancer. (b, c) Heatmap showing the top 50 significant genes negatively and
positively correlated with PDLIM2 in TCGA-PRAD. (d) Enrichment analysis revealed the biological processes involved in the PDLIM2-
related coexpressed genes.
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Figure 6: PDLIM2 mRNA is involved in EMT process in prostate cancer patients. (a) The mRNA expression level of PDLIM2 was
correlated with various EMT signatures and EMT-related genes. EMT_1, Chen et al. 2013; EMT_2, Klarmann et al. 2009; EMT_3,
Mathews et al. 2010; EMT_4, Schell et al. 2016; EMT_5, Sethi et al. 2010; EMT_6, Stylilanou et al. 2019. (b) Heatmap showing the
relationship between EMT signature-related genes and PDLIM2 expression. (c) Kaplan–Meier survival analysis showed the EMT
signature reported by Mathews et al. was significantly associated with poor PFI in patients with prostate cancer. (d–i) The correlation
between PDLIM2 mRNA expression land EMT biomarkers, including TJP1, DSP, VIM, CDH1, OCLN, and MMP2 in prostate cancer
patients.
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body or transcribed region may not affect the expression of
the whole gene [41, 42]. Moreover, there may be a combined
regulatory role of different methylation sites exist. These
findings suggest that epigenetic contributions to transcrip-
tional regulation occur in a more complex and dynamic
manner. Further studies are needed to prove that causal link.
Additionally, the process may be regulated by many addi-
tional factors, such as posttranscription and translation
levels, protein modification, protein–protein interactions,

and other regulatory mechanisms [43]. Finally, there were
more patients with high mRNA expression (normal = 52
and primary tumor = 499) than patients with protein expres-
sion (normal = 31 and primary tumor = 144). Thus, addi-
tional studies are warranted to confirm the present results.
Such possibilities require further studies. The high-
PDLIM2 mRNA expression group was more likely to be
patients of with higher Gleason scores and primary treat-
ment outcome. We found that high-PDLIM2 protein
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Figure 7: PDLIM2 mRNA was involved in immune infiltration in patients with prostate cancer. (a) The mRNA expression level of PDLIM2
was correlated with immune infiltration levels in prostate cancer patients. Blue represents a negative correlation; red represents a positive
correlation; “×” represents no statistical significance. (b) The relationship between PDLIM2 mRNA expression and MMR genes. (c)
Relationships between PDLIM2 mRNA expression and immune checkpoints. (d–h) Spearman’s correlation analysis showed the
correlation between PDLIM2 mRNA expression and microenvironment score, cancer-associated fibroblast, immune score, hematopoietic
stem cell, and stroma score. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:0001.
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expression was correlated with higher Gleason scores,
advanced T and N status, and higher Ki67 protein expres-
sion. Taken together, these results strongly suggest the
PDLIM2 protein may play an oncogenic role in PRAD.
These findings were consistent with previous results [9].

The function of PDLIM2 in tumors remains controver-
sial. Paradoxically, PDLIM2 can be either a tumor suppres-
sor or a tumor promoter, depending on the cellular
context. A previous study [44] showed that upregulation of
PDLIM2 in cancer cells impaired anchorage-independent
growth both in vitro and in vivo, indicating a tumor-
suppressive role. On the other hand, PDLIM2 is overex-
pressed in a variety of cancer types, including PRAD, in
which it promotes cell proliferation, malignant transforma-
tion, and EMT, supporting its prooncogenic roles [9]. There-
fore, PDIM2 may represent a potential therapeutic target in
human malignancies. TP53, SPOP, TTN, MUC16, KMT2D,
and FOXA1 were the top six most commonly mutated genes
in TCGA-PRAD cohort in the present study. PDLIM2
mRNA expression was significantly correlated with PTEN,
FOXA1, and TTN mutations. The PTEN gene is frequently
mutationally inactivated in prostate cancer [45]. PTEN loss
leads to enhanced cell proliferation and migration as well
as castration-resistant growth [46]. Androgen receptor
(AR) is the essential driver and therapeutic target in prostate

cancer. FOXA1 mutants promote AR binding and signifi-
cant AR transcriptional activity [47]. Additionally, FOXA1
mutants can also induce EMT and enhance cancer metasta-
sis. In recent years, studies examining the relationship
between TTN mutation and the immunotherapy response
of solid tumors have been widely reported [48]. The rela-
tionship between PDLIM2 and the above top mutated genes
in PRAD may help to elucidate the underlying molecular
mechanisms. To confirm this inference, further investigation
is needed.

