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Sepsis-associated encephalopathy (SAE) is often associated with increased ICU occupancy and hospital mortality and poor long-
term outcomes, with currently no specific treatment. Pathophysiological mechanisms of SAE are complex and may involve
activation of microglia, multiple intracranial inflammatory factors, and inflammatory pathways. We hypothesized that
metformin may have an effect on microglia, which affects the prognosis of SAE. In this study, metformin treatment of mice
with SAE induced by lipopolysaccharide (LPS) reduced the expression of microglia protein and related inflammatory factors.
Poor prognosis of SAE is related to increased expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) in
brain tissues. Levels of inflammatory cytokines produced by LPS-induced SAE mouse microglia were significantly increased
compared with those in the sham group. In addition, ionized calcium-binding adapter molecule 1 (Iba-1) was significantly
reduced in metformin-treated SAE mice compared with untreated SAE mice, suggesting that metformin can reduce
microgliosis and inhibit central nervous system inflammation, thereby improving patient outcomes. In conclusion, our results
stipulate that metformin inhibits inflammation through the adenosine 5′-monophosphate (AMP-) activated protein kinase
pathway by inhibiting nuclear factor kappa beta (NF-κB). Metformin can partially reverse the severe prognosis caused by
sepsis by blocking microglial proliferation and inhibiting the production of inflammatory factors.

1. Introduction

Sepsis is defined as life-threatening organ dysfunction
caused by a dysregulated host response to infection [1, 2]
and most commonly results in multiple organ dysfunction
syndromes in severely affected patients [3]. In sepsis, the
central nervous system (CNS) is considered to be one of
the first systems involved [4], and the mortality rate
increases with the severity of SAE, rising up to 70% [5].
The main clinical outcome is poor prognosis and high mor-
tality rates. SAE is characterized by diffuse brain dysfunction
and cognitive impairment as a result of systemic inflamma-
tion caused by infection, with clinical manifestations ranging
from delirium to coma. However, no clinical or laboratory
evidence exist of direct brain infection, brain anatomical
abnormalities, cerebral hemorrhage, or cerebral infarction

[6]. The pathophysiology of SAE is complex and multifacto-
rial, combining interwoven processes, which lead to numerous
functional alterations and disorders, such as neuroinflamma-
tion, oxidative stress, reduced brain metabolism, and impaired
integrity of the blood-brain barrier (BBB) [7]. In addition,
peripheral cytokine storm 8 leads to the production of intra-
cranial inflammatory mediators and plays a key role in the
pathogenesis of SAE, mainly manifested as activation of
microglia, leukocyte infiltration, and neuronal degeneration.
Meanwhile, the permeability of the BBB increases [9], and
the infiltration of peripheral inflammatory mediators into
the CNS further enhances BBB permeability and promotes
the production of inflammatory mediators.

Microglia are important participants in developing the
CNS-related disorders, inflammation, and almost all neuro-
pathological conditions, such as stroke, tumors, degenerative
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diseases, brain injury, and infection, accounting for approx-
imately 5–12% of the total number of intracranial cells [10,
11]. These cells have the morphological and functional abil-
ity to adapt to the ever-changing microenvironment around
them. Microglial activation in response to stimulation is
widely believed to promote neurotoxin clearance and main-
tain intracranial homeostasis [12, 13]. Iba-1 is considered to
be a marker protein of microglia [14]. During normal devel-
opment, microglia participate in the clearance of aging neu-
rons through phagocytosis without causing an inflammatory
response [15, 16]. Under pathological conditions such as
SAE, microglia are rapidly activated to produce large
amounts of nitric oxide, TNF-α, IL-6, IL-1, oxygen-free rad-
icals, and various excitatory neurotransmitters. This
expanded inflammatory cascade aggravates neuronal dam-
age, thus damaging the state of consciousness and emotional
states [17, 18]. Activated microglia can produce a variety of
inflammatory factors, such as TNF-α, IL-1β, and NF-κB
[19, 20]. NF-κB, as an inducible transcription factor, plays
a central role in the regulation of inflammatory genes [21].
Lipopolysaccharide (LPS) can strongly stimulate the activa-
tion of microglia and is widely used in the study of neuroin-
flammation [22]. Since disordered activation of microglia
during SAE may lead to exacerbation of existing brain dam-
age, regulation of microglia appears to be a therapeutic
option for SAE [23, 24]. Metformin has been found to
reduce mortality in patients with sepsis significantly. It also
protects the lung tissue from oxidative damage caused by
sepsis [25]. In contrast to other classes of hypoglycemic
drugs, metformin inhibits NF-κB activation through the
adenosine 5′-monophosphate-activated protein kinase
(AMPK) pathway [26]. It more recently has also been shown
to benefit nondiabetic patients by reducing the production of
inflammatory agents and biomarkers of aging [27]. A close
link between reduced AMPK activity and inflammation has
been revealed in the studies of macrophages by Yang et al.
[28]. Moreover, in 2013, Jiang et al. have found that metfor-
min can reduce intracranial infarction area, cell apoptosis,
and neurological deficits caused by focal cerebral ischemia
through the AMPK autophagy pathway in cerebral ischemia
diseases [29]. However, few studies have focused on the role
of metformin in SAE. Therefore, we aimed to investigate the
effect and potential role of metformin on LPS-induced
inflammation during SAE.

