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Chronic kidney disease is characterized by the development of renal fibrosis. The basic mechanisms of renal fibrosis have not yet
been fully investigated despite significant progress in understanding the etiology of the disease. In this work, the researchers
sought to identify potential diagnostic indicators for renal fibrosis. From the GEO database, we were able to acquire two gene
expression profiles with publically available data (GSE22459 and GSE76882, respectively) from human renal fibrosis and
control samples. 215 renal fibrosis specimens and 124 normal specimens were examined for differentially expressed genes
(DEGs). The SVM-RFE and LASSO regression models were used to discover potential markers. CIBERSORT was applied to
estimate the combined cohorts’ immune cell fraction compositional trends in renal fibrosis. RT-PCR was used to examine the
expression of ISG20 in renal fibrosis and healthy samples. In vitro experiments were applied to examine the function of ISG20
knockdown on the progression of renal fibrosis. In this study, we identified 24 DEGs. The result of LASSO and SVM-RFE
identified nine critical genes. ROC assays confirmed the diagnostic value of the above nine genes for renal fibrosis. Immune
cell infiltration analysis revealed that ISG20 and SERPINA3 were both found to be correlated with T cell follicular helper,
neutrophils, T cell CD4 memory activated, eosinophils, T cell CD8, dendritic cell activated, B cell memory, monocytes,
macrophage M2, plasma cells, T cell CD4 naïve, mast cell resting, B cell naïve, T cell regulatory, and NK cell activated. Finally,
we observed that the expression of ISG20 and SERPINA3 was distinctly increased in renal fibrosis samples compared with
normal samples. ISG20 siRNA significantly suppressed the progression of renal fibrosis in vitro. Overall, this study identified
nine diagnostic biomarkers for renal fibrosis. ISG20 may be a novel therapeutic target of renal fibrosis.

1. Introduction

The importance of fibrotic diseases rises in a global aware-
ness, as approximately 45% of all deaths in the Western
world are related to various forms of fibrosis [1]. Chronic
kidney disease (CKD) is a major public health issue that
increases morbidity and death, and renal fibrosis is the most

common endpoint and core pathological process of CKD
[2, 3]. While renal fibrosis is thought to be a result of the
epithelial-to-mesenchymal transition (EMT), this transition
is not well understood [4, 5]. Renal biopsy is the only way
to definitively diagnose kidney fibrosis [6, 7]. Patients with
end-stage renal illness are more at risk because the procedure
is invasive and can lead to bleeding problems [8]. Therefore,
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Figure 1: Continued.
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the quest for biomarkers of renal fibrosis that are more read-
ily available and specific is important.

In recent years, high throughput sequencing, together with
integrated bioinformatics assays, has been carried out for the
identification of novel genes related to many types of diseases
that might serve as diagnostic and prognostic markers [9, 10].
Since TXNDC5 is a key player in the development of cardiac
fibrosis and has been shown to be highly expressed in kidney
fibroblasts, it is reasonable to assume that targeting TXNDC5
in the treatment of kidney fibrosis and chronic kidney disease
(CKD) could have therapeutic benefits [11]. Excessive produc-
tion of BMP-7 in diabetic nephropathy-induced renal fibrosis
could be prevented by downregulating miR-21, according to a
study published in the Journal of Nephrology [12]. Renal
fibrosis, for example, has been demonstrated to be linked to
an increase in immune cell infiltration. Renal fibrosis-
induced immune cell modulation has recently been shown to

have an impact on renal function, offering new insights into
the importance of immune regulation in chronic kidney dis-
ease [13, 14]. However, there have been few studies to date that
have used CIBERSORT to study renal fibrosis and identify
possible diagnostic indicators.

We retrieved two renal fibrosis microarray datasets from
the GEO database for this study. A meta-data cohort was
created by combining the two datasets via the combat func-
tion of the SVA package. The renal fibrosis and normal tis-
sues were compared using a differentially expressed genes
(DEGs) analysis. Renal fibrosis diagnostic biomarkers were
filtered and identified using machine-learning techniques.
Immune cells were quantified for the first time in renal fibro-
sis and healthy tissues using CIBERSORT, which was devel-
oped to analyze gene expression patterns [15]. To establish a
foundation for future study, we investigated the link between
biomarkers and invading immune cells.
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Figure 1: Volcano plot (a) and heat map (b) of differentially expressed genes between renal fibrosis specimens and healthy specimens.
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Figure 2: GO, KEGG, and DO pathway enrichments of differentially expressed genes: (a) GO enrichment; (b) KEGG pathway enrichment;
(c) DO enrichment analysis.
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2. Materials and Methods