Of note, enrichment analysis showed that PDLIM2 coex-
pressed genes were mainly related to the collagen-containing
extracellular matrix and positive regulation of cell migration.
Previous studies have found that PDLIM2 regulates EMT.
PDLIM2 is expressed in epithelial cells, may be repressed
in cancer, and is highly expressed in cancer cells that exhibit
an EMT phenotype [49–54]. Suppression of PDLIM2 in
invasive PRAD (DU145) and breast cancer cells (MDA-
MB-231) causes increased E-cadherin expression and cell–
cell contact, loss of directional migration, altered expression
and activity of many transcription factors associated with
tumorigenesis, and reversal of EMT [50]. Thus, we explored
the relationship between PDLIM2 and the EMT-related gene
signature in PRAD based on six published studies [26–31].
The results showed that PDLIM2 mRNA expression was
correlated with EMT signature scores and EMT-related
genes. PDLIM2 showed a positive correlation with mesen-
chymal markers (VIM and MMP2) and a negative correla-
tion with epithelial markers (TJP1, DSP, CDH1, and
OCLN) in EMT. This result is consistent with a previous
report [9], which demonstrated that PDLIM2 suppression
in PRAD cells induced upregulation of CDH1 mRNA
expression and downregulation of VIM expression. These
results indicate that PDLIM2 upregulation may fuel EMT
and subsequent invasiveness, in PRAD cells. Among the
six EMT signatures [26–31], we identified that Mathews
et al.’s [28] signature was significantly associated with poor

(a) (b)

(c) (d)

Figure 8: IHC staining of PDLIM2 in prostate cancer samples. (a) Protein expression of PDLIM2 in normal prostate tissues; (b) weak, (c)
moderate, and (d) strong positive expression of PDLIM2 protein in prostate cancer tissues.

Table 2: Differential expression of PDLIM2 in cancerous and
noncancerous prostate tissues.

n
PDL1M2
expression Chi-square value P value
High Low

Carcinoma 31 10 21 4.769 0.029∗

Normal 31 3 28
∗Statistically significant (P < 0:05).
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PFI in PRAD. These results indicate that PDLIM2 overex-
pression is highly associated with EMT signatures and worse
prognosis.

Another significant aspect of this study is that PDLIM2
expression was found to be correlated with positive regulation
of the immune response and negative regulation of the
immune system process in PRAD. It is widely accepted that
EMT is a critical mechanism by which tumor-associated
immune cells promote tumor metastasis. Recently, growing
evidence has demonstrated the involvement of PDLIM2 in
immune responses. PDLIM2 acts as a tumor suppressor by
inhibiting cancer-related genes and is involved in antigen pre-
sentation and T cell activation [55]. In mouse, inhibition of
PDLIM2 resulted in increased lung cancer incidence and was
reported to cause resistance against anticancer drugs and
immunotherapeutic drugs, such as PD-1 blockers [34].
PDLIM2 suppresses Th1 and Th17 cell differentiation through
inhibition of STAT3/4 and RelA in autoimmune disease [56],
indicating that PDLIM2 plays a crucial role in T cell-mediated
immune responses. Likewise, TME analysis demonstrated that
the high-PDLIM2 expression group displayed a higher micro-
environment score, immune score, and stromal score than the
low-PDLIM2 expression group. In agreement with this, it has
been reported that PRAD patients in the high immune infil-
tration group exhibit poorer survival [32]. This result may be
the main reason for poor survival in patients in the high-
PDLIM2 expression group.

It has historically baffled researchers to treat prostate
cancer with immunooncology approaches due to its immu-
nosuppressive microenvironment. To date, Sipuleucel-T, till
now, is the only immunotherapeutic agent approved by the
US Food and Drug Administration (FDA) for metastatic
CRPC. However, no statistically significant difference in
PFI was found between the treatment group and placebo
group [57]. Therefore, new therapeutic strategies are needed.
Meanwhile, it becomes necessary to find biomarkers to pre-
dict treatment effectiveness to ICIs in patients with PRAD.

In this study, we determined the correlation between
PDLIM2 expression and TMB, MMR, and immune

Table 3: Correlation between PDLIM2 protein expression and
clinicopathological characteristics.

