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Background. Copper (Cu) metabolism is strongly associated with liver disease. Cuproptosis is a novel format of cell death, and
cuproptosis-related genes (CRGs) were identified. However, the role of CRGs in Hepatocellular Carcinoma (HCC) remains
unknown. Method. The mRNA transcriptome profiling data, somatic mutation data, and copy number gene level data of The
Cancer Genome Atlas-Liver Hepatocellular Carcinoma project (TCGA-LIHC) were downloaded for subsequent analysis.
Molecular characterization analysis of CRGs, including differential gene expression analysis, mutation analysis, copy number
variation (CNV) analysis, Kaplan-Meier analysis, and immune regulator prioritization analysis, was implemented. The
nonnegative matrix factorization (NMF) approach was used to identify the CRG-related molecular subtypes. Principal
component analysis was adopted to verify the robustness and reliability of the molecular subtype. The least absolute shrinkage
and selection operator regression analysis was performed to construct the prognostic signature based on differentially
expressed genes between molecular subtypes. The survival characteristics of the molecular subtype and the signature were
analyzed. The Gene Set Variation Analysis was performed for functional annotation. The immune landscape analysis,
including immune checkpoint gene analysis, single sample gene set enrichment analysis, tumor immune dysfunction and
exclusion (TIDE) analysis, immune infiltration cell, and tumor mutation burden analysis (TMB), was conducted. The ability of
the signature to predict conventional anti-HCC agent responses was evaluated. The signature was validated in the LIRI-JP
cohort and the IMvigor210 cohort. Result. A total of 13 CRGs are differentially expressed between the tumor and normal
samples, while the mutation of CRGs in HCC is infrequent. The expression of CRGs is associated with the CNV level.
Fourteen CRGs are associated with the prognosis of HCC. Two clusters were identified and HCC patients were divided into 2
groups with a cutoff risk score value of 1.570. HCC patients in the C1 cluster and high-risk have a worse prognosis. The area
under the receiver operating characteristic curve for predicting 1-, 2-, and 3-year overall survival is 0.775, 0.768, and 0.757 in
the TCGA-LIHC cohort, and 0.811, 0.741, and 0.775 in the LIRI-JP cohort. Multivariate Cox regression analysis indicates that
the signature is an independent prognostic factor. Pathways involved in metabolism and gene stability and immune infiltration
cells are significantly enriched. Immune checkpoint genes are highly expressed in the C1 cluster. TMB is positively correlated
with the risk score. HCC patients in the high-risk group are more likely to benefit from conventional anti-HCC agents and
immune checkpoint inhibitor therapies. Conclusion. The molecular characterization of CRGs in HCC is presented in this
study, and a successful prognostic signature for HCC based on the cuproptosis-related molecular subtype was constructed.
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1. Introduction

Hepatocellular Carcinoma (HCC), which accounts for 75-
85% of primary liver cancer cases, remains a major public
health issue worldwide [1]. It is reported in the Global Can-
cer Statistics 2020 that the newly diagnosed cases and death
cases of primary liver cancer are sorted by sixth and third,
respectively. The 5-year survival rates in China and the
United States are only 12.1% [2] and 18% [3]. HCC patients
at an early stage can be cured by surgical interventions,
whereas limited drugs are effective in advanced patients.
Few molecular targeted drugs have been successfully applied
to HCC except for several multikinase inhibitors and antian-
giogenesis drugs, such as sorafenib and bevacizumab. What
is more, sketchy molecular testing for directing HCC treat-
ment has been conducted [4]. Immune checkpoint inhibitor
(ICI) therapies have shown encouraging efficacy in advanced
HCC patients. Atezolizumab combined with bevacizumab
prolonged the median progression-free survival to 6.8
months [5]. Not only is ICI therapy facing resistant factors
originating from the expression level of immune checkpoint
point genes, tumor immune microenvironment, and tumor
mutation burden (TMB) but also the specific molecular
mechanisms remain unclear [6].

HCC is characterized by high heterogeneity, which influ-
ences tumor progression, aggression, and response to antitu-
mor agents [7]. Gene changes such as somatic mutations,
epigenetic variations, and large-scale genomic alterations
contribute to the occurrence of heterogeneity and result in
different molecular subtypes [8]. Differential expression of
a heterogeneous genome brings out the discrepant biological
behavior of tumor cells and their tumor microenvironment.
Thus, RNA sequencing is a potent approach used to identify
molecular subtypes. A number of studies have proved that
gene expression profile-based signatures could predict the
prognosis [9] and recurrence of HCC [10] as well as classify
the tumor microenvironment [11].

Copper (Cu) metabolism, which has been identified to
be associated with liver diseases, such as Wilson disease
[12], liver cirrhosis [13], and HCC [14], is recently identified
to be involved in cell death. Cuproptosis is a brand-new
form of regulated cell death brought forward in 2022 [15].
It is distinct from all other known types of cell death, includ-
ing apoptosis, ferroptosis, pyroptosis, and necroptosis. A
series of cuproptosis-related genes (CRGs) were recognized
through a genome-wide CRISPR/Cas9 screen by researcher
[15]. Previous studies have demonstrated the prognostic
value and molecular subtype of ferroptosis-related genes
[16] and pyroptosis-related genes [17] in HCC. However, lit-
tle is known about cuproptosis in this regard.

In this study, we recognized the cuproptosis-related
molecular subtype of HCC and developed a cuproptosis-
related prognostic signature.

2. Materials and Methods

2.1. Data Preparation. The mRNA transcriptome profiling
of The Cancer Genome Atlas-Liver Hepatocellular Carci-
noma (TCGA-LIHC) project with transcripts per million

format was downloaded and further transformed by log2
(x + 1). The mRNA transcriptome profiling of the LIRI-JP
project with fragments per kilobase of exon per million frag-
ments format was obtained from the International Cancer
Genome Consortium website (ICGC, https://dcc.icgc.org/)
[18], and subsequently transformed into transcripts per mil-
lion format and normalized by log2 (x + 1). Somatic muta-
tion data with VarScan2 variant aggregation and masking
format and copy number gene level data of the TCGA-
LIHC project were obtained from the UCSC Xena website
(https://xena.ucsc.edu/) [19]. The clinical data of the
TCGA-LIHC project and the LIRI-JP project were down-
loaded from the TCGA website (https://portal.gdc.cancer
.gov/) and the ICGC website, respectively. The mRNA tran-
scriptome profiling and clinical data of the IMvigor210
study [20] were downloaded with the R IMvigor210Core-
Biologies package. The clinical samples lacking survival state
or overall survival (OS) were excluded. A gene list of CRGs
was extracted from the research conducted by Tsvetkov
et al., including 10 genes identified by whole genome
CRISPR/Cas9 screen analysis, 3 Cu transporter-related
genes, and 3 tricarboxylic acid cycle-related genes [15].