2. Materials and Methods

This study conducted in accordance with the principles out-
lined in the National Institutes of Health (NIH) Guide for

the Care and Use of Laboratory Animals, and Zhengzhou
University Life Sciences Ethics Review Committee approved
the experimental protocols.

2.1. Reagents. The antibody to TNF-α, IL1-beta, AMPK, and
β-actin was obtained from proteintech (Wuhan, China) and
Phospho-AMPKα (1 : 1000) get from Cell Signaling Tech-
nology (Wuhan, China). The research group purchased Uel-
ris RT Mix with DNsae (All-in-one) reagent from UE
(Suzhou, China) Company and Hieff®qPCR SYBR Green
Master Mix (Low Rox Plus) reagent from Yessen Biotech-
nology (Shanghai, China) Co., Ltd.

2.2. Animals. In October 2019, 35 male C57BL/6 mice (4
weeks of age, 15-20 g) were purchased from the Beijing
Charles River Experimental Animal Technology Center
(Beijing, China) (5 of them were reserved to prevent various
accidental deaths) and were raised under standard condi-
tions for 1 year. This group of mice is called aged mice (13
months old). In October 2020, 30 male C57BL/6 mice (4
weeks of age, 15-20 g) were purchased from the Beijing
Charles River Experimental Animal Technology Center
(Beijing, China) again and were fed for 1 week under stan-
dard conditions. This group of mice is called adult mice.
Two groups of mice (aged mice and adult mice) were ran-
domly divided into three groups with 10 mice in each group:
sham group, LPS group, and LPS +M group. LPS group and
LPS +M group were intraperitoneally injected with LPS
1mg·kg-1, and metformin 25mg·kg-1 was intraperitoneally
injected with LPS +M group 1h later. The standard feeding
conditions of mice were as follows: temperature: 18~22°C,
observe the temperature every day, adjust the temperature
if necessary. Relative humidity: 50~60%, daily estimate
humidity with wet and dry bulb thermometer, take measures
to adjust humidity if necessary. Noise: below 60 decibels.
Lighting: 10~14 hours, the light is on at 8 : 00 every day,
18 : 00~20 : 00 lights. Ammonia: below 20 PPM. Ventilation:
8~20 times/hour. Airflow: 10~25 cm/min. Cage tools: gener-
ally, the pad material in the cage of mice is changed once a
week, and the cage tools are washed and disinfected once a
month. Drinking bottle: supply clean and pollution-free
drinking water. Wash your drinking bottle every 3 days
and add fresh, clean water. Boil once a month for disinfec-
tion. Feeding room: indoor disinfection with 0.1% geramine
spray every month; peracetic acid was fumigated quarterly.

2.3. Murine Sepsis Score (MSS). We assessed the severity of
sepsis in each mouse according to MSS score. The mice in
each group were scored from 8 a.m. to 10 a.m. every day,

Table 1: Primers used for real-time PCR.