2.1. Cell Culture. Human renal tubular epithelial cell lines
(HK-2) were purchased from Procell Life Science&Technology
(Hongshan, Wuhan, China) and maintained in RPMI-1640
medium (E600028, Sangon Biotech, Songjiang, Shanghai,
China), supplemented with 10% FBS (Gibco, Guangzhou,
Guangdong, China), 1% penicillin (Sangon Biotech, Songjiang,
Shanghai, China), and 1% streptomycin in a humidified incu-
bator with 5% CO2 at 37

°C. TGF-1 (Procell Life Science&Tech-
nology, Hongshan, Wuhan, China) was used to produce a
cellular model of renal fibrosis in HK-2, which were treated
for 48 hours.

2.2. Cell Transfection. Lipofectamine® 2000 Transfection
reagent was used to transfect HK-2 cells with either an

ISG20 small interfering (si) RNA or a si-negative control
(si-NC) (Sangon Biotech, Songjiang, Shanghai, China). At
6 × 106/well cells per well, HK-2 cells were seeded into
6-well plates at 37°C for 24 hrs. Once the plate was filled,
1.5ml media without serum or antibiotics was added to each
well of the plate, followed by a mixture of 100 pmol ISG20
siRNA and Lipofectamine® 2000, which was incubated for
4-6 hours at 37°C with 5% CO2. qRT-PCR confirmed the
effectiveness of the knockdown of genes.

2.3. RNA Extraction and Quantitative RT-PCR (qPCR). In
accordance with the manufacturer’s recommendations,
RNA was extracted and purified from cell lines using an
RNAqueous Total RNA Isolation Kit (Sangon Biotech,
Songjiang, Shanghai, China) and then sequenced. Reverse
transcription was carried out with the help of a High-

0.00

0.25

0.50

0.75

Ru
nn

in
g 

en
ric

hm
en

t s
co

re

KEGG_ALLOGRAFT_REJECTION
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
KEGG_AUTOIMMUNE_THYROID_DISEASE
KEGG_CELL_ADHESION_MOLECULES_CAMS
KEGG_CHEMOKINE_SIGNALING_PATHWAY

Enriched in treat

−2

−1

0

1

2

5000 10000
Rank in ordered dataset

Ra
nk

ed
 li

st 
m

et
ric

(b)

Figure 3: (a, b) Enrichment analyses via gene set enrichment analysis.
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Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, USA) in order to quantify ISG20 expressions. QPCR
was performed on an ABI Prism 7200 HT sequence detector
(Applied Biosystems, China), along with a SYBR Green
Master Mix kit (Solarbio, Tongzhou, Beijing, China). The
expression levels of ISG20 were determined using the 2-Ct
technique, which yields relative fold changes. GeneCopoeia
provided the primers that were used in this study. The nor-
malizer employed in this study was GAPDH. The sequences
were as follows: ISG20 primers: 5′-CTCGTTGCAGCCTC
GTGAA-3′ (forward) and 5′-CGGGTTCTGTAATCGG
TGATCTC-3′ (reverse); SERPINA3 primers: 5′-CCTGAA
GGCCCCTGATAAGAA-3′ (forward) and 5′-GCTGGA
CTGATTGAGGGTGC-3′ (reverse); GAPDH primers: 5′-
GGAGCGAGATCCCTCCAAAAT-3′ (forward) and 5′-
GGCTGTTGTCATACTTCTCATGG-3′ (reverse).

2.4. Western Blot. SDS-PAGE was used to separate the pro-
teins from the lysate, and the lysate was then transferred to
nitrocellulose membranes for additional investigation. Fol-
lowing that, a Western blot assay was performed in accor-
dance with the established Western blot procedure.
Furthermore, β-actin was employed as a cytosol protein
marker, and Santa Cruz Biotechnology supplied the ISG20
antibody.

2.5. Data Acquisition. The data of renal fibrosis and healthy
specimens were collected from the GEO datasets. There were
40 renal fibrosis and 25 normal samples in the GSE22459
datasets [16]. There are 175 renal fibrosis and 99 normal
samples in GSE76882 datasets [17]. The DEGs were identi-
fied by the use of the above GEO datasets.