2.2. Molecular Characterization of CRGs in HCC

2.2.1. Differential Expression Analysis of CRGs. To identify
the expression differences of CRGs between the normal
and tumor samples, the R limma and ggpubr package were
used to generate the boxplots for the comparison.

2.2.2. Mutation Analysis of CRGs. The mutation frequency
and mutation type of CRGs were visualized by the R maf-
tools package.

2.2.3. Copy Number Variation (CNV) Analysis of CRGs. The
occurrence of CNV was presented in a barplot, and the dis-
tribution of CRGs in chromosomes was depicted by a circle
plot with the R RCircos package. The CNV data was divided
into three levels, including single deletion, normal, and sin-
gle gain, and the correlations between these three categorical
variables (CNV data and mRNA expression data) were
tested.

2.2.4. Kaplan-Meier Analysis and Correlation Analysis of
CRGs. To specify the prognostic value of single CRG in
HCC, R limma, survival, and survminer packages were used
for drawing the Kaplan-Meier (K-M) curve and statistical
test. The correlations between expression levels of CRGs
were calculated and visualized by the R igraph package.

2.3. Construction and Validation of Cuproptosis-Related
Molecular Subgroup and Signature

2.3.1. Immune Regulator Prioritization Analysis of CRG Set.
The CRG set prioritization module includes T cell dysfunc-
tion, T cell exclusion score, Cox proportional-hazards
(Cox-PH) regression score in the immune checkpoint inhib-
itor (ICB) cohort, and log-fold change (logFC) in CRISPR
screens was established with the usage of the Tumor
Immune Dysfunction and Exclusion (TIDE) website
(http://tide.dfci.harvard.edu/). The T dysfunction score and
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T cell exclusion score indicate the interactions between gene
expression level and cytotoxic T cells as well as gene expres-
sion level and immunosuppressive cells [21]. The Cox-PH
score was associated with ICB therapy response, and the
logFC score was employed to sift genes that can interact with
lymphocyte-mediated tumor killing [21].

2.3.2. Construction of Cuproptosis-Related Molecular
Subtype. The nonnegative matrix factorization (NMF)
approach, an unsupervised clustering analysis method, was
performed to identify the presence of underlying molecular
subgroups associated with cuproptosis. The R NMF package
was employed in this process, and the detailed method used
in NMF-clustering analysis was “brunet.” The consensus
matrix heat map and cophenetic correlation coefficient were
used to determine the cluster number. Principal component
analysis (PCA) was adopted to verify the robustness and reli-
ability of the molecular subtypes.

2.3.3. Construction of Cuproptosis-Related Signature. Differ-
ential gene expression analysis was initially conducted for
the molecular subgroups obtained from the NMF-
clustering analysis. Differentially expressed genes (DEGs)
among subtypes were screened with a threshold value ∣
logFC ∣ = 0:585 and adjusted p value =0.05. Univariate Cox
analysis was performed on DEGs and DEGs with a p value
<0.05 were retained for subsequent analysis. The least abso-
lute shrinkage and selection operator (LASSO) regression
analysis with a repeated time of 1000 was used to improve
the model stability. Multivariate Cox analysis was performed
based on DEGs after LASSO regression analysis. Finally, a
risk score for each patient was calculated using the following
formula:

RiskScore = 〠
n

i=1
βiSi: ð1Þ

The “βi” and the “Si” in the formula represent the coef-
ficient and expression level of genes, respectively. Patients
were divided into high- and low-risk groups according to a
cutoff point generated by the Akaike information criterion
(AIC). R survival, survminer, and glmnet packages were
used in this section.

2.3.4. Correlations between Molecular Subtype and Signature.
The differences in risk scores between the molecular sub-
types were analyzed with a statistical test using the R ggpubr
package. A Sankey diagram was plotted to show the distribu-
tion of patients by molecular subtype, risk score, and sur-
vival status.

2.3.5. Survival and Clinical Characteristics of Molecular
Subtype and Signature. A K-M analysis was conducted to
compare the survival curve between the molecular subtype
and the risk score group. The differences in the clinical phe-
notype, including age, gender, histologic grade, and TNM
stage, were measured as well. Receiver Operating Character-
istic (ROC) curves were used to test the diagnostic perfor-
mance of the signature. The ROC curves for 1-, 2-, and 3-

year were plotted and further compared with the clinical
ROC curve. Univariate and multivariate Cox regression
analyses were adopted to determine whether the signature
could be regarded as an independent prognostic factor. R
packages including survival, pheatmap, pbapply, survival-
ROC, survminer, glmnet, and ggupbr were used for these
operations.

2.3.6. Differential Gene Expression Analysis of CRGs. In order
to recognize the different expression of CRGs between the
molecular subtypes and the risk groups, we used the R
limma and the ggpubr package to generate the boxplots for
the comparison.

2.3.7. Gene Set Variation Analysis (GSVA) and Functional
Enrichment. GSVA analysis was conducted to identify the
biological pathway differences between the molecular sub-
types and the risk groups. The KEGG subset file with gene
symbol format was downloaded from the MSigDB database
(https://www.gsea-msigdb.org/gsea/msigdb/). The threshold
values used to screen significantly differentially enriched
pathways were set as follows: adjusted p value =0.05. R
limma, GSEABase, GSVA, and pheatmap package were
utilized.

2.3.8. Immune Landscape of Molecular Subtype and
Signature. The HCC-related immune checkpoint genes were
extracted from Harkus et al.’s study, [6] and the expression
levels of them were compared in accordance with diverse
molecular subtypes and risk groups. The single sample gene
set enrichment analysis (ssGSEA) algorithm was used to
evaluate the immune cells and immune functions in tumor
immune microenvironment. The infiltration abundance
level of 23 types of immune cells and enrichment level of
13 types of immune functions was calculated and compared
between the groups. The TIDE score, including dysfunction,
exclusion, integrated TIDE score, and microsatellite instabil-
ity (MSI) score of each HCC sample, were computed on the
TIDE website. To evaluate the ratio of immune-stromal
components in the tumor microenvironment, the R estimate
package was utilized to calculate the StromalScore, Immune-
Score, and ESTIMATEScore. The immune scores were further
compared between the groups. Moreover, the correlation
between risk score and tumor-infiltrating immune cells, whose
infiltration level was estimated by 7 algorithms including
TIMER [22], quanTIseq [23], EPiC [24], CIBERSORT [25],
xCell [26], MCP-counter [27], and CIBERSORT-ABS [28],
was tested. The correlation between risk score and tumor
mutation burden (TMB) was also tested.