Genes Sense primers (5′-3′) Antisense primers (5′-3′)
Iba-1 ATTATGTCCTTGAAGCGAATGC TCTCAAGATGGCAGATCTCTTG

NF-κB CTCAGAGCCAGCCCAGGCTT CGCACTTGTAACGGAAACGC

TNF-α GCATACAGGTCCTGGCATCT TTCTTGCTGGTCTTGCCATT

GAPDH GATGGTGAAGGTCGGTGTG GAGGTCAATGAAGGGGTCG

Note. PCR: polymerase chain reaction.
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Figure 1: Continued.
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including appearance, respiratory rate and quality, presence
of eye secretions, activity, and response to stimuli [30]. The
higher the score, the more severe the sepsis. When the
mouse score reached 21 points, the mice were judged dead.
The mice were euthanized immediately, and the brain tissue
was removed and stored in liquid nitrogen. Two trained stu-
dents rated the MSS of the mice.

2.4. Neurobehavioral Score. After MSS score was given to
confirm sepsis in mice, a neural score was then used to
determine whether the mice had SAE. We scored each group
of mice from 8 a.m. to 10 a.m. every day, including auricle
reflex, corneal reflex, and escape response. Mice with no
reflexes scored 0. One point was scored for the mice whose
reflexes were weaker than usual. Mice with normal reflexes
scored 2 points [31]. Two trained students rated the MSS
of the mice.

2.5. Hematoxylin and Eosin (HE) and Immunofluorescence.
We assessed mouse brain tissue previously stored in 4%
paraformaldehyde using hematoxylin-eosin (HE) staining.
After paraffin embedding, the brain was cut into 4μm sec-
tions and stained with HE. The histological changes of brain
tissue were observed under a microscope. Immunofluores-
cence: after dewaxing and hydration, cells are given perme-
ability, sealed endogenous peroxidase, antigen repair,
exposure to antigenic determiners, sealed nonspecific pro-
teins, incubation of primary and secondary antibodies, color
rendering after SP reaction, etc. The expression of IBA-1 in
the hippocampal CA1, CA3, and DG regions was detected
to observe the number of microglia. Microglia were labeled
with Cy3 red fluorescence.

2.6. Western Blot Analysis. Previously stored mouse brain
tissue was removed from liquid nitrogen. After labeling,
brain tissue lysates were prepared, and the protein concen-
tration was determined by the BCA method with reference
to the standard curve. The gel was prepared according to
the method of polyacrylamide gel, and then the protein
was transferred to nitrocellulose membrane by electrophore-
sis and electric transfer. The protein was sealed with skim
milk powder in saline containing Tween (TBST) buffer for
2 hours. The primary antibody solution was prepared
according to different antibody instructions. The nitrocellu-
lose membrane was soaked in TBST and incubated in a 4°

shaker for 12-16 hours. The nitrocellulose membrane was
again incubated with the secondary antibody at room tem-
perature for 2 hours and exposed. Specific bands were
detected by chemiluminescence, and the ECL signal was dig-
itally processed by Bandscan 5.0 software.
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Figure 1: (a) Mouse model diagram. (b) MSS score and neurobehavioral score of dentate gyrus of adult mouse brain tissue. (c) MSS score
and neurobehavioral score of dentate gyrus of aged mice brain tissue. (d) Survival curves of adult and aged mice. The mice were
intraperitoneally injected with LPS, then, given metformin 1 hour later. The vital signs of the mice were observed for the following 7
days, and MSS score and neurobehavioral score were given every day. When THE MSS score reached 21, the death was determined, and
the brain tissue was dissected for use. In the legend of the survival curve, the mortality rate of the aged mice after LPS administration
was significantly higher than that of the adult group, while the effect of metformin treatment in the aged group was significantly lower
than that in the adult group. LPS: lipopolysaccharide.

Table 2: Mortality of aged groups and adult groups among groups.

