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Background. Immune checkpoint inhibitors (ICIs) have rapidly revolutionized colorectal cancer (CRC) treatment, but resistance
caused by the heterogeneous tumor microenvironment (TME) still presents a challenge. Therefore, it is necessary to characterize
TME immune infiltration and explore new targets to improve immunotherapy. Methods. The compositions of 64 types of
infiltrating immune cells and their relationships with CRC patient clinical characteristics were assessed. Differentially expressed
genes (DEGs) between “hot” and “cold” tumors were used for functional analysis. A prediction model was constructed to explore
the survival of CRC patients treated with and without immunotherapy. Finally, fatty acid-binding protein (FABP6) was selected for
in vitro experiments, which revealed its roles in the proliferation, apoptosis, migration, and immunogenicity of CRC tissues and
cell lines. Results. The infiltration levels of several immune cells were associated with CRC tumor stage and prognosis. Different cell
types showed the synergistic or antagonism infiltration patterns. Enrichment analysis of DEGs revealed that immune-related
signaling was significantly activated in hot tumors, while metabolic process pathways were altered in cold tumors. In addition, the
constructed model effectively predicted the survival of CRC patients treated with and without immunotherapy. FABP6 knockdown
did not significantly alter tumor cell proliferation, apoptosis, and migration. FABP6 was negatively correlated with immune
infiltration, and knockdown of FABP6 increased major histocompatibility complex (MHC) class 1 expression and promoted
immune-related chemokine secretion, indicating the immunogenicity enhancement of tumor cells. Finally, knockdown of FABP6
could promote the recruitment of CD8+ T cells. Conclusion. Collectively, we described the landscape of immune infiltration in
CRC and identified FABP6 as a potential immunotherapeutic target for treatment.

1. Introduction

Colorectal cancer (CRC) is becoming one of the most common
types of cancer worldwide, and its incidence is lower than only
lung and liver cancer. In recent years, the morbidity and mor-
tality rates of CRC have increased significantly. Early-stage

CRC patients can be cured by surgical resection [1]. Due to
the metastasis and recurrence of CRC tumors, the prognosis
of patients with advanced CRC is poor despite the use of che-
motherapy, surgical resection, radiotherapy, or immunotherapy
[2]. Therefore, it is important to investigate the pathogenesis of
CRC and identify new therapeutic strategies.
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In recent studies, the tumor microenvironment (TME)
has attracted increasing attention as a target for tumor ther-
apy. Tumor cells in the TME can influence the development
and progression of cancer by interacting with surrounding
cells through the circulatory and lymphatic systems [3].
Except for malignant cells, immune cells, extracellular
matrix (ECM), blood vessels, adipocytes, fibroblasts, lym-
phocytes, and signaling molecules are present in the TME
[4]. These cells can exert antitumor or protumor activities
in the TME. Immune cells and tumor cells were in the spot-
light in previous studies, which greatly advanced this field.
Also, many studies have found that other components in
the TME play crucial roles in tumor progression. For
instance, the ECM, which consists of a large number of gly-
coproteins, collagens, enzymes, and other macromolecules,
can influence cell adhesion, proliferation, and communica-
tion [5]. Adipocytes, as a major component of the TME,
can provide fatty acids for tumor growth and promote the
homing, migration, and invasion of ovarian cancer cells
[6]. Cancer-associated fibroblasts (CAFs) represent a hetero-
geneous group of stromal cells in the TME and are vital
sources of growth factors and cytokines that promote tumor
progression and migration, stimulating epithelial-
mesenchymal transition (EMT), and immunosuppression
[7–9].

Studies have shown that the TME represents a complex
and dynamic milieu of both cellular and acellular compo-
nents with synergistic responses and functions in cancer
progression [10]. Tumor phenotypes are determined not
only by the neoplastic cell component but also by the immu-
nologic milieu within the TME, which facilitates the evasion
of the host immune response and suppress effector T cell
function [11]. The emergence of next-generation sequencing
(NGS) technologies and the development of bioinformatics
tools have enabled the characterization of multidimensional
maps of genomic changes in common cancers. Immunoge-
nomic analysis can provide a comprehensive view of the cel-
lular composition of immune infiltrates in the TME [12, 13].
The immune infiltration pattern determines the immuno-
phenotype, tumor escape mechanisms, and antitumor or
protumor activity of the TME in tumor development and
progression [14]. Therefore, it is critical to explore the cell
composition and molecular mechanisms of the TME which
affect tumor progression and immune response. Analysis
of the levels of different tumor-infiltrating immune cell types
in patients may be a new strategy for identifying new bio-
markers and therapeutic targets [15–17].

In this study, we revealed the landscape of 64 cell types
in CRC. We evaluated the clinical significance of these cells
and explored the immune infiltration pattern. We found that
some infiltrating cells were significantly related to tumor-
node-metastasis (TNM) stage and clinical stage, as well as
the overall survival (OS) and progression-free survival
(PFS) of CRC patients. The constructed model predicted
the OS in patients receiving immunotherapy treatment. In
addition, our results revealed that knockdown of FABP6
increased the immunogenicity of tumor cells and promoted
the secretion of immune-related chemokines, resulting in
the recruitment of CD8+ T cells. Collectively, our study pro-

vides a new insight into the immune infiltration of CRC and
identifies FABP6 as a potential therapeutic target for immu-
notherapy treatment.

2. Materials and Methods

2.1. Ethic Statement. Thirty CRC specimens were obtained
from Henan Provincial Third People’s Hospital and the First
Affiliated Hospital of Zhengzhou University after surgical
treatment and stored at -80°C for further use. All partici-
pants signed the informed consent form approved by the
ethics committee of Henan Provincial Third People’s Hospi-
tal (Ethics No. 2019-szsyky-02) and the First Affiliated Hos-
pital of Zhengzhou University (Ethics No. 2021-KY-0147-
002).

2.2. Data Collection and Estimation of Stromal and Immune
Scores. The gene expression data of CRC samples and the
corresponding clinical information of the patients were
downloaded from UCSC XENA (https://xenabrowser.net/
datapages/?dataset=TCGA.COADREAD.sampleMap%
2FHiSeqV2&host=https%3A%2F%2Ftcga.xenahubs
.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc
.edu%3A443) to estimate immune infiltration. The data type
was log2ðx + 1Þ RSEM normalized count. Clinicopathologi-
cal data for the corresponding patients, including sex, race,
age, tumor location, histology classification, differentiation
grade, tumor stage, and survival information, were also
retrieved from the database. The ESTIMATE algorithm
was used to normalize expression matrix for calculating the
stromal and immune scores [18]. For validation of gene sig-
natures in predicting the response of immunotherapy, we
downloaded the datasets of patients with metastatic urothe-
lial cancer treated with atezolizumab (anti-PD-L1mAb)
through the available link provided in the paper (http://
research-pub.gene.com/IMvigor210CoreB iologies/) and
patients with melanomas treated with pembrolizumab or
nivolumab in Gene Expression Omnibus (GEO) database
with accession number GSE78220.