2.3.9. Anti-HCC Agent Response Prediction. Gene expression
and drug sensitivity data used for drug response prediction
were downloaded from the Genomics of Drug Sensitivity
in Cancer website (GDSC, https://www.cancerrxgene.org).
The R package pRRophetic was utilized to calculate the
half-maximal inhibitory concentration (IC50) of 4 conven-
tional anti-HCC agents, including sorafenib, cisplatin, pacli-
taxel, and gemcitabine, for each TCGA-LIHC project
sample. The difference in IC50 between high- and low-risk
groups was compared.
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2.3.10. Validation of the Constructed Signature. The LIRI-JP
cohort was used to validate the constructed signature. A K-
M analysis was conducted to compare the survival between
the low-risk and the high-risk patients in the LIRI-JP cohort.
A ROC diagram was plotted, and a corresponding area
under curve (AUC) value was calculated to evaluate the
accuracy of the signature. Univariate and multivariate Cox
regression analyses were adopted to determine whether the
signature could be regarded as an independent prognostic
factor in the LIRI-JP cohort. The ability of the signature to
predict ICIs’ response was evaluated in the IMvigor210
cohort. The distribution of risk scores and risk status
between complete response (CR)/partial response (PR) and
stable disease (SD)/progressive disease (PD) was compared.

2.3.11. Statistical Analysis. All statistical operators were con-
ducted with R 4.0.3 software. A log-rank test was used to
compare the differences between the survival curves gener-
ated by K-M analysis. The comparison and correlation anal-
ysis in continuous data were the Wilcox test and the
Spearman test. Differences in categorical data were com-
pared using χ2 or the Kruskal test. A p value below 0.05
was considered a statistically significant difference.

3. Results

A total of 424 mRNA transcriptome samples, which consist
of 374 cancer and 50 normal samples, were obtained from
the TCGA-LIHC project, as well as 371 clinical samples were
retained after filtration. There were 231 HCC samples
enrolled from the ICGC database and 381 ICI-treated tumor
samples enrolled from the IMvigor210 cohort for validation.
Figure 1 presents the overall design of the study.

3.1. Identification of Differentially Expressed, Prognosis-
Related, and Immune-Related CRGs in HCC. A total of 16
CRGs were obtained from Tsvetkov et al.’s study, and their
molecular characteristics are presented in Figure 2. The
expression level of DBT and SLC31A1 in normal samples
is significantly higher than in tumor samples, while LIPT1,

LIAS, DLD, DLST, DLAT, PDHA1, PDHB, ATP7A,
MTF1, GLS, and CDKN2A are the opposite (Figure 2(a)).
The incidence of mutation in CRGs in HCC is 6.04% and
is dominated by missense mutations (Figure 2(b)).
CDKN2A is the most mutated gene among CGRs. ATP7A
and CDKN2A, which are located on chromosomes X and
6, respectively, harbor a high frequency of CNV-deletion
(Figures 2(c) and 2(d)). Supplementary Figure 1 indicates
that the occurrence of CNV in DLAT, CDKN2A, PDHB,
DLST, ATP7B, GCSH, MTF1, LIAS, FDX1, DBT, DLD,
and GLS is significantly associated with gene expression
levels. The K-M analysis of single CRG demonstrates that
the overall survival of HCC patients in high expression
level of ATP7B, FDX1, and SLC31A1 are superior to those
in the low expression group (Figure 3(a)). High expression
levels of ATP7A, CDKN2A, DLAT, DLD, DLST, GCSH,
GLS, LIPT1, MTF1, PDHA1, and PDHB are the risk
factors for HCC patients (Figures 3(a) and 3(b)). TIDE
analysis of CRG set indicates that the low expression levels
of GCSH and PDHA1 is associated with the T cell
dysfunction in all datasets catalogued (Figure 3(c)), while
the high expression levels of GCSH and PDHA1 are
associated with the response of immune checkpoint
inhibitors in Miao et al. [29] and Rizvi et al. [30]. The
majority of CRGs are differentially expressed between
normal and tumor samples and are associated with the
prognosis of HCC, which suggests that CRGs are of
importance in the development and progression of HCC.

3.2. Construction and Validation of CRG-Related
Molecular Subtype

3.2.1. Differentially Expressed CRGs and Survival Differences
between the Molecular Subtypes. Two clusters were identified
after NMF-clustering analysis (Figure 4(a) and Supplemen-
tary Figure 2). The PCA analysis shows that HCC samples
are distinctly separated into two clusters (Figure 4(b)). The
K-M analysis between the C1 and the C2 suggests that the
overall survival of patients in C2 is better than in C1
(Figure 4(c)). CRGs including FDX1, LIAS, DBT, DLST,
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Figure 1: Overall design of the study.
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SLC31A1, and ATP7B are significantly higher expressed in
C2, while ATP7A, MTF1, GLS, and CDKN2A are the
opposite (Figure 4(d)). According to these findings, the
two molecular subtypes behave differently in cuproptosis.

3.2.2. Differentially Enriched GSVA Function between the
Molecular Subtypes. The GSVA analysis shows the activation

of KEGG pathways in C1/C2 HCC samples. Metabolism-
related pathways such as fatty acid metabolism and drug
metabolism, gene stability-related pathways such as DNA
replication and mismatch repair, cell cycle, and citrate cycle
tricarboxylic acid (TCA) cycle are significantly enriched
(Figure 5(a) and Supplementary Table 1). The disorder of
TCA cycle caused by excess copper directly result in the
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Figure 2: Molecular characterization of CRGs in HCC. (a) Differential expression of CRGs between normal and tumor samples. (b)
Waterfall map of CRG mutation. (c) CNA frequency of CRGs. (d) Circos plot of detected CNVs in CRGs. ∗∗∗represents p < 0:001.
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occurrence of cuproptosis, and the significantly enriched
TCA cycle pathway indeed proves the rationale of the
molecular subtype.

3.2.3. Comparison of Immune Checkpoint Genes, Immune
Cells, and Immune Score Levels between the Molecular
Subtypes. Immune checkpoint genes including PDCD1,
CD274, CTLA4, TIGIT, LAG3, and LGALS9 are signifi-
cantly expressed lower in C2 (Figure 5(b)). The results of
ssGSEA analysis show that the activated CD4+ T cell,
CD56dim natural killer cell, eosinophil, MDSC, type 2 T
helper cell, type 1 T helper cell, and type 17 T helper cell
are differentially infiltrated between the molecular subtypes
(Figure 5(c)). A total of 3 kinds of immune response, includ-
ing APC costimulation, HLA, and type II IFN response are
differentially enriched between the subtypes (Figure 5(c)).
The exclusion score is significantly lower in C2, while the dys-
function score and the integrated TIDE score do not present
differences between molecular subgroups (Figure 5(d)). More-
over, the StromalScore of C2 is higher than C1, while the
ImmuneScore is the opposite (Figure 5(e)). These results sug-
gest that the tumor microenvironment driven by cuproptosis
of the two molecular subtypes is diverse from each other.