Groups Mortality (number of death/total) p values

LPS (adult) 70% (7/10) 0.0062a

LPS (aged) 90% (9/10)

LPS +M (adult) 50% (5/10) 0.3613b

LPS +M (aged) 70% (7/10)

Note. LPS: lipopolysaccharide; LPS +M: lipopolysaccharide +metformin.
aComparison with LPS (aged). bComparison with LPS +M (aged). The
mortality at 7 days in the LPS (aged) group was significantly higher than
that in the LPS (adult) (p < 0:001). The mortality at 7 days in the LPS +M
(aged) group was not significantly higher than that in the LPS +M (adult)
(p = 0:3613).
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2.7. qPCR Analysis. Previously stored brain tissue is removed
from liquid nitrogen. Trizol reagent was added after grind-
ing, and the purified total RNA was obtained by two-phase
separation, RNA precipitation, RNA cleaning, and precipita-
tion of dissolved RNA after RNA drying in strict accordance
with Trizol RNA extraction kit process. The concentration
and purity of RNA were measured by spectrophotometer
after absorption value. CDNA was prepared according to
the instructions of the Uelris RT Mix with DNsae (all-in-
one) reverse transcription kit. Hieff®qPCR SYBR Green
Master Mix (Low Rox Plus) kit instructions are for amplifi-
cation. PCR results were analyzed using the −ΔΔ 2Ct

method. Gene expression data are shown relative to the con-
trol, which was set at 100%. Gene expression levels were nor-
malized to those of GAPDH. The primers used are shown in
Table 1.

2.8. Statistical Analysis. We used the mean ± SEM to express
the data and used the one way analysis of variance and

Tukey’s post hoc methods to estimate the differences among
the three groups, and p < 0:05 was considered significant.
The SPSS 21.0 software was used to analyse all results from
this study.

3. Result

3.1. Metformin Improves the Prognosis of SAE Mice. When
the MSS score of experimental mice reached 21 points, the
mice were actively euthanized, and their tissues were dis-
sected and stored in liquid nitrogen. As shown in Figure 1
(b), the MSS scores of the adult LPS group on days 2 and
3 were significantly higher than those of the sham group
(p < 0:05). Compared with the LPS group, the LPS +M
group showed decreased MSS scores at 2–3 days after sepsis
induction. As shown in Figure 1(b), the MSS score in the
LPS group was significantly higher than that in the sham
group on days 2 and 3 after sepsis induction (p < 0:05), while
the LPS +M group had decreased MSS scores, indicating
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Figure 2: (a) Fluorescent staining of adult mouse microglia. (b) Fluorescent staining of aged mice microglia. As shown in figure (a) and (b),
microglia were marked with Cy3 red. Activation of microglia in the metformin-treated group was significantly reduced compared with that
in the LPS group. As shown by the arrow: activated microglia. In figure (a) and (b), they are shown from top to bottom: the above is the
synthesis of the middle and lower figures, and the middle figure: the nuclei are dyed blue by DAPI method; below: microglia IBA-1,
shown in red. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001. n = 10 in each group.
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that metformin can improve the prognosis of SAE mice.
Neurobehavioral scores were used to further observe effects
of LPS-induced sepsis in the brain. Scores of the adult and
aged LPS groups on days 2 and 3 were significantly lower
than those of the sham group. On days 4 and 5 after sepsis

induction, the neurobehavioral scores of LPS +M group
were increased compared with the LPS group (Figures 1(b)
and 1(c)), indicating that metformin improved the neurobe-
havioral performance of mice with LPS-induced sepsis. The
7-day survival rate of the LPS sepsis-induced mouse model is
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Figure 3: (a, b) Effect of metformin on the level of inflammatory factor protein in brain tissue of SAE-induced mice. In figures (a) and (b),
the expression level of Iba-1 in LPS +M group was lower than that in LPS group, indicating that metformin could inhibit the activation of
microglia. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗ p < 0:001. n = 10 in each group; Iba-1: ionized calcium-binding adapter molecule 1; LPS:
lipopolysaccharide; LPS +M: lipopolysaccharide and metformin.
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shown in Figure 1(d). In the adult group, the 7-day mortality
rates of the sham, LPS, and LPS +M groups were 0%, 70%,
and 50%, respectively. The 7-day mortality rates in the old
group were 0%, 90%, and 70%, respectively. The mortality
rate in the LPS group was significantly higher than that in
the sham group (p < 0:001) and LPS +M (p = 0:3613). In
addition, compared with the adult LPS group, increased
mortality (p < 0:001) was found in the aged LPS group, while

there were no statistically significant difference between the
aged and the adult LPS +M groups (Table 2).