2.3. Evaluation and Correlation of Immune Infiltration and
Clinical Parameters. Tumor-infiltrating cells were calculated
using the xCell algorithm [19]. OS and PFS were used as the
primary prognostic endpoints and were estimated by the
Kaplan-Meier survival method. Based on the level of infiltra-
tion of each cell type, patients were classified into two
groups, and prognoses for each group were examined. Then,
a method (maximally selected rank statistics) was performed
to select the best score cutoff for grouping patients by using
the R package “maxstat.” The log-rank tests were used to
compare the survival outcomes between groups.

2.4. Consensus Clustering. Consensus clustering of 64
immune cell types was performed with the R package “Con-
sensusClusterPlus” with reps = 100, pfeature = 1, and pItem
= 0:8. The optimal number of clusters was determined
according to the heatmap and delta diagram.

2.5. Identification of Differentially Expressed Genes (DEGs).
DEGs between “hot” tumor group vs. “cold” tumor group
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were identified by using the R package “edgR,” with the cri-
teria of false discovery rate (FDR) and adjusted P value <
0.05 and absolute value of log2 ðfold changeÞ > 1. And a
heatmap and volcano plot were used to visualize the expres-
sion patterns of DEGs through the R packages “heatmap”
and “ggplot2.”

2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Enrichment Analysis of DEGs. Func-
tional enrichment analysis of DEGs was performed with the
R package “clusterProfiler”; the identified GO terms repre-
sented the enriched biological processes (BPs), molecular func-
tions (MFs), and cellular components (CCs). We also
performed KEGG enrichment analysis. A P value or q value less
than 0.05 was used as the cutoff, and the top 10 GO terms and
30 KEGG terms were visualized with the R package “ggplot2.”

2.7. Construction of the Protein-Protein Interaction (PPI)
Network. The PPI network was retrieved from the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING)
database and reconstructed via Cytoscape software. The con-
nectivity degree of each node with 10 or more nodes was cho-
sen for the following analysis. Then, clusters that based on
topology to locate densely connected regions were identified
by Molecular COmplex DEtection (MCODE).

2.8. Construction of Prediction Model. To construct the pre-
diction model, DEGs were used, and CRC samples from The
Cancer Genome Atlas (TCGA) were divided into two groups
with the same mortality rate with the R package “caret.” Then,
univariate Cox regression analysis was utilized to select
survival-related genes by applying the R package “survival.”
After that, the least absolute shrinkage and selection operator
(LASSO) regression analysis was used to select the best combi-
nation of the gene sets by applying the R package “glm.”Mul-
tivariate Cox regression analysis was used to optimize the
model, and genes with P < 0:05 were selected to construct
the model. For the validation cohort, we excluded three genes
(NCBP2, DECR1, and NUDT13) because of low expression,
and the remaining genes were used to construct the model.

2.9. Cell Culture. CRC cell lines (HCT116 and SW1116) were
purchased from the Chinese Academy of Sciences Cell Rep-
ertoire (Shanghai, China). Cells were cultured with Roswell
Park Memorial Institute- (RPMI-) 1640 medium containing
10% fetal bovine serum, 100 units/mL penicillin, and 100μg/
mL streptomycin (Thermo Fisher Scientific, Waltham, MA,
USA) at 37°C with 5% CO2 in the humidified incubator.

2.10. Small Interfering RNA (siRNA) Transfection. HCT116
and SW1116 cells were cultured in RPMI-1640 medium
containing 10% FBS and 1% penicillin and streptomycin in
a constant temperature incubator at 37°C with 5% CO2.
The cells were seeded in 12-well plates at a concentration
of 1:5 × 105 and transfected with siRNA the next day. The
medium of each well was replaced with 800μL serum-free
medium, and then, a 200μL mixture of Opti-MEM+2.5μL
Lipofectamine 2000+5μL negative control (NC) or si-
FABP6 was added to each well. The plate was gently shaken
and placed in the incubator. The medium was replaced with

1mL of complete medium containing serum and antibiotics
after 8 h transfection, and the cells were collected at 48 h for
subsequent experiments. The sequences of the human
FABP6 siRNAs were as follows: si1-FABP6: 5′-GCCCGC
AACUUCAAGAUCGTTCGAUCUUGAAGUUGCGGG
CTT-3′ and si2-FABP6: 5′-GGAGAGUGAGAAGAAU
UAUTTAUAAUUCUUCUCACUCUCCTT-3′ (Sangon
Biotech, Shanghai, China).

2.11. Quantitative Real-Time PCR (qRT-PCR). Total cellular
RNA was extracted using TRIzol reagent (Takara, Japan). The
concentration and purity of total RNA were determined, and
then, 1μg of total RNA was reverse transcribed into cDNA
with Prime Script RT Master Mix (Takara). The primers used
in this study are listed in Supplementary Table 1. qRT-PCR
analysis was carried out using the SYBR Premix Ex Taq™ kit
(Takara). GAPDH was used as the internal control.

2.12. Western Blot. Total protein of cell lines was extracted
with RIPA buffer (Beyotime, Beijing, China) and quantified
by BCA Protein Assay Kit (Beyotime). Then, 30μg protein
samples were dissolved using SDS-PAGE electrophoresis
and transferred on PVDF membranes (ABclonal, Wuhan,
China). After blocking with 5% skimmed milk dissolved in
TBST for 2 hours, the membranes were incubated overnight
at 4°C with the primary antibody (anti-FABP6, 1 : 1000 dilu-
tion (Proteintech, 13781-1-AP, Wuhan, China)). Following
that, a secondary antibody was labeled by horseradish perox-
idase (HRP) (ABclonal, Wuhan, China) for 2 h at room tem-
perature, and Tubulin was used as internal control. Finally,
the proteins were detected with an ECL kit (Beyotime).

2.13. Cell Counting Kit 8 (CCK-8) Analysis. For the CCK-8
assay, 4 × 103 tumor cells were seeded in each well of a 96-
well plate. After 24h, 48h, and 72h, the supernatant of tumor
cells was discarded and replaced with 100μL fresh complete
medium containing 10μL diluted CCK-8 reagent. The absor-
bance at 450nm was detected with a microplate reader.