3.3. Construction and Validation of CRG-Related Signature

3.3.1. A CRG-Related Signature with Independent Prognostic
Effect Was Constructed. A 6-gene signature was constructed
based on the 1479 DEGs between molecular subtypes with
univariate Cox regression analysis and LASSO regression
analysis (Figures 6(a)–6(d)). Multivariate Cox regression
analysis of the 6 genes shows that MIR1244-2, CBX2,
CLEC3B, and SLC16A11 are independent prognostic factors
(Figure 6(e)). The cutoff point was set as 1.570 according to

the AIC (Figure 6(f)). The AUC of 1-, 2-, and 3-year is 0.775,
0.768, and 0.757, respectively (Figure 6(g)), and the 1-year
ROC was further compared with age (AUC = 0:534), gender
(AUC = 0:513), histologic grade (AUC = 0:505), and TNM
stage (AUC = 0:664) (Figure 6(h)).

HCC samples were divided into high- and low-risk
groups in accordance with the AIC value. The overall sur-
vival of patients in low-risk group is superior to these in
high-risk (Figures 7(a)–7(c)). The univariate Cox regression
analysis indicates that the risk status (p < 0:001, HR = 1:478,
and 95%CI ½1:350 – 1:619�) and TNM stage (p < 0:001, HR
= 1:680, and 95%CI ½1:369 – 2:062�) are the risk factors for
HCC patients, and the multivariate Cox regression analysis
further proved that the risk score (p < 0:001, HR = 1:418,
and 95%CI ½1:279 – 1:572�) acts as an independent role
(Figures 7(d) and 7(e)). There is no difference between
age and gender in the distribution of risk scores, while
increased risk scores are associated with worse histologic
grade and more advanced TNM stage (Figures 7(f)–7(i)).
CRGs including FDX1, DBT, GCSH, DLST, SLC31A1,
and ATP7B are significantly highly expressed in the low-
risk group, while LIPT1, DLAT, PDHA1, ATP7A, MTF1,
GLS, and CDKN2A are the opposite (Figure 7(j)). Thus,
the CRG-related signature represents an eligible AUC
value as an independent prognostic factor and it is supe-
rior to other clinical phenotypes. The differential expres-
sion of CRGs between the two groups suggests that they
perform differently on cuproptosis.

3.3.2. Differentially Enriched GSVA Function between the
Risk Groups. The results of GSVA analysis present the differ-
entially enriched KEGG pathways in low-risk/high-risk
HCC samples. Immune-related pathways such as T cell
receptor signaling pathway and B cell receptor signaling
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Figure 3: Survival and immune characterization of CRGs in HCC. (a) The K-M plots of CRGs associated with prognosis. (b) Correlation
network of CRGs. (c) TIDE analysis of CRG set.
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pathway, gene stability-related pathways such as DNA repli-
cation and mismatch repair, cell cycle, and citrate cycle TCA
cycle are significantly enriched (Figure 7(k) and Supplemen-

tary Table 2). It is apparent from these data that the
signature inherits the molecular characteristics of the
molecular subtype.
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3.3.3. Comparison of Immune Checkpoint Genes, Immune
Cells, and Immune Score Levels between the Two Risk
Groups. The results of ssGSEA analysis show that the acti-
vated CD4+ T cell, activated dendritic cell, eosinophil,
gamma-delta T cell, MDCS, regulatory T cell, type 1 T
helper cell, and type 2 T helper cell are differentially infil-
trated between the risk groups (Figure 8(a)). Immune func-
tions including APC costimulation, HLA, MHC class I, type
I IFN response, and type I IFN response are differentially
enriched between the risk groups (Figure 8(a)). Immune
checkpoint genes including PDCD1, CTLA4, TIGIT,
LAG3, PVR, and LGALS9 are significantly expressed lower
in the low-risk group (Figure 8(b)).

Correlations between risk scores and tumor-infiltrating
immune cells are presented in Figure 8(c) and Supplemen-
tary Table 3. The risk score is strongly and negatively
related to the infiltration level of endothelial cell,
hematopoietic stem cell, macrophage M2, while positively
correlated to T cell CD4+ Th2, neutrophil, macrophage,
myeloid dendritic cell, macrophage M1, monocyte, T cell
regulatory, and NK cell. The exclusion score is significantly
higher in the low-risk group, while the dysfunction score
and the integrated TIDE score are the opposite
(Figure 8(d)). The StromalScore of the high-risk group was
lower than the low-risk group, while ImmuneScore was the
opposite (Figure 8(e)). Moreover, the risk score is
positively related to the TMB score (Figures 8(f) and 8(g)).
The tumor microenvironment driven by cuproptosis of the
two risk groups differs from each other, which indicates
that the signature can be used to predict the immune
status of patients with HCC.

3.3.4. Predicting the IC50 of Anti-HCC Agents. Figures 9(a)–
9(d) present the comparison of IC50 for sorafenib, cisplatin,
paclitaxel, and gemcitabine between the low- and high-risk
groups. The results show that HCC patients in the low-risk
group have a higher IC50 in the four comparisons, which
indicates that the patients in the high-risk group have a ten-
dency to benefit more from the conventional agents. What
stands out in this section is that the signature is able to rec-
ognize HCC patients who could benefit from conventional
anti-HCC drugs.

3.3.5. Correlations between Molecular Subtype and Signature.
As shown in Figure 9(e), the risk score level in C1 is signif-
icantly higher than in C2. The distribution of patients by
molecular subtype, risk score, and survival status are repre-
sented in Figure 9(f).

3.3.6. The Signature Was Validated in the LIRI-JP and
IMvigor210 Cohort. HCC patients in the LIRI-JP cohort
were divided into low- and high-risk groups based on the
previously constructed signature. The prognosis of patients
in the low-risk group is superior to that of those in the
high-risk group (Figure 10(a)). The AUC values of the 1-,
2-, and 3-year ROC curves are 0.811, 0.741, and 0.775,
respectively (Figure 10(b)). Tumor patients who positively
respond to ICIs have relatively higher risk scores, and tumor
patients in the high-risk group are more likely to benefit
from ICIs (Figures 10(c) and 10(d)). In summary, for the
informants in this section, the signature is robust in predict-
ing the prognosis of HCC and has the potential to foresee
the response to immunotherapy.
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Figure 5: Function enrichment and immune landscape of the cuproptosis-related molecular subtype. (a) GSVA heat map of the molecular
subtype. (b) Differential expression of immune checkpoint genes between molecular types. (c) ssGSEA analysis of the molecular subtype. (d)
TIDE score of the molecular subtype. (e) Immune-stromal component evaluation of the molecular subtype. ∗ represents p < 0:05, ∗∗
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4. Discussion