3.2. Metformin Reduces the Infiltration of Microglia during
SAE. In the LPS-induced sepsis model treated with metfor-
min, the immunofluorescence staining of microglia showed
that the numbers of microglia in the adult and aged groups
were significantly higher than those in the sham groups

Sham LPS Met

(a)

Sham LPS Met

(b)

Figure 4: (a) HE staining of adult group, (b) HE staining of aged group. HE staining showed that inflammation and cell arrangement
disorders were observed in both adult and aged mice after LPS injection, especially in dentate gyrus. In the metformin-treated group, the
aged mice had more inflammatory cells than the adult mice.
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(p < 0:05). Microglia were significantly reduced in the LPS
+M group compared with the LPS group (Figures 2 and
3) (p < 0:05). Western blots showed that the microglial
marker Iba-1 was significantly increased in the LPS group
(p all < 0.05), indicating that microglia were significantly
activated in LPS-induced sepsis mice. However, in the LPS
+M group, microglial Iba-1 protein expression was
decreased compared with that in the LPS group (p all
<0.05). These results suggest that metformin can inhibit
microglial activation in mice with LPS-induced sepsis
(Figures 2 and 3).

3.3. Metformin Improves Inflammatory Factor Infiltration
into Brain Tissue of SAE Mice. In the LPS-induced SAE
model of metformin, inflammatory cell infiltration, disorder
of cell arrangement, and cell edema were observed in HE
staining of brain tissue in the adult and aged LPS groups,
while inflammatory cell infiltration and cell edema were
decreased in the adult and aged LPS +M groups compared
with their respective LPS groups (Figures 4(a) and 4(b)).
Western blot and qPCR showed that TNF-α and IL-1β levels
in the LPS group were significantly higher than those in the

sham group, while these cytokines were higher than those in
the LPS +M group (p all < 0.05). Thus, metformin signifi-
cantly reduced inflammatory cytokines after SAE (Figures 5,
6(a), and 6(b)) (p all < 0.05).

3.4. The Adult SAE Group Was More Responsive to
Metformin than the Aged Group. After metformin treatment,
expression levels of inflammatory factors in the adult SAE
group were significantly lower than those in the aged group
(Figure 6(c)) (p all <0.05). After metformin treatment, p-
AMPK and NF-κB levels in the adult SAE group were signif-
icantly lower than those in the aged group (Figure 7(c)) (p all
< 0.05). In conclusion, metformin reduced the inflammatory
response in adult mice better than in aged mice.

3.5. Metformin Acts on LPS-Induced SAE through AMPK-
NF-κB Pathway. Metformin prevents inflammation by inhi-
biting the transcription factor NF-κB through a pathway
dependent on AMPK. We found that NF-κB, TNF-α, and
IL-1β protein expression levels were decreased in both adult
and aged LPS +M groups compared with the LPS group (p all
< 0.05), suggesting that metformin alleviates LPS-induced
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Figure 5: Effect of metformin on the expression of inflammatory factor gene in brain tissue of SAE-induced mice. The gene expression levels
of inflammatory factors, TNF-α, IL-1β, and Iba-1 were detected by qPCR assay among groups (a, b). ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p  < 0:001.
n = 10 in each group. qPCR: quantitative polymerase chain reaction; TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; LPS:
lipopolysaccharide; LPS +M: lipopolysaccharide and metformin.
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inflammatory response through the AMPK-NF-κB pathway,
thereby improving the prognosis of SAE (Figures 6(a), 6(b),
7(a), and 7(b)).

4. Discussion

The results of this study established that metformin reduced
microglia and various inflammatory factors in mice with
LPS-induced SAE and inhibited this inflammatory response
by inhibiting nuclear factor NF-κB in an AMPK-dependent

pathway, thereby improving prognosis. To the best of our
knowledge, we used aged mice as the LPS-induced SAE tar-
get for the first time, which was consistent with the preva-
lence of SAE in aged patients in clinical practice, and can
better reflect the pathophysiological status of aged patients.