2.14. Flow Cytometry. Cells were harvested through trypsini-
zation and washed twice with cold PBS. Then, cells were cen-
trifuged at 1500 rpm for 5min, the supernatant was discarded,
and the pellet was resuspended in 1× binding buffer at a den-
sity of 1 × 106 cells per mL. Subsequently, 5μL of Annexin V-
fluorescein isothiocyanate (FITC) and 5μL of propidium
iodide (PI) (#640914, BioLegend, San Diego, CA, USA) were
added. To detect HLA-A/B/C expression, tumor cells were
labeled with 5μL HLA-A/B/C-APC (#311409) and the sample
was incubated in the dark at room temperature for 15min.
Cell apoptosis and HLA-A/B/C expression were measured
using a flow cytometer (BD, Accuri, C6).

2.15. Wound Scratch Assay. A total of 2 × 105 cells/well
(three replicates per group) were plated in a 6-well plate
and grown to confluence. The media was removed, and the
cells were rinsed with PBS. The cell monolayers were
scratched using a sterile 1mL pipette tip and washed twice
with serum-free medium to remove the floating cells. Then,
the cells were cultured in complete medium with 10% FBS.
Images were taken after 0 h, 24 h, 48 h, and 72 h by using a
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microscope. The migration ability of the cells was calculated
according to the healed area.

2.16. Transwell-Based Assays. For the migration assay, trans-
well assay was performed using transwell chambers (8μm
pore; Corning, NY, USA). For the invasion assay, transwell
chambers were precoated with Matrigel (Corning, NY,
USA). The HCT116 and SW1116 cells (2 × 104 for migration
assay, 1 × 105 for invasion analysis) in serum-free medium
were seeded into the upper chamber, whereas the lower
chamber was supplemented with medium with 10% fetal
bovine serum. After incubating for 48 hours, migrated or
invasive cells were fixed with 4% paraformaldehyde, stained
with crystal violet for 30min, and counted under five inde-
pendent visual fields.

For the migration of T cells, CD8+ T cells were isolated
from the peripheral blood of healthy donors and stimulated
with CD3 and CD28 beads (1μg/mL, Sigma, Santa Clara,
CA, USA) for 3 days. Then, a total of 8 × 104 CD8+ T cells
in 300μL serum-free medium were seeded into the upper
chamber of the insert, and 700μL of tumor supernatant
derived from HCT116 or SW1116 cells was added to the
lower chamber. Following 4h of incubation at 37°C, CD8+
T cells in the lower chamber were counted with an inverted
microscope.

2.17. Immunohistochemistry (IHC) Assays. For the IHC anal-
ysis, the paraffin-embedded tissue was sectioned at a thick-
ness of 3μm and placed on poly-L-lysine-coated slides.
The slides were dried overnight at 60°C. The sections were
deparaffinized via two changes of xylene. After blocking
endogenous peroxidase activity with 3% hydrogen peroxide
in methanol, antigen retrieval was performed by heating
the slides in 10mmol/l citrate buffer (pH 6) using a water
bath. The sections were then incubated with the primary
antibody (anti-CD3, 1 : 200 dilution (Abcam, ab1669, Cam-
bridge, MA, USA) and anti-FABP6, 1 : 500 dilution (Protein-
tech, 13781-1-AP, Wuhan, China)) at 37°C for 30min.
Thereafter, the sections were rinsed with Tris-buffered saline
(TBS) three times, incubated with the secondary antibody at
room temperature for 30min, and washed with TBS. Finally,
3,3′-diaminobenzidine (DAB) was used to illuminate the
positive staining signals, and hematoxylin was used for
counterstain. The positive staining signals were classified
into 4 grades according to standard procedures.

2.18. Immunofluorescence. Cells (1 × 104) were washed with
PBS three times and fixed with 4% paraformaldehyde for
20min. Then, Triton X-100 (1%) was added to permeabilize
the cells for 10min, and goat serum was used for blocking
for 30min. After that, cells were stained with primary anti-
bodies: anti-HLA-A/B/C (1 : 500) (ab225636, Abcam, Cam-
bridge, MA, USA) overnight at 4°C. After washing with
PBS three times, the cells were incubated with fluorescence
conjugated secondary antibodies. Next, the cells were stained
with DAPI for 10min, and images were observed under a
fluorescence microscope.

2.19. ELISA. Tumor cells (2 × 105) were seeded in 6-well
plates after 48 h, and the supernatant was harvested. ELISA
kits (CCL5, #70-EK1129-24, CXCL9, #70-EK1143-24) were
purchased from MultiSciences. First, 200μL of 1× assay dil-
uent was added to the wells of a 96-well plate and incubated
for 1 h. Then, the supernatants or standard solutions were
added according to the manufacturer’s instructions. After
incubation, the supernatant was removed, and the cells were
washed with PBS 3 times. Then, 100μL of 1× detection anti-
body was added, followed by 100μL of 1× avidin HRP. After
the reaction, the optical density (OD) value at 450nm was
detected by a microplate reader.

2.20. Statistical Analysis. The statistical software R (version
3.6.3) and GraphPad Prism 7 software (version 5.0) were
used for the statistical analysis and the generation of figures.
The “corrplot” R package was used to test the relationships
among different immune cells. The “survival” R package
was used for Kaplan-Meier curve analysis. Two-tailed
unpaired t-tests were performed to compare the gene
expression difference in two groups, and the results are pre-
sented as the mean ± SD. Each experiment had three biolog-
ical replicates. P < 0:05 was considered to indicate a
significant difference.

3. Results

3.1. Infiltrating Cell Populations in the TME Affect the
Clinical Outcomes of Patients with CRC. In order to reveal
the immune landscape of CRC and explore promising new
targets for immunotherapy, we conducted a series of bioin-
formatic analyses and functional experiments. The flowchart
of this study is shown in Figure 1. Firstly, we calculated the
scores of 64 cell types and assessed their clinical significance.
We evaluated the relationships between the degrees of infil-
tration of 64 cell types and clinicopathological parameters
(Table 1). The results revealed that the age or sex of patients
hardly affected the immune infiltration of 64 different kinds
of cells in the TME. Of note, infiltration of cells that perform
immune functions was significantly associated with tumor
status, such as TNM stage and clinical stage. The infiltration
levels of CD8+ central memory T (Tcm) cells, CD4+ mem-
ory T cells, plasmacytoid dendritic cells (pDCs), and neutro-
phils were decreased in patients with advanced tumors,
which may indicate immune suppression in these patients
(Supplementary Figures 1A–1D). Next, we analyzed the
correlations of the infiltration of the 64 cell types with OS
and PFS. The results showed that high infiltration levels of
basophils, dendritic cells (DCs), conventional dendritic
cells (cDCs), and pDCs were associated with favorable OS
and PFS (Figures 2(a) and 2(b), Supplementary Figures 2A
and 2B). However, high proportions of astrocytes, CD4
naive T cells, CD4 T cells, chondrocytes, common myeloid
progenitor (CMP) cells, endothelial cells, and fibroblasts
were associated with a poor prognosis in patients
(Figures 2(a) and 2(b), Supplementary Figures 3A and 3B).
The above results suggest that there are large differences in
the cellular composition of CRC patients with different
clinicopathological parameters, and these differences are
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likely to be important determinants of both prognosis and
treatment response, indicating that immune cells and
nonimmune cells together reflect the malignant features of
the tumor and the heterogeneity of the TME.