Variables
PDL1M2
expression Total χ2 P value

Low High

Age (year) 0.006 0.939

≤70 31 24 55

>70 44 35 79

Gleason score 7.047 0.029∗

6 21 7 28

7 18 24 42

>7 36 28 64

T stage 4.009 0.045∗

T1, T2, T3 31 18 49

T4 6 11 17

N stage 4.063 0.044∗

N0 67 46 113

N1 7 13 20

34βE12 1.011 0.315

Low 70 52 122

High 4 1 5

AR 2.106 0.147

Low 3 0 3

High 70 50 120

CK5/6 1.511 0.219

Low 64 49 113

High 2 0 2

Ki67 4.514 0.034∗

Low 49 25 74

High 23 26 49

P504s 1.653 0.199

Low 5 1 6

High 67 51 118

P53 0.033 0.855

Low 52 36 88

High 16 12 28

P63 0.096 0.757

Low 71 52 123

High 2 1 3

PSA 0.926 0.336

Low 13 6 19

High 60 46 106

PSAP 1.653 0.199

Low 5 1 6

High 67 51 118

SMA 2.981 0.084

Low 54 40 94

High 10 2 12

Table 3: Continued.

Variables
PDL1M2
expression Total χ2 P value

Low High

TOPO-II 0.324 0.569

Low 12 11 23

High 43 30 73

ERG 0.159 0.690

Low 46 38 84

High 11 11 22

P170 0.067 0.795

Low 52 38 90

High 5 3 8
∗Statistically significant (P < 0:05). Abbreviations: AR: androgen receptor;
PSA: prostate-specific antigen; PSAP: prostate-specific alkaline
phosphatase; SMA: alpha-smooth muscle actin; TOPO-II: topoisomerase
II; ERG: ETS-related gene.

25Journal of Immunology Research



checkpoint genes. Theoretically, patients whose tumors have
high TMB attain sensitivity to ICBs, contributing to a better
outcome. Additionally, high expression of immune check-
point genes is widely adopted as a predictor of the
immunotherapeutic response rate. In this study, we demon-
strated that the PDLIM2 abundant population had a higher
TMB and exhibited higher expression of immune check-
point genes. Consistent with our findings, a previous study
[58] reported that TMB-low patients with PRAD had a bet-
ter prognosis. McGrail et al. [59] reported that TMB failed
to show predictive accuracy for ICB response in patients
with PRAD. The discrepancy between our results and the
literature could result from different variant calling algo-
rithms and TMB calculation strategies [60]. A breakthrough
study [61] demonstrated that the MMR-deficient tumors
show a remarkable response to pembrolizumab, an immu-
notherapy targeting the PD-1 receptor. In this study, we
found that PDLIM2 was negatively correlated with MSH2,
PMS2, and EPCAM, indicating that PDLIM2 may play a
role in PRAD by regulating MMR genes. Together, these
findings suggest that PDLIM2 may be involved in PRAD
progression and affect the efficacy of immunotherapy.
Larger patient cohorts and subgroup analyses according to
prostate cancer risk categories are needed to confirm our
findings.

There were, regretfully but inevitably, several limitations to
our study. First, we had to utilize data from TCGA and avail-
able public datasets to perform bioinformatic analysis due to
an inadequate number of PRAD samples and the absence of
RNA-seq data. Second, PDLIM2 abundance can induce EMT
and suppress the immunogenicity of PRAD, indicating that
these patients could potentially fail to benefit from immuno-
therapy and future studies are needed to validate our bioinfor-
matic analyses. Third, in our study, the quantity of outcome
events was limited on account of the relatively short follow-
up time. Hence, the results should be considered preliminary,
and longer-term studies are needed to identify more significant
differences in the progression. Further studies are needed to
confirm our hypothesis. Fourth, we used TMAs but not whole
tissue sections, which may not reflect the full heterogeneity of
primary PRAD. Fifth, we assessed PDLIM2 protein expression
based on IHC, which is still a semiquantitative method. Thus,
more quantitative examination is required.

5. Conclusions

In this study, our results suggested that PDLIM family genes
might be significantly correlated with oncogenesis and the
progression of PRAD. PDLIM2 may play an important role
in EMT and cell infiltration, and thus, it is a potential prog-
nostic biomarker for PRAD patients.
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