Cuproptosis was a novel form of regulated cell death pro-
posed by Tsvetkov et al. [15]. It is revealed that the excess
intracellular Cu disturbs the mitochondrial TCA cycle,
leading to cell death and independent of other cell death
pathways [31]. Although the growth inhibition of the
elesclomol-Cu complex in HCC-related cell lines was not
examined, it has been demonstrated that there is a strong
association between Cu metabolism and HCC cell death.
Nurmamat et al. synthesized a novel copper (II) complex,
which could induce the cell cycle arrest and result in apopto-
sis in BEL-7404 cells [32]. Cu transporter-related genes such
as ATP7A, ATP7B, and SLC31A1 were singularly expressed
or copied in liver cancer samples and a relative higher level
of Cu was observed in HCC cell [33]. Clinical studies have
shown that the high levels of serum copper are associated
with poor prognosis in patients with HCC (p < 0:01, HR =
2:06, and 95%CI ½1:036 – 3:11�) [34]. What is more, Cu pro-
pelled the antitumor effects of troxerutin, a rutin derivative,
in Huh-7 cells with little toxicity in normal cells [35]. Thus,
an abundance of indirect evidence from laboratory to clinical
has supported that Cu metabolism is strongly associated with
HCC, and targeting CRGs is a potential therapeutic strategy
for HCC. A comprehensive bioinformatics analysis of CRGs
for molecular subtype identification and prognosis in HCC
patients is important.

The molecular characteristic of CRGs in HCC was ana-
lyzed in this study. Most of the CRGs were differentially
expressed between normal and tumor samples. FDX1 is the
key regulator of cuproptosis with the function of inducing
protein lipoylation when being deleted, which further results
in resistance to cuproptosis [36]. FDX1 is shown to be a
favorable factor for HCC patients in our study. Cu
transporter-related genes including ATP7A, SLC31A1, and
TCA-related genes including DBT, DLST, and DLAT are
differentially expressed between normal and tumor samples.
The expression of CRGs is associated with their CNV level,
which indicates that CNV may contribute the CRGs hetero-
geneity in HCC. The CNV of Cu transporter-related genes is
accompanied by a worse prognosis, which was anteriorly
discussed by Davis et al. [33]. GCSH and PDHA1, both
involved in protein lipoylation, are predicted to be associated
with immunotherapy, however, their concrete role in immu-
notherapy has not been investigated.

Both molecular subtypes and signatures have significant
differences in OS, with C2 superior to C1 and low-risk supe-
rior to high-risk. The molecular subtype and signature are
strongly associated with cuproptosis, as most of the CRGs
are differentially expressed between different molecular sub-
types and risk groups. Highly expressed FDX1 and SLC31A1
are steadily associated with better prognosis in HCC
patients, while ATP7A, MTF1, GLS, and CDKN2A are the
opposite. MTF1, GLS, and CDKN2A were proved to be
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negative hits in the process of genome-wide CRISPR-Cas9
screen [15]. MTF1 was recently identified to be a propellant
of tumor proliferation and metastasis in HCC cells and
Hep3B-derived xenografts and was regulated by miR-148a-
3p [37]. Knockdown or suppression of GLS impaired HCC
cell proliferation and the expression level of GLS was modu-
lated by nuclear factor-κB [38]. The expression of CDKN2A
is inversely correlated with cyclin D-CDK4/6-retinoblas-
toma protein, which was a potential biomarker for ribociclib
in HCC [39]. Genomic loss or deletion of CDKN2A was
identified to be a risk factor for ICI therapy [40].

Advanced HCC patients have a paucity of curative sys-
temic therapy options. Even though, clinical trials have
shown that HCC patients could benefit from ICIs. Atezoliz-
umab, a monoclonal antibody targeting PD-L1, combined
with bevacizumab, prolonged the median progression-free
survival to 6.8 months versus 4.3 months in the sorafenib
group [5]. Pembrolizumab is an anti-PD-1 monoclonal anti-
body and was approved for advanced HCC which prog-
ressed after sorafenib by FDA. The median OS observed in
pembrolizumab cohort, a cohort that included HCC patients
who progressed after sorafenib treatment, was 12.9 months
[41]. Nivolumab is used in combination with ipilimumab
with an ORR of 32% and a median OS of 22.8 months
[42]. Tremelimumab is a monoclonal antibody that binds
to CTLA-4. The median OS in a phase I/II randomized clin-
ical study of the combination of tremelimumab and durvalu-
mab for advanced HCC was 18.73 months [43]. The
expression level of immune checkpoint genes is considered
to be associated with the response to ICIs [44]. HCC patients
in the C1 cluster and high-risk group may be positive for
ICIs since most of the immune checkpoint genes are highly
expressed in this population. Cu was identified to be a PD-
L1 regulator in HCC, when combined with disulfiram, a
blocker of enzyme acetaldehyde dehydrogenase, it could
upregulate the expression of PD-L1 [45]. TMB is defined
as the total number of mutations detected per million bases
[46]. A higher TMB level means more expressed neoantigens
on the cell surface, hence these patients who harbor high-
TMB levels are sensitive to immunotherapy [47]. The risk
score is significantly positively correlated with the TMB level
in our signature.

Immune cell infiltration influences the prognosis of
HCC and ICI response. Regulatory T cells, which are signif-
icantly enriched in the high-risk group, are able to suppress
the expression of PD-L1, promote HCC progression, and
correlate with poor survival [48]. The infiltration of macro-
phages was strongly positively associated with the risk
scores. Macrophages are known as immunosuppressive
cells in the tumor immune microenvironment and are asso-
ciated with a worse prognosis [49]. It was reported that Cu
depletion is a negative factor for immune system, exempli-
fying that the activity of macrophages is decreased in Cu
depletion rat model [50]. Integrated TIDE score is devel-
oped to evaluate the response of ICIs, and a higher TIDE
score is associated with worse ICI response [51]. Patients
in the high-risk group have a lower level of integrated TIDE
score and may be sensitive to ICIs. ESTIMATE is a tool for
predicting tumor purity, as well as the presence of stromal

cell and immune cell [52]. There are no significant differ-
ences in tumor purity between the molecular subtypes
and risk groups.

The signature is tested as an independent factor for HCC
patients, and the AUC value of the signature in predicting
OS shows satisfactory predictive ability in the TCGA-LIHC
project and LIRI-JP cohort. Previous studies have con-
structed signatures associated with other cell death formats
based on the TCGA-LIHC project. Yang and Jiang con-
structed a necroptosis-related signature with necroptosis-
related genes, and the 1- and 3-year AUC values were
0.741 and 0.648, respectively [53]. Wu et al. constructed a
pyroptosis-related signature with pyroptosis-related genes,
and the 1- and 3-year AUC values were 0.785 and 0.71
[54], respectively, while 0.760 and 0.708 in a pyroptosis-
related long noncoding RNAs (lncRNAs) signature [55].
The 1- and 3-year ACU values in ferroptosis-related gene
signature are 0.8 and 0.668 [56]. Wang et al. established an
autophagy-related gene signature, and the 1- and 3-year
AUC value was 0.781 [57]. A ferroptosis and pyroptosis
molecular subtype-related signature has the AUC values of
0.805, 0.806, and 0.751 for 1-, 3-, and 5-year [16].