3.2. The Associations among Infiltrating Cells in CRC.
According to the study published by Aran et al., the 64 cell
types were grouped into five families, including lymphoid
cells, stem cells, myeloid cells, stromal cells, and others
[19]. We found that some stem/progenitor cells showed a
negative association with corresponding differentiated cells;
for example, megakaryocyte erythroid progenitors (MEPs)
were correlated with megakaryocytes, common lymphoid
progenitor (CLP) cells, CD4+ T cells, CD8+ T cells, NK
cells, and B cells. On the other hand, mesenchymal stem
cells (MSCs), granulocyte-macrophage progenitors
(GMPs), and CMPs were positively associated with their
corresponding differentiated cells. The results may indicate
that the mechanism of cell differentiation for cell types is
different in tumor tissues. In addition, epithelial cells

showed comprehensive negative correlations with other
cells in tumor tissue, indicating that they may form a bar-
rier to prevent the infiltration of cells (Figure 3(a)). Most
lymphoid cell subtypes and myeloid cells, such as CD8+
T cells, CD4+ memory T cells, DCs, and macrophages,
showed strong positive correlations with each other, indi-
cating cooperation among these cells in the immune
response (Figures 3(b) and 3(c)). CLPs and MEPs were
negatively correlated with other stem cells (Figure 3(d)).
Among stromal cells, both smooth muscle cells and osteo-
blast cells were negatively correlated with other stromal
cells because of their functions and distribution in tumors
(Figure 3(e)). For other cell families, neurons showed a
negative correlation with other cell types (Figure 3(f)).
These results suggest that infiltration is the result of
mutual cooperation and antagonism.

3.3. Characterization of the Immune Subtypes of CRC. We
performed consensus clustering of the 64 cell types in tumor
tissues and divided the tumor samples into three subtypes

Colorectal
cancer data
from UCSC

XENA

Evaluation of the stromal and immune
scores

Identification of DEGs between tumor
and normal tissues

Evaluation and correlation of
immune infiltration and clinical

parameters

Consensus
clustering

Cluster A
(cold tumor)

Cluster C
(hot tumor)Cluster B

Identification of DEGs

Go and KEGG enrichment
analysis of DEGs

Construction of PPI network

Construction and validation of the
prediction model in patients in
TCGA and patients treated with

immunotherapy
Pancancer

analysis
Association with

immune cells

Association with
immune-related

genes

FABP6

ELISA

Immuno
fluorescence

IHC Assays

Transwell based
assays

Wound scratch
assay

Flow cytometer

CCK-8 analysis

Western blot

qRT-PCR

Figure 1: Flowchart of this study.
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Table 1: Association of infiltrating cells with clinical parameters of CRC.

Cell type Cell Age Gender T M N Stage

Lymphoid B cells 0.4331 0.9229 0.3311 0.0711 0.2753 0.3216

Lymphoid CD4+ memory T cells 0.1685 0.3341 0.0105 0.0005 0.0003 <0.0001
Lymphoid CD4+ naive T cells 0.2715 0.1667 0.7178 0.5379 0.7862 0.7756