SAE has an unsatisfactory therapeutic outcome over the
course of the disease, and many patients have a poor prog-
nosis and reduced quality of life after treatment. SAE is char-
acterized by an immune response to bacterial endotoxin in
the absence of an obvious central infection [32]. People will
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Figure 6: (a, b) Effects of metformin on TNF-α and IL-1β protein levels in LPS-induced SAE mice brain tissue. (c) Comparison of LPS-
induced SAE mice treated with metformin between the adult group and the aged group LPS +M group. ∗p  < 0:05, ∗∗p < 0:01, ∗∗∗p <
0:001. n = 10 in each group. TNF-α: tumor necrosis factor-α; IL-1β: interleukin-1β; LPS: lipopolysaccharide; LPS +M: lipopolysaccharide
and metformin.
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inevitably be infected with viruses, bacteria, and fungi in
their whole life. Due to the body’s own immunity, not every
time will lead to sepsis. When the body appears aging, major
trauma, and other conditions, the overstrong immune
response leads to the body’s own organs becoming the target
of inflammatory factors, affecting the central nervous sys-
tem, we call it sepsis-associated encephalopathy [33]. SAE
patients often have no obvious infection of the central ner-
vous system, but neuroinflammation and oxidative stress
responses are present in brain tissue. Patients can have obvi-
ous cognitive dysfunction, memory decline, fuzzy conscious-
ness and coma, and other neurological symptoms [34]. Early
in SAE, microglia in the nervous system are rapidly activated
and secrete large amounts of cytokines, leading to inflamma-

tion of the blood-brain barrier and central nervous system
[35]. The function of normal microglia in the central ner-
vous system is to phagocytose and remove damaged nerve
cells and tissue fragments, but the continuous inflammatory
reaction abnormally enhances the function of microglia,
leading to the active attack of normal neurons and nerve tis-
sue in the central nervous system [36]. Therefore, we chose
the LPS-induced experimental SAE model and carried out
relevant experiments using this model. The LPS-induced
SAE model induces the release of multiple inflammatory fac-
tors (TNF-α and IL-1β) from microglia, leading to neuronal
damage and a severe prognosis [37]. Microglia are “special-
ized” immune cells of myeloid origin with the function of
detecting and removing pathogens, damaged cells, and cell
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Figure 7: (a) and (b) show the effects of metformin on AMPK, p-AMPK, and NF-κB protein levels in LPS-induced SAE mice brain tissues
in adult and aged groups, respectively. (c) Comparison of LPS-induced SAE mice treated with metformin between the adult group and the
aged group LPS +M group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. n = 10 in each group. AMPL: adenosine 5′-monophosphate- (AMP-)
activated protein kinase; p-AMPK: phosphorylation adenosine 5′-monophosphate- (AMP-) activated protein kinase; NF-κB: nuclear
factor kappa-B.
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debris. Activated microglia-mediated neuroinflammation is
associated with neuronal death and exacerbation of neuro-
degenerative disease [38]. Previous studies have demon-
strated a correlation between microglia activation and SAE
[39]. Overactivation of microglia may account for the poor
prognosis of SAE disease [40]. Abnormally activated micro-
glias mediate neuroinflammatory response by producing a
variety of proinflammatory factors, which is an important
pathological process in CNS diseases [41]. Reducing the acti-
vation of microglia, thereby reducing the production of
inflammatory factors and subsequent neuronal damage,
offers potential treatment options for neuroinflammatory
diseases [42, 43]. IL-1β has been implicated in a variety of
CNS diseases, most of which are associated with inflamma-
tory processes [44]. Microglia play an increasingly important
role in the treatment of SAE and may be a new therapeutic
target [45, 46]. In our study, immunofluorescence showed
that a large number of microglia were activated in the LPS
group, while fewer microglia were activated in the LPS +M
group (Figures 4(a) and 4(b)). These results showed that
metformin reduced the number of microglia in mice with
LPS-induced SAE and improved their prognosis.

To further investigate the possible effects of metformin
on microglia during LPS-induced SAE, we examined expres-
sion levels of inflammatory cytokines at the protein and gene
levels. Inhibition of NF-κB signal transduction can reduce
LPS-induced microglial inflammatory mediators, thereby
reducing intracranial inflammation and improving progno-
sis [47, 48]. According to western blotting and qPCR results,
metformin can inhibit LPS-induced TNF-α, IL-1β, and NF-
κB production. Excessive microglial production, which in
turn produces excess pro-inflammatory factors, leads to neu-
ronal damage [49, 50]. Amoani et al. found that high dose of
metformin in peripheral blood circulation can inhibit TNF-
α production and indirectly reduce inflammatory response
[51]. Some studies have found that metformin can promote
the conversion of microglia from the M1 (proinflammatory)
type to the M2 (anti-inflammatory) type, which has been
shown to protect nerve cells [52]. In the aged animals,
Senescence-associated secretory proteins (SASP) can release
many proinflammatory factors, such as IL-6 and IL-1β.
These cytokines can cause insulin resistance, chronic inflam-
mation, and an increased risk of cancer [53, 54]. Metformin
indirectly alleviates inflammation by inhibiting NF-κB pro-
duction and reducing SASP secretion [55, 56]. The potential
mechanisms whereby metformin reduces cardiovascular
event incidence and all-cause mortality have been actively
investigated. Metformin not only alleviates hyperglycemia
and insulin resistance [57, 58] but also other cardiovascular
risk factors, such as overweight or obesity, atherosclerosis,
blood pressure, procoagulant state and thrombosis, and
carotid intima thickening [59, 60]. In addition, metformin
treatment reduced the numbers of pathogenic Th17 cells
and increased the numbers of regulatory T cells, thereby lim-
iting the inflammatory response [61, 62]. Some studies have
shown that patients with sepsis treated with chronic metfor-
min have a lower mortality rate than patients not treated
with metformin [63]. Other studies have shown no differ-
ences in serum lactate clearance between patients with sepsis

treated with chronic metformin and those not treated with
metformin [64]. Although antibacterial effects of metformin
are not fully understood, the underlying metabolic mecha-
nisms of metformin are widely attributed to the activation
of AMPK [65]. Toejing et al. found that metformin amelio-
rates endotoxemia and inflammation through the AMPK-
NF-κB pathway [31, 66]. Mammalian AMPK is generally
thought of as a sensor for adenine nucleotides, activated in
a state of low cellular energy. It restores energy balance by
turning on catabolic pathways that produce ATP, while
shutting down anabolic pathways and other ATP-
consuming processes [67, 68]. During SAE, impaired intra-
cranial hemodynamics result in reduced oxygen and energy
supply to microglia and neurons, ultimately leading to
AMPK activation. Jian et al. found that AMPK is also
involved in inflammatory responses by regulating NF-κB
signaling [69]. Wang et al. reported that activation of AMPK
downregulates NF-κB pathway function [70, 71], with phos-
phorylated AMPK inhibiting NF-κB activation and decreas-
ing IL-1β and TNF-α production [72, 73]. These results
suggest that AMPK/NF-κB may play an important role in
reducing the inflammatory response and improving progno-
sis during SAE [74]. In the peripheral system, metformin
alleviates LPS-induced macrophage-induced acute lung
injury through the AMPK pathway [75]. Microglia are con-
sidered to function as macrophages in the central nervous
system, and our study demonstrates that metformin reduces
SAE-induced inflammation by reducing microglia activa-
tion. In our experiment, the MSS and neurobehavioral
scores were used to determine the occurrence and severity
of sepsis. Western blotting and qPCR showed that the
expression of IL-1β and TNF-α decreased in the LPS +M
group. Metformin may improve the prognosis of mice by
inhibiting the release of related inflammatory factors
through the AMPK-NF-κB pathway. Our results also
showed that metformin treatment in the adult LPS group
was more effective than in the aged LPS group.

The shortcoming of this paper is that we did not conduct
further cell experiments to verify the inflammatory path-
ways. And we tried to mimic the human condition of geriat-
ric sepsis in aged mice, but we gave metformin only once. If
we inject metformin intraperitoneally for 14 consecutive
days in aged mice, and then inject LPS intraperitoneally to
create sepsis model, it may be more consistent with the
human disease model and may better reflect the role of met-
formin in the treatment of sepsis.

5. Conclusion

Overall, our results suggest that metformin reduces microg-
lia and various inflammatory factors in mice with LPS-
induced SAE and may inhibit the inflammatory response
by inhibiting NF-κB in an AMPK-dependent pathway,
thereby improving prognosis. The expression of inflamma-
tory factors in adult mice was lower than that in aged mice,
suggesting that metformin treatment in adult mice was more
effective compared with older mice. It can be concluded that
the protective potential of metformin is worth considering to
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reduce the inflammatory responses during SAE to improve
prognosis.
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