The signature has the potential to predict drug response
for HCC patients. HCC patients in the high-risk group are
more likely to benefit from conventional anti-HCC agents
and ICI therapies.

5. Conclusion

In summary, we presented the molecular characterization of
CRGs in HCC and constructed a prognostic signature for
HCC based on cuproptosis-related molecular subtype. Both
the molecular subtype and the signature are strongly associ-
ated with cuproptosis and HCC prognosis, as well as exhibit-
ing an abundant immune landscape.

Data Availability

The datasets used and/or analyzed in the current study are
available in the article or supplementary material.

Disclosure

The authors report no conflicts of interest in this work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

XJQ designed the study. XJQ, JYG, CSF, LHH, and CZ col-
lected the data. XJQ, GMC, and JYG analyzed the data and
drafted the manuscript. JL revised the final version of the
manuscript. All the authors have read and approved the final
version of the manuscript.

29Journal of Immunology Research



Acknowledgments

This study was supported by the Hunan Health and Health
Commission General Project (20200949), the Changsha City
Natural Science Foundation Project (kq2202453), the Excel-
lent Youth Project of Hunan Provincial Education Depart-
ment (21B0365), and the 2021 Hunan Clinical Medical
Technology Innovation Guidance Project (2021SK51410).

Supplementary Materials

Supplementary 1. Supplementary Figure 1. Correlations
between the CNV and gene expression of CRGs.

Supplementary 2. Supplementary Figure 2. Rank survey of
the NMF analysis.

Supplementary 3. Supplementary Table 1. Detailed GSVA
analysis of cuproptosis-related molecular subtype. Supple-
mentary Table 2. Detailed GSVA analysis of cuproptosis-
related signature. Supplementary Table 3. Detailed correla-
tion analysis between risk scores and tumor-infiltrating
immune cells.

References

[1] H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics
2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: a Cancer Jour-
nal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021.

[2] H. Zeng, W. Chen, R. Zheng et al., “Changing cancer survival
in China during 2003-15: a pooled analysis of 17 population-
based cancer registries,” The Lancet. Global Health, vol. 6,
no. 5, pp. e555–e567, 2018.

[3] A. Jemal, E. M. Ward, C. J. Johnson et al., “Annual report to
the nation on the status of cancer, 1975-2014, featuring sur-
vival,” Journal of the National Cancer Institute, vol. 109,
no. 9, 2017.

[4] A. Villanueva, “Hepatocellular carcinoma,” The New England
Journal of Medicine, vol. 380, no. 15, pp. 1450–1462, 2019.

[5] R. S. Finn, S. Qin, M. Ikeda et al., “Atezolizumab plus bevaciz-
umab in unresectable hepatocellular carcinoma,” The New
England Journal of Medicine, vol. 382, no. 20, pp. 1894–1905,
2020.

[6] U. Harkus, M. Wankell, P. Palamuthusingam, C. McFarlane,
and L. Hebbard, “Immune checkpoint inhibitors in HCC: cel-
lular, molecular and systemic data,” Seminars in Cancer Biol-
ogy, vol. 86, 2022.

[7] J. C. Nault and A. Villanueva, “Intratumor molecular and phe-
notypic diversity in hepatocellular carcinoma,” Clinical Cancer
Research, vol. 21, no. 8, pp. 1786–1788, 2015.

[8] S. M. Kalasekar, C. H. VanSant-Webb, and K. J. Evason,
“Intratumor heterogeneity in hepatocellular carcinoma: chal-
lenges and opportunities,” Cancers, vol. 13, no. 21, p. 5524,
2021.

[9] O. Miltiadous, D. Sia, Y. Hoshida et al., “Progenitor cell
markers predict outcome of patients with hepatocellular carci-
noma beyondMilan criteria undergoing liver transplantation,”
Journal of Hepatology, vol. 63, no. 6, pp. 1368–1377, 2015.

[10] A. Villanueva, Y. Hoshida, C. Battiston et al., “Combining clin-
ical, pathology, and gene expression data to predict recurrence

of hepatocellular carcinoma,” Gastroenterology, vol. 140, no. 5,
pp. 1501–1512.e2, 2011.

[11] D. Sia, Y. Jiao, I. Martinez-Quetglas et al., “Identification of an
immune-specific class of hepatocellular carcinoma, based on
molecular features,” Gastroenterology, vol. 153, no. 3,
pp. 812–826, 2017.

[12] A. Członkowska, T. Litwin, P. Dusek et al., “Wilson disease,”
Nature reviews. Disease primers, vol. 4, no. 1, p. 21, 2018.

[13] P. Ginès, A. Krag, J. G. Abraldes, E. Solà, N. Fabrellas, and P. S.
Kamath, “Liver cirrhosis,” The Lancet, vol. 398, no. 10308,
pp. 1359–1376, 2021.

[14] Y. Tamai, M. Iwasa, A. Eguchi et al., “Serum copper, zinc and
metallothionein serve as potential biomarkers for hepatocellu-
lar carcinoma,” PLoS One, vol. 15, no. 8, article e0237370,
2020.

[15] P. Tsvetkov, S. Coy, B. Petrova et al., “Copper induces cell
death by targeting lipoylated TCA cycle proteins,” Science,
vol. 375, no. 6586, pp. 1254–1261, 2022.

[16] J. Huo, J. Cai, G. Guan, H. Liu, and L. Wu, “A ferroptosis and
pyroptosis molecular subtype-related signature applicable for
prognosis and immunemicroenvironment estimation in hepa-
tocellular carcinoma,” Frontiers in cell and developmental biol-
ogy, vol. 9, article 761839, 2021.

[17] J. Chen, Q. Tao, Z. Lang et al., “Signature construction and
molecular subtype identification based on pyroptosis-related
genes for better prediction of prognosis in hepatocellular car-
cinoma,” Oxidative Medicine and Cellular Longevity,
vol. 2022, Article ID 4494713, 20 pages, 2022.

[18] J. Zhang, R. Bajari, D. Andric et al., “The international cancer
genome consortium data portal,” Nature Biotechnology,
vol. 37, no. 4, pp. 367–369, 2019.

[19] M. J. Goldman, B. Craft, M. Hastie et al., “Visualizing and
interpreting cancer genomics data via the Xena platform,”
Nature Biotechnology, vol. 38, no. 6, pp. 675–678, 2020.