Lymphoid CD4+ T cells 0.0203 0.7075 0.0122 0.4617 0.5951 0.0364

Lymphoid CD4+ Tcm 0.9147 0.3209 0.7854 0.2878 0.3610 0.3814

Lymphoid CD4+ Tem 0.1952 0.8937 0.7658 0.7544 0.6051 0.9284

Lymphoid CD8+ naive T cells 0.4654 0.2640 0.3159 0.8947 0.9549 0.9656

Lymphoid CD8+ T cells 0.5679 0.4823 0.2793 0.2707 0.7788 0.4960

Lymphoid CD8+ Tcm 0.2648 0.9934 0.0901 0.0079 0.0010 0.0008

Lymphoid CD8+ Tem 0.1853 0.9892 0.5123 0.8273 0.7474 0.5987

Lymphoid Class-switched memory B cells 0.2338 0.3230 0.4120 0.0678 0.7427 0.3307

Lymphoid Memory B cells 0.2845 0.1776 0.0388 0.7745 0.1823 0.2642

Lymphoid Naive B cells 0.9631 0.7150 0.2614 0.1141 0.0277 0.2710

Lymphoid NK cells 0.4478 0.5688 0.8202 0.0225 0.2271 0.0979

Lymphoid NKT 0.5926 0.0208 0.3688 0.4971 0.7148 0.4856

Lymphoid Plasma cells 0.0380 0.1735 0.2067 0.0428 0.0500 0.1081

Lymphoid Pro B cells 0.9577 0.2095 0.8183 0.4485 0.1552 0.2736

Lymphoid Tgd cells 0.0193 0.5322 0.1506 0.9267 0.4513 0.5512

Lymphoid Th1 cells 0.8939 0.4146 0.2188 0.5725 0.0215 0.2738

Lymphoid Th2 cells 0.9263 0.6690 0.0764 0.0297 0.0004 0.0019

Lymphoid Tregs 0.0623 0.6896 0.1345 0.0300 0.1210 0.1098

Myeloid aDC 0.5990 0.4334 0.7332 0.0518 0.4975 0.2990

Myeloid Basophils 0.0109 0.1752 0.1524 0.2680 0.0331 0.2303

Myeloid cDC 0.5785 0.2220 0.5001 0.0171 0.1049 0.0305

Myeloid DC 0.5328 0.6729 0.2501 0.0120 0.3258 0.1478

Myeloid Eosinophils 0.4899 0.9710 0.0211 0.0159 0.0000 0.0000

Myeloid iDC 0.9023 0.4082 0.2117 0.3823 0.5198 0.6304

Myeloid Macrophages 0.3038 0.8727 0.4117 0.0431 0.0582 0.0346

Myeloid Macrophages M1 0.5832 0.6410 0.3843 0.0975 0.2013 0.1253

Myeloid Macrophages M2 0.4376 0.2932 0.8355 0.7953 0.5147 0.8442

Myeloid Mast cells 0.4878 0.5348 0.8239 0.5542 0.4184 0.5966

Myeloid Monocytes 0.7594 0.9413 0.1399 0.7711 0.7740 0.7820

Myeloid Neutrophils 0.5715 0.9394 0.0314 0.0307 0.0277 0.0300

Myeloid pDC 0.4878 0.1857 0.0081 0.0022 <0.0001 0.0001

Other Astrocytes 0.5402 0.4300 0.0230 0.4676 0.0263 0.1121

Other Epithelial cells 0.2242 0.8283 0.8236 0.0731 0.5693 0.3794

Other Hepatocytes 0.3483 0.3790 0.9270 0.7129 0.3026 0.8988

Other Keratinocytes 0.2701 0.2621 0.2829 0.2216 0.3601 0.2688

Other Melanocytes 0.5312 0.2753 0.0215 0.7319 0.2784 0.0656

Other Mesangial cells 0.2431 0.5943 0.0191 0.5577 0.0144 0.1075

Other Neurons 0.2688 0.1050 0.0351 0.0079 0.0013 0.0070

Other Sebocytes 0.1608 0.4085 0.4273 0.2669 0.3606 0.7099

Stem CLP 0.5245 0.5893 0.1274 0.5156 0.2423 0.4070

Stem CMP 0.2126 0.2562 0.5991 0.6218 0.6962 0.4656

Stem Erythrocytes 0.2366 0.0489 0.2673 0.0985 0.0274 0.1135

Stem GMP 0.7642 0.3148 0.9758 0.6856 0.9252 0.9519

Stem HSC 0.0641 0.3273 0.2119 0.1738 0.0063 0.1430

Stem Megakaryocytes 0.2582 0.2321 0.9708 0.0599 0.4856 0.3181
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based on the infiltration levels and infiltrating cell types
(Supplementary Figures 4A and 4B). Group A contained
mostly stromal cells and stem cells, with a small number of
lymphoid cell subtypes and M2 macrophages. Additionally,
group A had the highest tumor purity and the lowest
immune score. The pattern for group B was opposite to
that of group A: this group lacked stromal cells but was
enriched in immune cells, including CD8+ T cells and
CD4+ T cells. Group C contained mostly immune cells.
Consistent with these results, group C had the highest
immune score. Of note, group C was also enriched in
immunosuppressive cells, including regulatory T cells
(Tregs) (Figure 4(a)), suggesting that Tregs induced by
tumor cells have potent immunosuppressive functions and
that their roles are different from those of M2 macrophages.

To explore the survival differences among the 3 groups,
we performed survival analysis. We found that group A
had worse PFS than groups B and C (Figure 4(c)); although
no significant difference in OS was found among the 3 clus-
ters, group A tended to have worse OS (Figure 4(b)). Nota-
bly, despite the high immune infiltration in group C, the
survival of this group was no better than that of group B,
which may be caused by immunosuppressive factors such
as Tregs. These results suggest that the infiltration patterns
of immune cells can reflect the survival and clinical status
of tumor patients.

3.4. Alterations in Signaling Pathways in Hot and Cold
Tumors. To further explore the underlying mechanisms
regarding immune infiltration, we redefined the samples in
group C and group A as immune-high and immune-low
tumors (denoted as hot and cold tumors). We first analyzed
the expression of immune-related molecules in the two sub-
types and observed that most immune-related genes were
highly expressed in hot tumors (Supplementary Figure 5).

Next, we analyzed the difference between the two groups at
the transcriptional level. We found that hot and cold
tumors showed different transcription patterns, as shown
in the heatmap and volcano plot (Figures 5(a) and 5(b)).

We identified the DEGs between hot and cold tumors
and performed GO and KEGG enrichment analyses. The
enriched GO terms in hot tumors were immune-related
terms, including leukocyte migration, T cell activation, and
positive regulation of cytokine production, while in cold
tumors, the DEGs were mostly enriched in metabolic pro-
cesses, including the carboxylic acid biosynthetic process,
organic acid biosynthetic process, and steroid metabolic pro-
cess (Figures 5(c) and 5(d)). Pathways including neuroactive
ligand-receptor interactions, cytokine-cytokine receptor
interactions, and the PI3K-Akt signaling pathway were sig-
nificantly enriched in hot tumors. Pathways such as choles-
terol metabolism, the biosynthesis of amino acids and the
metabolism of xenobiotics by cytochrome P450 were
enriched in cold tumors (Figures 5(e) and 5(f)). These
results suggest that metabolic reprogramming of tumor cells
may suppress the immune response in the TME.

PPI analysis revealed that DEGs upregulated in hot
tumors could be clustered into 4 groups, while in cold
tumors, they were clustered into three groups (Supplemen-
tary Figures 6A and 6B). The top 10 DEGs with a high
degree of connectivity were selected as the hub genes
(Supplementary Figures 6C and 6D). The results revealed
that the top 10 hub genes in hot tumors were mainly
chemokines (CCL19, CCL21, and CCL13) and members of
the guanine-nucleotide-binding protein- (G-protein-)
coupled receptor family (CNR1, HRH3, and CHRM2). The
top 10 hub genes in cold tumors mainly included
apolipoprotein family members and glycoproteins
(APOA2, APOA4, APOC3, and HRG). Additionally, we
found that the hub genes in hot tumors, such as AMBP,

Table 1: Continued.

Cell type Cell Age Gender T M N Stage

Stem MEP 0.3958 0.5632 0.1351 0.6039 0.0952 0.2151

Stem MPP 0.4012 0.2820 0.6813 0.6082 0.0208 0.0942

Stem Platelets 0.8406 0.8540 0.0003 0.0539 0.4471 0.1073

Stromal Adipocytes 0.7321 0.7567 0.7096 0.6524 0.1163 0.5702

Stromal Chondrocytes 0.6528 0.3439 0.0222 0.5252 0.0020 0.0988

Stromal Endothelial cells 0.0589 0.5077 0.1200 0.1627 0.0786 0.1316

Stromal Fibroblasts 0.3939 0.5525 0.0354 0.0821 0.0408 0.0606

Stromal ly endothelial cells 0.0443 0.3699 0.0803 0.0998 0.0937 0.0949

Stromal MSC 0.3781 0.7674 0.0118 0.4355 0.0404 0.0080

Stromal mv endothelial cells 0.1498 0.6796 0.0380 0.4166 0.1518 0.1223

Stromal Myocytes 0.2317 0.5450 0.5625 0.4406 0.4189 0.7606

Stromal Osteoblast 0.4394 0.9622 0.0709 0.2799 0.0162 0.1301

Stromal Pericytes 0.3220 0.6211 0.1709 0.2183 0.0467 0.0505

Stromal Preadipocytes 0.3210 0.0901 0.4713 0.9351 0.0603 0.4551

Stromal Skeletal muscle 0.0396 0.8586 0.5951 0.0361 0.6315 0.0951

Stromal Smooth muscle 0.8471 0.8517 0.1237 0.9616 0.1869 0.0335
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C3, CCL19, HRH3, INSL5, PAH, PENK, and PYY, were
associated with the survival time of patients with CRC
(Supplementary Figure 6E). However, the downregulated
hub genes did not significantly affect the OS of patients.