2.6. DEG Screening, Data Processing, and DEG Analysis. In
order to detach batch effects from the two datasets, the com-
bat functions of the SVA package were applied in conjunc-
tion with the merge function to create a metadata cohort.
Background associations and differential expression assays
between 215 renal fibrosis and 124 control samples were
all performed using the limma package of R (http://www
.bioconductor.org/limma/) as described above. Those sam-
ples having an adjusted false discovery rate (AFR) of less
than 0.05 and a |log fold change (FC)| greater than 1.2 were
determined to be DEG threshold points.

2.7. Functional Enrichment Analysis. For patients in the low-
and high-risk categories, the “clusterProfiler” R package was
used to conduct an enrichment analysis of pathways using
the Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG). P values less than 0.05 were
considered statistically significant for GO keywords and
KEGG pathways. Using R’s “clusterProfiler” and “DOSE”
packages, we ran enrichment analysis for disease ontology
(DO) terms on DEGs [18]. When comparing the renal fibro-
sis and control groups, we employed a technique called gene
set enrichment analysis (GSEA). If a P 0.05 and a false dis-
covery rate 0.05 were met, a gene collection was considered
to be highly enriched.

2.8. Candidate Diagnostic Biomarker Screening. Two
machine-learning methods were utilized to discover relevant
prognostic indicators in order to predict the disease status.
This is a regression analysis algorithm called the least abso-
lute shrinkage and selection operator (LASSO) [19]. It uses
regularization to improve the accuracy of the predictions.
The “glmnet” package in R was used to run the LASSO
regression algorithm and find the genes that were most

159

LASSO SVM−RFE

(c)

Figure 4: Selection of potential renal fibrosis diagnostic biomarkers. (a) Tuning feature selection in the LASSO. (b) The SVM-RFE technique
was used to pick biomarkers. (c) In this Venn diagram, the SVM-RFE and LASSO algorithms are shown to have four diagnostic markers
between them.
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important at separating renal fibrosis from normal samples.
In machine learning, the support vector machine (SVM), a
supervised machine-learning algorithm, was applied for
regression and classification [20]. Because overfitting can
happen when too many genes are chosen, an algorithm
called RFE was used to choose the best genes from the meta-
data group. This helped to avoid overfitting. Thus, this

necessitated the application of SVM-RFE in order to choose
acceptable characteristics for the goal of finding a subset of
genes with the greatest discriminative potential.

2.9. Assays of Immune Cellular Patterns in Microenvironment.
The immune cell fractions of GEO samples were analyzed by
the use of CIBERSORT [21]. CIBERSORT can quantify
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Figure 5: ROC assays were applied to determine the diagnostic value of the critical genes, including (a) SLC7A1, SERPINA, and MMP7; (b)
IL7Rs, ISG20, and LTF; and (c) ALB, CCL5, and GPR171.
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infiltrating immune cell fractions based on normalized pat-
terns of gene expressions, which can be obtained from a vari-
ety of sources. It was submitted to the CIBERSOFT website
where the standardized gene expression data collection could
be found (https://cibersort.stanford.edu/index.php). CIBER-
SORT P values were calculated for each sample using Monte
Carlo sampling to increase the accuracy of the algorithm. Only
samples with CIBERSORT P values less than 0.05 were con-
sidered eligible for analysis.

2.10. Detection and Analysis of Gene-Immune Cell Correlations.
Spearman’s rank correlation assays were applied to investigate
the associations between the identified gene markers and
amounts of invading immune cells. Using the “ggplot2” pro-

gram, we were able to display the results in the form of a
chart [22].

2.11. Statistical Analysis. All statistical analyses were oper-
ated via the R software (version 3.6.2) and GraphPad Prism
8. LASSO regression assays were conducted by the use of the
“glmnet” package, and the SVM algorithm was carried out
by the use of e1071 package. The diagnostic efficacies of
the markers were examined by the use of ROC curves. It
was feasible to establish a link between the expressions of
genes and the infiltration of immune cells with the help of
Spearman’s correlation. The Wilcox test was applied for
the determination of whether there were any differences
between the two groups. A statistically significant difference
was defined as aPvalue less than 0.05.
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Figure 6: According to CIBERSORT, the proportion of infiltrating immune cells. (a) The total number of immune cells found in each
sample is reported. (b) A heat map was constructed to illustrate the link between the 21 different types of immune infiltrate cells that
were identified.
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3. Results

3.1. Identification of DEGs in Renal Fibrosis. Data from 215
renal fibrosis samples, as well as 124 normal specimens from
two GEO (GSE22459 and GSE76882) were used in our
investigation, which was conducted in a retrospective man-
ner. We performed a limma package analysis after removing
any batch effects from the metadata and found that the
DEGs were significantly higher than the baseline. There were
a total of 24 DEGs. There was a significant increase in 21
genes and a significant decrease in 3 genes (Figures 1(a)
and 1(b)).

3.2. Functional Correlation Analysis. To divide into the
potential functions of the above DEGs in human, we per-
formed GO and KEGG assays. The findings of GO assays
indicated that the DEGs were mainly enriched in antimicro-
bial humoral response, response to lipopolysaccharide,
secretory granule lumen, cytoplasmic vesicle lumen, chemo-
kine activity, and chemokine receptor binding (Figure 2(a)).
The results of KEGG revealed that the DEGs were mainly
involved in cytokine-cytokine receptor interaction, chemo-
kine signaling pathway, hematopoietic cell lineage, Toll-like
receptor signaling pathway, primary immunodeficiency,
and Chagas disease (Figure 2(b)). DO pathway enrichment
assays revealed that diseases enriched by DEGs were mainly

related to human immunodeficiency virus infectious disease,
dermatitis, lymphoblastic leukemia, inflammatory bowel
disease, and chronic leukemia (Figure 2(c)). The GSEA
indicated that the enriched pathways largely involved ANTI-
GEN_PROCESSING_AND_PRESENTATION, AUTOIM-
MUNE_THYROID_DISEASE, ALLOGRAFT_REJECTION,
CELL_ADHESION_MOLECULES_CAMS, and CHEMO-
KINE_SIGNALING_PATHWA (Figures 3(a) and 3(b)).

3.3. Identification and Validation of Diagnostic Markers. To
find potential biomarkers, researchers utilized two separate
algorithms. By utilizing the LASSO regression algorithm, the
DEGs were reduced to nine variables, which were identified
as diagnostic biomarkers of renal fibrosis (Figure 4(a)). The
SVM-RFE approach was used to narrow down the DEGs to
a subset of 24 genes (Figure 4(b)). The nine overlapping
features (ALB, CCL5, GPR171, IL7R, ISG20, LTF, MMP7,
SERPINA, and SLC7A1) between these two algorithms were
eventually picked (Figure 4(c)). Then, we performed ROC
assays to explore the diagnostic value of the above nine
genes for renal fibrosis. As shown in Figures 5(a)–5(c), we
observed that all nine genes are powerful discrimination
ability for renal fibrosis.

3.4. Correlation of ISG20 and SERPINA with the Proportion
of Immune Cells. For the purpose of determining the
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proportion of tumor-infiltrating immune subsets, the
CIBERSORT method was used in conjunction with 21 dif-
ferent immune cell profiles built from samples of renal fibro-
sis in order to determine the relationship between ISG20 and
SERPINA expression and the immune microenvironment
(Figures 6(a) and 6(b)). The expressing pattern of immune
cells is shown in Figure 7(a). By performing correlation anal-
ysis between ISG20, SERPINA3, and immune cells, ISG20
and SERPINA3 were all found to be correlated with T cell
follicular helper, neutrophils, T cell CD4 memory activated,
eosinophils, T cell CD8, dendritic cell activated, B cell mem-
ory, monocytes, macrophage M2, plasma cells, T cell CD4
naïve, mast cell resting, B cell naïve, T cell regulatory, and
NK cell activated (Figures 8(a) and 8(b)).

3.5. ISG20 siRNA Significantly Suppressed the Progression of
Renal Fibrosis In Vitro. The expression of ISG20 and
SERPINA3 was distinctly increased in renal fibrosis samples
compared with normal samples (Figures 9(a) and 9(b)). In

order to simulate renal fibrosis in vitro, HK-2 cells were
treated with different doses of TGF- (2, 5, or 10 ng/mL) for
varied periods of time. As displayed in Figure 9(c), 5 or
10 ng/mL TGF-β1 notably promoted the expressions of
ISG20 in HK-2. However, the expression of SERPINA3
remained unchanged (Figure 9(d)). Thus, we focused on
ISG20. Aside from that, the levels of ISG20 in HK-2 cells
were dramatically reduced by the ISG20 siRNA treatment
(Figure 9(e)). Moreover, there was a dosage response in
HK-2 when TGF-1 increased the expressions of fibrotic pro-
teins (α-SMA and fibronectin). Importantly, the increase of
fibronectin and α-SMA caused by TGF-1 was greatly inhib-
ited by ISG20 siRNA, which was also effective (Figures 9(f)–
9(h)).

4. Discussion

When the kidneys are damaged, the fibrosis process begins,
and the disease continues to progress [23, 24]. Fibrosis

Abs (cor)

0.1
0.2
0.3

0.4

0.5

p value

1

0.8

0.6

0.4

0.2

0

Correlation coefficient

NK cells activated

T cells regulatory (Tregs)
B cells naive

Mast cells resting
T cells CD4 naive

Plasma cells

T cells CD4 memory resting

Macrophages M0

Dendritic cells resting
Mast cells activated

Macrophages M1

NK cells resting

T cells gamma delta

Macrophages M2

Monocytes

B cells memory
Dendritic cells activated

T cells CD8

Eosinophils

T cells CD4 memory activated

Neutrophils

T cells follicular helper

<0.001

<0.001

<0.001

0.002

0.019

0.025

0.052

0.261

0.293

0.393

0.649

0.333

0.241

0.003

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

−0.4 −0.2 0.0 0.2 0.4

(b)

Figure 8: Correlation between (a) ISG20, (b) SERPINA3, and infiltrating immune cells in renal fibrosis.

16 Journal of Immunology Research



0

5

10

15

Re
la

tiv
e I

SG
20

 ex
pr

es
sio

n

⁎

Normal Renal fibrosis

(a)

Normal Renal fibrosis
0

5

10

15

Re
la

tiv
e S

ER
PI

N
A

3 
ex

pr
es

sio
n

⁎

(b)

0

2

4

6

8

Re
la

tiv
e I

SG
20

 ex
pr

es
sio

n

⁎

⁎⁎

Bl
an

k

TG
F-
𝛽

_2
 n

g/
m

l

TG
F-
𝛽

_5
 n

g/
m

l

TG
F-
𝛽

_1
0 

ng
/m

l

(c)

0.0

0.5

1.0

1.5

2.0

Re
la

tiv
e S

ER
PI

N
A

3 
ex

pr
es

sio
n

Bl
an

k

TG
F-
𝛽

_2
 n

g/
m

l

TG
F-
𝛽

_5
 n

g/
m

l

TG
F-
𝛽

_1
0 

ng
/m

l
(d)

0.0

0.5

1.0

1.5

Re
la

tiv
e I

SG
20

 ex
pr

es
sio

n

⁎⁎

Bl
an

k

IS
G

20
 si

RN
A

(e)

0

2

4

6

8

Re
la

tiv
e m

RN
A

 ex
pr

es
sio

n

⁎⁎

⁎⁎

##

Fibronectin

Bl
an

k

TG
F-
𝛽

_2
 n

g/
m

l

TG
F-
𝛽

_5
 n

g/
m

l

TG
F-
𝛽

_1
0 

ng
/m

l

TG
F-
𝛽

_1
0 

ng
/m

l+
IS

G
20

 si
RN

A

(f)

Figure 9: Continued.

17Journal of Immunology Research



may play a causal role in the course of renal disease, but this
is still up for debate, according to the research [25]. Bio-
markers of fibrosis are essential to understanding the course
of CKD because they can provide critical information in a
noninvasive manner [26, 27]. Patients with an increased risk
of developing chronic kidney disease (CKD) could benefit
from clinical trials in which they would be selected from a
trustworthy pool of fibrosis biomarkers [28, 29].

Using two GSE datasets, we found 24 genes that differed
between renal fibrosis and healthy tissue samples in this
study. To learn more about how DEGs work, researchers
used enrichment studies of the DO pathway. The results
showed that disorders enriched by DEGs were predomi-
nantly connected with HIV infection, lymphoblastic leuke-
mia, dermatitis, inflammatory bowel disease, and AIDS. The
GSEA results demonstrated that the enriched pathways
mainly involved ALLOGRAFT_REJECTION, ANTIGEN_
PROCESSING_AND_PRESENTATION, AUTOIMMUNE_
THYROID_DISEASE, CELL_ADHESION_MOLECULES_
CAMS, and CHEMOKINE_SIGNALING_PATHWA. In the
case of renal fibrosis, these findings strongly suggest that the
immune response is an important factor.

Two separate techniques were used to narrow down the
list of potential biomarkers for renal fibrosis diagnosis. The
nine overlapping features (ALB, CCL5, GPR171, IL7R,
ISG20, LTF, MMP7, SERPINA, and SLC7A1) between these
two algorithms were ultimately selected. The potential func-
tion of the above genes has been reported in renal fibrosis.
For instance, the CCL5-CCR5 axis and the TGF-1/Smad/

Snail signaling pathways were inhibited by inducing
myeloid-derived suppressor cells in vitro and in vivo, and both
methods reduced kidney fibrosis [30]. Smad4 deacetylation
and inhibition of MMP7 expression by upregulated SIRT1 in
RSV reduced kidney damage and fibrosis, which was related
to the upregulation of SIRT1 by RSV [31]. However, the role
of several genes in renal fibrosis remains a mystery. According
to the results from ROC assays performed in this work, the
above nine genes have the potential to be employed as new
biomarkers for renal fibrosis.

CIBERSOTR was used to examine the types of immune
cell infiltration in renal fibrosis and normal samples. Immune
cell subtypes were discovered to play an essential role in renal
fibrosis-related biological processes as a result [32, 33]. By per-
forming correlation analysis between ISG20, SERPINA3, and
immune cells, ISG20 and SERPINA3 were all found to be cor-
related with T cell follicular helper, neutrophils, T cell CD4
memory activated, eosinophils, T cell CD8, dendritic cell acti-
vated, B cell memory, monocytes, macrophage M2, plasma
cells, T cell CD4 naïve, mast cell resting, B cell naïve, T cell reg-
ulatory, and NK cell activated. In fact, it has already been dem-
onstrated that inflammatory and immune circulatory cells
play a crucial role in the progression of renal fibrosis [34,
35]. As previously said, the substantial data, together with
our current findings, has revealed that numerous types of
invading immune cells play critical roles in the progression
of renal fibrosis and should be the focus of future research.

Finally, we performed in vitro assays to study the func-
tion of ISG20 and SERPINA. We found that both ISG20
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Figure 9: In vitro, suppression of the ISG20 gene significantly reduced the evolution of renal fibrosis. (a, b) In patients with renal fibrosis,
the expression of ISG20 and SERPINA3 was found to be upregulated in a unique manner. (c, d) For 48 hours, HK-2 cells were exposed to
concentrations of 2, 5, or 10 ng/ml TGF-1. qRT-PCR was used to detect the expressions of ISG20 and SERPINA3 in HK-2 cells. (e) ISG20
siRNA was transfected into HK-2 cells. Subsequently, using RT-PCR, we discovered that ISG20 was expressed in HK-2 cells. (f, g) RT-PCR
was used to find out how much mRNA fibronectin and α-SMA were making in HK-2 cells. (h) The protein expressions of fibronectin
and α-SMA in HK-2 cells were determined by western blot.
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and SERPINA exhibited a higher level in renal fibrosis than
normal specimens. However, 5 or 10 ng/mL TGF-β1 only
promoted the expressions of ISG20 in HK-2, while the
expression of SERPINA3 remained unchanged. Thus, we
further focused on ISG20. The results of Western blot and
PCR revealed that knockdown of ISG20 distinctly sup-
pressed the expression of the expressions of fibrotic proteins
(α-SMA and fibronectin), indicating ISG20 promoted the
progression of renal fibrosis.

However, there are a few limitations in this study. There
is still a need for prospective samples to be validated in our
investigation, as all of the cases were retrospective. This
study did not include any patients who had received immu-
notherapy; hence, the capacity of the genes to predict immu-
notherapy response was assessed indirectly. Prospective
studies with sufficient power are still required.

5. Conclusion

In summary, ALB, CCL5, GPR171, IL7R, ISG20, LTF, MMP7,
SERPINA, and SLC7A1 were identified as diagnostic bio-
markers of renal fibrosis. ISG20 and SERPINA3 were associ-
ated the levels of most immune cells. Patients with renal
fibrosis may benefit from our findings since they may provide
a clinically helpful tool for better prognostic management as
well as for optimizing the accompanying treatment.
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