[20] S. Mariathasan, S. J. Turley, D. Nickles et al., “TGFβ attenuates
tumour response to PD-L1 blockade by contributing to exclu-
sion of T cells,” Nature, vol. 554, no. 7693, pp. 544–548, 2018.

[21] J. Fu, K. Li, W. Zhang et al., “Large-scale public data reuse to
model immunotherapy response and resistance,” Genome
Medicine, vol. 12, no. 1, p. 21, 2020.

[22] T. Li, J. Fu, Z. Zeng et al., “TIMER2.0 for analysis of tumor-
infiltrating immune cells,” Nucleic Acids Research, vol. 48,
no. W1, pp. W509–w514, 2020.

[23] F. Finotello, C. Mayer, C. Plattner et al., “Molecular and phar-
macological modulators of the tumor immune contexture
revealed by deconvolution of RNA-seq data,” Genome Medi-
cine, vol. 11, no. 1, p. 34, 2019.

[24] J. Racle, K. de Jonge, P. Baumgaertner, D. E. Speiser, and
D. Gfeller, “Simultaneous enumeration of cancer and immune
cell types from bulk tumor gene expression data,” eLife, vol. 6,
2017.

[25] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, and
A. A. Alizadeh, “Profiling tumor infiltrating immune cells with
CIBERSORT,” Methods in Molecular Biology, vol. 1711,
pp. 243–259, 2018.

[26] D. Aran, Z. Hu, and A. J. Butte, “xCell: digitally portraying the
tissue cellular heterogeneity landscape,” Genome Biology,
vol. 18, no. 1, p. 220, 2017.

[27] R. Dienstmann, G. Villacampa, A. Sveen et al., “Relative con-
tribution of clinicopathological variables, genomic markers,
transcriptomic subtyping and microenvironment features for

30 Journal of Immunology Research

https://downloads.hindawi.com/journals/jir/2022/3393027.f1.pdf
https://downloads.hindawi.com/journals/jir/2022/3393027.f2.pdf
https://downloads.hindawi.com/journals/jir/2022/3393027.f3.docx


outcome prediction in stage II/III colorectal cancer,” Annals of
oncology, vol. 30, no. 10, pp. 1622–1629, 2019.

[28] M. Tamminga, T. J. N. Hiltermann, E. Schuuring, W. Timens,
R. S. Fehrmann, and H. J. Groen, “Immune microenvironment
composition in non-small cell lung cancer and its association
with survival,” Clinical & translational immunology, vol. 9,
no. 6, article e1142, 2020.

[29] D. Miao, C. A. Margolis, N. I. Vokes et al., “Genomic correlates
of response to immune checkpoint blockade in microsatellite-
stable solid tumors,” Nature Genetics, vol. 50, no. 9, pp. 1271–
1281, 2018.

[30] H. Rizvi, F. Sanchez-Vega, K. La et al., “Molecular determi-
nants of response to anti-programmed cell death (PD)-1 and
anti-programmed death-ligand 1 (PD-L1) blockade in patients
with non-small-cell lung cancer profiled with targeted next-
generation sequencing,” Journal of Clinical Oncology, vol. 36,
no. 7, pp. 633–641, 2018.

[31] D. Tang, X. Chen, and G. Kroemer, “Cuproptosis: a copper-
triggered modality of mitochondrial cell death,” Cell Research,
vol. 32, no. 5, pp. 417-418, 2022.

[32] M. Nurmamat, H. Yan, R. Wang et al., “Novel copper(II) com-
plex with a 4-acylpyrazolone derivative and coligand induce
apoptosis in liver cancer cells,” ACS Medicinal Chemistry Let-
ters, vol. 12, no. 3, pp. 467–476, 2021.

[33] C. I. Davis, X. Gu, R. M. Kiefer, M. Ralle, T. P. Gade, and D. C.
Brady, “Altered copper homeostasis underlies sensitivity of
hepatocellular carcinoma to copper chelation,” Metallomics :
integrated biometal science, vol. 12, no. 12, pp. 1995–2008,
2020.

[34] A. P. Fang, P. Y. Chen, X. Y. Wang et al., “Serum copper and
zinc levels at diagnosis and hepatocellular carcinoma survival
in the Guangdong liver cancer cohort,” International Journal
of Cancer, vol. 144, no. 11, pp. 2823–2832, 2019.

[35] A. Subastri, A. Suyavaran, E. Preedia Babu, S. Nithyananthan,
R. Barathidasan, and C. Thirunavukkarasu, “Troxerutin with
copper generates oxidative stress in cancer cells: its possible
chemotherapeutic mechanism against hepatocellular carci-
noma,” Journal of Cellular Physiology, vol. 233, no. 3,
pp. 1775–1790, 2018.

[36] Y. Wang, L. Zhang, and F. Zhou, “Cuproptosis: a new form of
programmed cell death,” Cellular & Molecular Immunology,
vol. 19, no. 8, pp. 867-868, 2022.

[37] Z. Lyu, M. Yang, T. Yang, M. Ma, and Z. Yang, “Metal-regula-
tory transcription factor-1 targeted by miR-148a-3p is impli-
cated in human hepatocellular carcinoma progression,”
Frontiers in Oncology, vol. 11, article 700649, 2021.

[38] M. Dong, L. Miao, F. Zhang et al., “Nuclear factor-&kappa;B
p65 regulates glutaminase 1 expression in human hepatocellu-
lar carcinoma,” Oncotargets and Therapy, vol. 11, pp. 3721–
3729, 2018.

[39] F. P. Reiter, G. Denk, A. Ziesch et al., “Predictors of ribociclib-
mediated antitumour effects in native and sorafenib-resistant
human hepatocellular carcinoma cells,” Cellular Oncology,
vol. 42, no. 5, pp. 705–715, 2019.

[40] S. I. Gutiontov, W. T. Turchan, L. F. Spurr et al., “CDKN2A
loss-of-function predicts immunotherapy resistance in non-
small cell lung cancer,” Scientific Reports, vol. 11, no. 1,
p. 20059, 2021.

[41] A. X. Zhu, R. S. Finn, J. Edeline et al., “Pembrolizumab in
patients with advanced hepatocellular carcinoma previously
treated with sorafenib (KEYNOTE-224): a non-randomised,

open-label phase 2 trial,” The Lancet Oncology, vol. 19, no. 7,
pp. 940–952, 2018.

[42] T. Yau, Y. K. Kang, T. Y. Kim et al., “Efficacy and safety of
nivolumab plus ipilimumab in patients with advanced hepato-
cellular carcinoma previously treated with sorafenib: the
CheckMate 040 randomized clinical trial,” JAMA Oncology,
vol. 6, no. 11, article e204564, 2020.