3.5. Construction and Validation of the Prediction Model in
Patients in TCGA and Patients Treated with Immunotherapy.

Next, we constructed a prediction model based on the DEGs.
We first randomly divided the patients in TCGA into training
and testing cohorts and performed univariate Cox analysis to
select the survival-related genes (Figures 6(a) and 6(b)). Then,
we used the LASSO regression model to further select the best
combination of these genes. Finally, we used multivariate Cox
regression analysis to optimize the model (Supplementary
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Figure 2: Correlations of the 64 types of cells with the survival of CRC patients. (a) Forest plot showed the associations of the 64 cell types
and OS. (b) Forest plot showed the associations of the 64 cell types and PFS.
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Figure 3: Continued.

9Journal of Immunology Research



CD4 memory T cells
Th2 cells

CD8 naive T cells
Plasma cells

Pro B cells
Th1 cells

CD4 Tcm
Tgd cells

CD4 Tem
NKT

NK cells
CD4 T cells

Tregs
CD8 Tem

CD8 T cells
CD8 Tcm

CD4 naive T cells
Class switched memory B cells

Memory B cells
B cells

Naive B cells

C
D

4 
m

em
or

y 
T 

ce
lls

Th
2 

ce
lls

C
D

8 
na

iv
e 

T 
ce

lls
Pl

as
m

a 
ce

lls
Pr

o 
B 

ce
lls

Th
1 

ce
lls

C
D

4 
Tc

m
Tg

d 
ce

lls
C

D
4 

Te
m

N
K

T
N

K
 c

el
ls

C
D

4 
T 

ce
lls

Tr
eg

s
C

D
8 

Te
m

C
D

8 
T 

ce
lls

C
D

8 
Tc

m
C

D
4 

na
iv

e 
T 

ce
lls

C
la

ss
 sw

itc
he

d 
m

em
or

y 
B 

ce
lls

M
em

or
y 

B 
ce

lls
B 

ce
lls

N
ai

ve
 B

 c
el

ls

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
−0.1
−0.2
−0.3
−0.4
−0.5
−0.6
−0.7
−0.8
−0.9
−1

0.51

0.16

0.26 0.17 0.15

0.35

0.26

0.16

0.24 0.23

0.3

0.13

0.12

0.27 0.160.22

0.19 0.14

0.12

0.12 0.24

0.22 0.23 0.29 0.36 0.54 0.78 0.9 0.93

0.11 0.41 0.44 0.53 0.69 0.85 0.92

0.3 0.31 0.41 0.55 0.790.17

0.17 0.1 0.31 0.37 0.47 0.58

0.21 0.54 0.55 0.52

0.35 0.12 0.34

0.32

0.14 0.17

0.42 0.38 0.57

0.22 0.21 0.3

0.12

0.35 0.2 0.17

0.150.3

0.3

0.24

0.47

0.62

0.22

0.25 0.23

0.25

0.23

0.19 0.16

0.16

0.15

0.25

0.35

0.26

−0.25 −0.25

−0.19 −0.16

−0.15

−0.32

−0.22

−0.16

−0.1

−0.33 −0.18 −0.23

−0.13

−0.21−0.1

−0.16 −0.29 −0.2

−0.2 −0.11 −0.44

−0.16 −0.11

−0.12−0.25

−0.18

−0.2

−0.24

0.32

0.27

0.25 0.22 0.18

0.17 0.59 0.67

0.66

0.34 0.16

0.76

−0.15

(b)

Figure 3: Continued.
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Figure 3: Correlations among the 64 types of cells. (a) Pie plot showed the correlations among the 64 types of cells. (b) Pie plot showed the
correlations of cells in lymphoid cell groups. (c) Pie plot showed the correlations of cells in myeloid cell groups. (d) Pie plot showed the
correlations of cells in stem cell groups. (e) Pie plot showed the correlations of cells in stromal cell groups. (f) Pie plot showed the
correlations of cells in other cell groups.
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Figures 7A–7C). The predictionmodel contained 10 genes, and
4 of these genes were adverse prognostic factors. High-risk
patients had worse survival in the training and testing cohorts
(Figures 6(c) and 6(d)). The value of the receiver operating
characteristic (ROC) curve in the training cohort and testing
cohort revealed that this model can well predict the OS of
CRC patients (Figures 6(e) and 6(f)). Of note, we also used a
validation cohort of patients who received immunotherapy
treatment to test the model. The results revealed that the

model also performed well in predicting the OS of patients
treated with immunotherapy (Figures 6(g) and 6(h)). The
above results suggest that the prediction model constructed
based on DEGs performed well in predicting the OS of CRC
patients treated with and without immunotherapy.

3.6. Inhibition of FABP6 Promotes the Immunogenicity of
Tumor Cells. To select potential immunotherapy targets,
we identified the overlapping genes among genes
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Figure 5: Alterations in signaling pathways in the hot and cold groups. (a) Heatmap showed the DEGs between hot and cold tumors. (b)
Volcano plot showed the DEGs between hot and cold tumors. (c, d) GO enrichment analysis of hot and cold tumors. (e, f) KEGG
enrichment analysis of hot and cold tumors.

17Journal of Immunology Research



0.0

2.5

5.0

7.5

10.0

12.5

500 100
Patient (increasing risk score)

Training

Su
rv

iv
al

 ti
m

e 
(y

ea
rs

)

150 200

Death
Alive

Event

(a)

0

0

3

6

9

12

50 100
Patient (increasing risk score)

Testing

Su
rv

iv
al

 ti
m

e 
(y

ea
rs

)

150

Death
Alive

Event

(b)

Figure 6: Continued.

18 Journal of Immunology Research



0

0 3 6 9 12

112 30 14 6 1

113High

Low

24 5 2 0

Number at risk

0.0

0.25

0.50

0.75

1.00

3

p < 0.0001

6
Time (year)

Time (year)

O
ve

ra
ll 

su
rv

iv
al

9 12

High
Cluster

Low

(c)

0

0 3 6
Time (year)

9 12

110 47 14 5

43High

Low

7 0 0 0

Number at risk

0.0

0.25

0.50

0.75

1.00

3

p < 0.0001

6
Time (year)

O
ve

ra
ll 

su
rv

iv
al

9 12

High
Cluster

Low

0

(d)

Figure 6: Continued.

19Journal of Immunology Research



0.00

0.0

0.25

0.50

0.75

1.00

0.25

AUC at 1 year: 0.85
AUC at 3 year: 0.9
AUC at 5 year: 0.93

0.50
1-Specificity

Se
ns

iti
vi

ty

0.75 1.00

(e)

0.00

0.00

0.25

0.50

0.75

1.00

0.25

AUC at 1 year: 0.67
AUC at 3 year: 0.72
AUC at 5 year: 0.69

0.50
1-Specificity

Se
ns

iti
vi

ty

0.75 1.00

(f)

Figure 6: Continued.

20 Journal of Immunology Research



upregulated in cold tumors vs. hot tumors and genes upreg-
ulated in tumor tissues vs. normal tissues (Supplementary
Figure 8A). We identified FABP6 as an immunotherapy
target because it ranked at the top in the two datasets.
Pancancer analysis revealed that FABP6 was upregulated in
most cancers, indicating its role in promoting the
progression of tumor cells (Supplementary Figure 8B).

Additionally, FABP6 negatively correlated with immune-
related genes, including CD4, CD8A (Supplementary
Figure 8C). Analysis with the Tumor IMmune Estimation
Resource (TIMER) also revealed that FABP6 expression
was negatively correlated with the immune infiltration of B
cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and DCs (Supplementary Figure 8D).
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Figure 6: Construction and validation of the prediction model. (a, b) Correlation of the risk value and survival time in training and testing
cohort. (c, d) OS analysis of high- and low-risk groups in the training and testing cohorts. (e, f) ROC curve for predicting model in the
training and testing cohorts. (g, h) OS analysis of the high- and low-risk groups in the validation cohort (g: metastatic urothelial cancer
patients, h: melanoma patients).
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Figure 7: Inhibition of FABP6 does not affect proliferation, migration, and apoptosis of tumor cells. (a, b) qRT-PCR and western blot
showed the efficiency of FABP6 knockdown. (c) CCK-8 analysis showed the proliferation of tumor cells with FABP6 knockdown. (d, e)
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To further explore the function of FABP6, we first
knocked down FABP6 in two CRC cell lines, and the knock-
down efficiency was confirmed at the mRNA and protein
levels (Figures 7(a) and 7(b)). The results of CCK-8 analysis
and flow cytometry analysis revealed that knockdown of
FABP6 did not alter the proliferation or apoptosis of tumor
cells (Figures 7(c)–7(e)). Scratch analysis showed that
knockdown of FABP6 did not affect the migration ability
of tumor cells (Figures 7(f) and 7(g)), while, interestingly,
the transwell assays indicated that knockdown of FABP6
could slightly inhibit the migration and invasion compared
with the control group (Supplementary Figures 9A and
9B). That may be because cell morphology changed when
single cells were invading across membranes, which may
affect the migration or invasive capacity in transwell assays.
However, no significant difference was found between
FABP6 and OS and disease-free survival (DFS) of CRC
patients based on the follow-up data from TCGA database
(Supplementary Figures 9C and 9D).

Notably, knockdown of FABP6 promoted the expression
of immune-related genes, including major histocompatibil-
ity complex (MHC) class I and Th1-like chemokine-related
genes (Figures 8(a) and 8(b)). In addition, ELISA confirmed
that knockdown of FABP6 promoted the secretion of CCL5
and CXCL9 (Figures 8(c) and 8(d)). Immunofluorescence
analysis revealed that knockdown of FABP6 promoted the
expression of HLA-A/B/C, indicating that knockdown of

FABP6 increased the immunogenicity of tumor cells
(Figures 8(e)–8(h)), which was confirmed by flow cytometry
(Figure 8(i), Supplementary Figure 10). To confirm whether
FABP6 knockdown can increase T cell recruitment, we
isolated CD8+ T cells from healthy donors and stimulated
them with CD3/CD28 beads. The conditioned medium
from tumor cells was collected after the knockdown of
FABP6 for 48 h and added to the lower chamber. The
results revealed that knockdown of FABP6 promoted the
recruitment of CD8+ T cells (Figures 8(j) and 8(k)).
Consistent with these results, analysis of clinical samples
also revealed that the intensity of FABP6 staining was
negatively correlated with the intensity of CD3 staining
(Figure 8(l)). These results suggest that FABP6 may serve
as a potential target for immunotherapy.

4. Discussion

In recent decades, tumor infiltration research has often
focused on immune cell infiltration, especially infiltrating T
lymphocytes, and has achieved remarkable results. However,
increasing evidence has proven that other cell types, such as
stromal cells, stem cells, and even keratinocytes, also play
crucial roles in tumor progression and cell interactions
[20–22]. Here, we described the comprehensive landscape
of tumor infiltration patterns in CRC and explored potential
targets for immunotherapy.

CD3 FABP6

(l)

Figure 8: Inhibition of FABP6 promotes the immunogenicity of tumor cells. (a, b) Relative mRNA expression of immune-related genes in
tumor cells. (c, d) ELISA analysis showed the secretion of CCL5 and CXCL9 in tumor cells. (e–h) Immunofluorescence analysis of HLA-A/
B/C in tumor cells. (e) and (g) are representative images; (f) and (h) are statistical analysis of the intensity. (i) Flow cytometry analysis
showed HLA-A/B/C expression with FABP6 knockdown in tumor cells. (j–l) Transwell analysis of CD8+ T cells; (j) is representative
images, and (k) is the statistical analysis of CD8+ cell numbers. (l) IHC analysis of FABP6 and CD3 expression in clinical samples. ∗P <
0:05; ∗∗P < 0:01; ∗∗∗P < 0:001.
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In this research, we analyzed the distribution and level of
64 human cell types in the TME and the correlations of
those cell types with the pathological characteristics of
patients. As we expected, the infiltration levels of some kinds
of lymphoid cells, such as CD4+ memory T cells and CD8+
Tcm cells, were associated with favorable clinical features
and pathological diagnoses of patients. pDCs are a multi-
functional population known for their specialized ability to
produce and secrete a large amount of type I interferons
(IFNs) [23]. Several studies have shown that pDCs can be
recruited to the TME and produce type 1 IFNs to promote
antitumor immunity and that they can also present antigens
to activate CD4 T cells or CD8 T cells through cross-
presentation [24, 25]. We found that the infiltration of pDCs
was lower in advanced tumors than in early-stage tumors,
which may indicate immune suppression in patients with
advanced tumors. Surprisingly, the number of neuronal cells
was significantly associated with the extent of distant metas-
tasis and the tumor clinical stage; however, the role of neu-
ronal cells in tumors is still unclear.

The highly complex and heterogeneous system of a
tumor contains not only malignant cells but also interacting
cells from the host, such as endothelial cells, stromal fibro-
blasts, and a variety of immune cells that control tumor
growth and invasion [26]. The immune phenotypes of
tumors are dependent on the interaction between tumor
cells and cells infiltrating the microenvironment. Tumor
cells coexist with immune cells and nonimmune cells and
establish subtle interactions with them that determine the
tumor’s immune phenotypes. Here, we revealed the compli-
cated synergistic and antagonistic relationships between dif-
ferent infiltrating immune cells in CRC based on the
distribution of those cells in the TME. Macrophages are a
heterogeneous population of myeloid cells of the innate
immune system and are particularly active in inflammation
and infection. Activated type 1 (M1) and alternatively acti-
vated type 2 (M2) are two major polarization states of mac-
rophages. Among tumor-infiltrating immune cells,
macrophages are the most abundant and are called tumor-
associated macrophages (TAMs). M1 macrophages are char-
acterized by the production of proinflammatory cytokines
such as TNF-α, IL-1β, IL-6, and IL-12 [27]. In contrast to
M1 macrophages, M2 macrophages are immunosuppressive
and favor angiogenesis and tissue repair. However, we found
that macrophages (M0), M1 macrophages, and M2 macro-
phages are positively correlated with each other in tumor
infiltration, which means that these cells all have the same
infiltration pattern (low or high) in the TME of a given sam-
ple. The same phenomenon was also observed for myeloid
cells and stromal cells. The findings provide a new perspec-
tive for understanding tumor infiltration.

Immune contexture was adopted to refer to the combi-
nation of immune variables associated with the nature, den-
sity, immune functional orientation, and immune cell
distribution within the tumor. Rather than the traditional
classification of tumors, tumors can be classified as hot
tumors (high infiltration levels) or cold tumors (low infiltra-
tion levels) according to the immune infiltration level. The
terms hot and cold are routinely used to refer to T cell-infil-

trated/inflamed versus noninfiltrated/noninflamed tumors,
respectively, accurately reflecting the higher and lower
immune score categories. The characteristics of hot tumors
are the presence of numerous tumor-infiltrating lympho-
cytes (TILs), the expression of antiprogrammed death-
ligand 1 (PD-L1) on tumor-associated immune cells, and a
strong antitumor immune response. Conversely, cold
tumors indicate poor infiltration of immune cells, low
expression of neoantigens, and low expression of antigen
presentation machinery markers such as MHC class I [28].
This classification method of tumors reflects the outcome
of the tremendously complex interplay between the tumor
and the immune system and is beneficial for guiding treat-
ment selection. Based on this classification, we divided the
tumor samples into three groups. As we expected, patients
with cold tumors had worse OS and PFS than those with
hot tumors. Interestingly, patients in group B had the best
OS and PFS among the three groups of patients. However,
we did not further analyze group B. The analysis of this
study focused on hot tumors and cold tumors.

Metabolism in tumor issues is usually altered compared
with that in normal tissues because of physical pressure, oxi-
dative stress, nutrient deprivation and competition, hypoxia,
and immune surveillance in the TME. GO and KEGG anal-
yses of DEGs between hot tumors and cold tumors revealed
changes in metabolism. We found that the downregulated
DEGs were significantly enriched in biosynthetic and bioen-
ergetic metabolic processes, such as carboxylic acid biosyn-
thetic process, organic acid biosynthetic process, steroid
metabolic process, and lipid catabolic process. Correspond-
ing to the GO analysis, KEGG analysis showed that the
downregulated DEGs were enriched in the cholesterol
metabolism process, biosynthesis of amino acids process,
and metabolism process of xenobiotics by cytochrome
P450. The results indicated that the metabolism of cold
tumors was suppressed compared with that of hot tumors.
The suppression of biosynthetic and bioenergetic metabolic
processes in cold tumors may explain the worse OS and
PFS of patients with these tumors because nutrient defi-
ciency can impair the activity of immune cells involved in
tumor destruction [29, 30].

FABP6 is a member of the fatty acid-binding protein
(FABP) family, which is a class of chaperones that partici-
pate in the uptake, transport, storage, and metabolism of cel-
lular fatty acids; cellular signaling; and gene transcription
regulation [31–33]. Ohmachi et al. reported that FABP6 is
overexpressed in CRC patients compared with healthy
donors and leads to an increased risk of colon cancer [34].
In our study, FABP6 was selected for functional study
because it ranked at the top in both cold tumor vs. hot tumor
group and tumor tissue vs. normal tissue group. Firstly, the
pancancer analysis showed FABP6 was also upregulated in
most cancers, indicating that FABP6 may act as a protumor
factor in cancers. Then, we found that FABP6 expression
was negatively correlated with immune-related genes and
the immune infiltration of CD8+ T cells and CD4+ T cells.
In in vitro experiments, the proliferation, apoptosis, and
migration of tumor cells were hardly altered after suppres-
sion of FABP6 expression, even though the transwell assays
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showed a slightly decreasing trend of migration and inva-
sion. Inconsistent with our findings, overexpression of
FABP6 in DLD-1 cells decreased the proliferation of CRC
tumor cells [34]. The different tumor cell lines used in the
two studies and the time of analyzing proliferation may con-
tribute to the difference. In addition, the baseline expression
of FABP6 in the tumor cell lines also affects the function of
knockdown and overexpression. Sequentially, our study
showed that the suppression of FABP6 using siRNA
enhanced the immunogenicity of tumor cells. For example,
the expression of CCL4, CCL5, CXCL9, HLAA, HLAB,
HLAC, TAP1, and TAP2 was increased after FABP6 was
suppressed in the CRC lines HCT116 and SW1116, indicat-
ing that the chemotaxis of various immune cells and antigen
presentation of tumor cells were strongly enhanced. In addi-
tion, this study revealed that the knockdown of FABP6 can
increase the recruitment of CD8+ T cells, and the FABP6
staining was negatively correlated with the intensity of
CD3 staining. Considering the above results and the
restricted expression of FABP6 in normal small intestine tis-
sue, FABP6 may be a candidate biomarker for diagnosing
CRC.

However, there are also some limitations in our study.
First, we did not validate the prediction model in an external
dataset. Second, for lacking of enough follow-up data, we
used the survival data from TCGA database to explore the
prognostic roles of FABP6 instead of clinical patients, which
should be further studied in the near future. Third, we did
not explore the mechanisms on how FABP6 regulates
CCL5 and CXCL9 expression. At last, the role of FABP6
should be more thoroughly explored in in vivo experiments.

5. Conclusion

Our study revealed that not only immune cells but also non-
immune cells contributed to the complicated immune infil-
tration pattern of tumors and reflected the status of tumor
progression. We redefined tumors as hot tumors or cold
tumors based on the infiltration of 64 types of human cells
into the TME and analyzed the difference in checkpoint
and immune response-associated molecules between the
two groups. In particular, FABP6 expression was negatively
correlated with immune infiltration, and knockdown of
FABP6 not only increased MHC class 1 expression but also
promoted immune-related chemokine secretion, resulting
in the recruitment of CD8+ T cells. In summary, this study
provides a comprehensive landscape of the immune infiltra-
tion patterns of CRC and presents FABP6 as a potential
immunotherapy target.
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