[43] R. K. Kelley, B. Sangro, W. Harris et al., “Safety, efficacy, and
pharmacodynamics of tremelimumab plus durvalumab for
patients with unresectable hepatocellular carcinoma: random-
ized expansion of a phase I/II study,” Journal of Clinical Oncol-
ogy, vol. 39, no. 27, pp. 2991–3001, 2021.

[44] B. Sangro, I. Melero, S. Wadhawan et al., “Association of
inflammatory biomarkers with clinical outcomes in nivolu-
mab- treated patients with advanced hepatocellular carci-
noma,” Journal of Hepatology, vol. 73, no. 6, pp. 1460–1469,
2020.

[45] B. Zhou, L. Guo, B. Zhang et al., “Disulfiram combined with
copper induces immunosuppression via PD-L1 stabilization
in hepatocellular carcinoma,” American Journal of Cancer
Research, vol. 9, no. 11, pp. 2442–2455, 2019.

[46] A. Rizzo and G. Brandi, “Biochemical predictors of response to
immune checkpoint inhibitors in unresectable hepatocellular
carcinoma,” Cancer treatment and research communications,
vol. 27, article 100328, 2021.

[47] A. M. Goodman, S. Kato, L. Bazhenova et al., “Tumor muta-
tional burden as an independent predictor of response to
immunotherapy in diverse cancers,” Molecular Cancer Thera-
peutics, vol. 16, no. 11, pp. 2598–2608, 2017.

[48] B. Niu, S. Wei, J. Sun, H. Zhao, B. Wang, and G. Chen, “Deci-
phering the molecular mechanism of tetrandrine in inhibiting
hepatocellular carcinoma and increasing sorafenib sensitivity
by combining network pharmacology and experimental evalu-
ation,” Pharmaceutical Biology, vol. 60, no. 1, pp. 75–86, 2022.

[49] W. Zhang, X. D. Zhu, H. C. Sun et al., “Depletion of tumor-
associated macrophages enhances the effect of sorafenib in
metastatic liver cancer models by antimetastatic and antian-
giogenic effects,” Clinical Cancer Research, vol. 16, no. 13,
pp. 3420–3430, 2010.

[50] U. Babu and M. L. Failla, “Respiratory burst and candidacidal
activity of peritoneal macrophages are impaired in copper-
deficient rats,” The Journal of Nutrition, vol. 120, no. 12,
pp. 1692–1699, 1990.

[51] P. Jiang, S. Gu, D. Pan et al., “Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response,”
Nature Medicine, vol. 24, no. 10, pp. 1550–1558, 2018.

[52] K. Yoshihara, M. Shahmoradgoli, E. Martínez et al., “Inferring
tumour purity and stromal and immune cell admixture from
expression data,” Nature Communications, vol. 4, no. 1,
p. 2612, 2013.

[53] H. Yang and Q. Jiang, “A multi-omics-based investigation of
the immunological and prognostic impact of necroptosis-
related genes in patients with hepatocellular carcinoma,” Jour-
nal of Clinical Laboratory Analysis, vol. 36, no. 4, article
e24346, 2022.

[54] Z. H. Wu, Z. W. Li, D. L. Yang, and J. Liu, “Development and
validation of a pyroptosis-related long non-coding RNA signa-
ture for hepatocellular carcinoma,” Frontiers in cell and devel-
opmental biology, vol. 9, article 713925, 2021.

[55] Z. K. Liu, K. F. Wu, R. Y. Zhang et al., “Pyroptosis-related
LncRNA signature predicts prognosis and is associated with

31Journal of Immunology Research



immune infiltration in hepatocellular carcinoma,” Frontiers in
Oncology, vol. 12, article 794034, 2022.

[56] J. Y. Liang, D. S. Wang, H. C. Lin et al., “A novel ferroptosis-
related gene signature for overall survival prediction in
patients with hepatocellular carcinoma,” International Journal
of Biological Sciences, vol. 16, no. 13, pp. 2430–2441, 2020.

[57] J. Wang, Y. Miao, J. Ran, Y. Yang, Q. Guan, and D. Mi, “Con-
struction prognosis model based on autophagy-related gene
signatures in hepatocellular carcinoma,” Biomarkers in Medi-
cine, vol. 14, no. 13, pp. 1229–1242, 2020.

32 Journal of Immunology Research


	Cuproptosis-Related Signature Predicts the Prognosis, Tumor Microenvironment, and Drug Sensitivity of Hepatocellular Carcinoma
	1. Introduction
	2. Materials and Methods
	2.1. Data Preparation
	2.2. Molecular Characterization of CRGs in HCC
	2.2.1. Differential Expression Analysis of CRGs
	2.2.2. Mutation Analysis of CRGs
	2.2.3. Copy Number Variation (CNV) Analysis of CRGs
	2.2.4. Kaplan-Meier Analysis and Correlation Analysis of CRGs

	2.3. Construction and Validation of Cuproptosis-Related Molecular Subgroup and Signature
	2.3.1. Immune Regulator Prioritization Analysis of CRG Set
	2.3.2. Construction of Cuproptosis-Related Molecular Subtype
	2.3.3. Construction of Cuproptosis-Related Signature
	2.3.4. Correlations between Molecular Subtype and Signature
	2.3.5. Survival and Clinical Characteristics of Molecular Subtype and Signature
	2.3.6. Differential Gene Expression Analysis of CRGs
	2.3.7. Gene Set Variation Analysis (GSVA) and Functional Enrichment
	2.3.8. Immune Landscape of Molecular Subtype and Signature
	2.3.9. Anti-HCC Agent Response Prediction
	2.3.10. Validation of the Constructed Signature
	2.3.11. Statistical Analysis


	3. Results
	3.1. Identification of Differentially Expressed, Prognosis-Related, and Immune-Related CRGs in HCC
	3.2. Construction and Validation of CRG-Related Molecular Subtype
	3.2.1. Differentially Expressed CRGs and Survival Differences between the Molecular Subtypes
	3.2.2. Differentially Enriched GSVA Function between the Molecular Subtypes
	3.2.3. Comparison of Immune Checkpoint Genes, Immune Cells, and Immune Score Levels between the Molecular Subtypes

	3.3. Construction and Validation of CRG-Related Signature
	3.3.1. A CRG-Related Signature with Independent Prognostic Effect Was Constructed
	3.3.2. Differentially Enriched GSVA Function between the Risk Groups
	3.3.3. Comparison of Immune Checkpoint Genes, Immune Cells, and Immune Score Levels between the Two Risk Groups
	3.3.4. Predicting the IC50 of Anti-HCC Agents
	3.3.5. Correlations between Molecular Subtype and Signature
	3.3.6. The Signature Was Validated in the LIRI-JP and IMvigor210 Cohort


	4. Discussion
	5. Conclusion
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials



