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Monkeypox virus (MPV) is a smallpox-like virus belonging to the genus Orthopoxvirus of the family Poxviridae. Unlike smallpox
with no animal reservoir identified and patients suffering from milder symptoms with less mortality, several animals were
confirmed to serve as natural hosts of MPV. The reemergence of a recently reported monkeypox epidemic outbreak in
nonendemic countries has raised concerns about a global outburst. Since the underlying mechanism of animal-to-human
transmission remains largely unknown, comprehensive analyses to discover principal differences in gene signatures during
disease progression have become ever more critical. In this study, two MPV-infected in vitro models, including human
immortal epithelial cancer (HeLa) cells and rhesus monkey (Macaca mulatta) kidney epithelial (MK2) cells, were chosen as the
two subjects to identify alterations in gene expression profiles, together with co-regulated genes and pathways that are affected
during monkeypox disease progression. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
MetaCore analyses, we discovered that elevated expression of genes associated with interleukins (ILs), G protein-coupled
receptors (GPCRs), heat shock proteins (HSPs), Toll-like receptors (TLRs), and metabolic-related pathways play major roles in
disease progression of both monkeypox-infected monkey MK2 and human HeLa cell lines. Interestingly, our analytical results
also revealed that a cluster of differentiation 40 (CD40), plasmin, and histamine served as major regulators in the monkeypox-
infected monkey MK2 cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling pathways
dominated the monkeypox-infected human HeLa cell line model. Among immune pathways of interest, apart from traditional
monkeypox-regulated signaling pathways such as nuclear factor- (NF-κB), mitogen-activated protein kinases (MAPKs), and
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tumor necrosis factors (TNFs), we also identified highly significantly expressed genes in both monkey and human models that
played pivotal roles during the progression of monkeypox infection, including CXCL1, TNFAIP3, BIRC3, IL6, CCL2, ZC3H12A,
IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A, and DUOX1, together with several epigenetic regulators, such as histone
cluster family gene members, HIST1H3D, HIST1H2BJ, etc. These findings might contribute to specific underlying mechanisms
related to the pathophysiology and provide suggestions regarding modes of transmission, post-infectious sequelae, and vaccine
development for monkeypox in the future.

1. Introduction

Monkeypox virus (MPV/MPXV) is commonly known as
one of the rare systemic infections caused by one specie of
the genus Orthopoxvirus in the family Poxviridae [1, 2].
Other than the smallpox virus (variola virus (VARV)), the
best-known species of this genus, monkeypox virus, together
with cowpox virus (CPXV), horsepox virus (HSPV), rac-
coonpox virus (RCNV), camelpox virus (CMLV), mousepox
virus (also referred to as Ectromelia virus (ECTV)), and
Alaskapox (AKPV) virus, are species believed to infect
healthy humans through different modes of zoonotic trans-
mission [3–5]. After the eradication of smallpox, a result of
universal vaccination, almost no natural outbreaks related
to Orthopoxvirus have been recorded until recently, after a
significant number of confirmed monkeypox cases were
reported worldwide [6]. The first discovery of this virus in
monkeys in the lab (in 1958), followed by the first human
infection detected in Africa (in 1970), meant that monkey-
pox was no longer endemic in animals as previously
assumed; at least 400 human cases scattered across the west-
ern and central parts of the African continent have been
diagnosed with similar clinical characteristics to smallpox
but causing milder symptoms and being less lethal [7–9].
As of May 2022, multiple cases of MPV have been docu-
mented in at least 11 regions outside of Africa, including
the European Zone, Britain, Middle East, Australia, the
North American continent (including the United States,
Canada, and South America), resulting in unprecedented
outbreaks in those developed countries [8–10]. Further, pub-
lic health investigations revealed the approximately 20-fold
increase in incidences that resulted from the discontinuation
of smallpox vaccination since 1980, while the probable
source of infection could be either an animal reservoir
(mainly rodents) or cross-infection [11, 12]. Transmission
through person-to-person contact is claimed to primarily
occur through close and prolonged contact with fluids from
skin lesions, respiratory droplets, fomites of infected people,
and even during sexual intercourse among populations of
men who have sex with men (MSM) [13, 14].

To date, definite diagnoses of monkeypox are largely
based on either a polymerase chain reaction (PCR) of skin
lesion specimens or immunohistochemical (IHC) staining
of biopsies taken from those infected, as misdiagnoses of
other blister-like diseases such as smallpox and chickenpox
may occur in cases where only a visual skin examination
and/or dermoscopy are solely employed [15, 16]. Although
the genomes of several variants of the MPV have been fully
sequenced, there are limited reports on the underlying
mechanisms of viral transmission and pathogenic pathways
of this disease [17, 18]. Moreover, proven treatment and pre-

ventive vaccines specifically designed for monkeypox have
not yet been formally approved by the agencies, thus clinical
care only focuses on symptomatic treatment. Therefore,
developing a research design that focuses on the underlying
molecular mechanisms during disease progression would
greatly contribute to improving the situation as it provides
necessary background knowledge for subsequent studies,
such as diagnostic test development, epidemiological track-
ing, designs of vaccines and antiviral drugs, and other related
adjuvant treatments.

In this study, we attempted to provide a concise and
informative overview of principal differences in gene expres-
sion profiles between two MPV-infected in vitro models,
including human immortal epithelial cancer (HeLa) cells
and rhesus monkey (Macaca mulatta) kidney epithelial
(MK2) cells, together with co-regulated genes and pathways
that are affected during disease progression. The Gene
Expression Omnibus (GEO) database and bioinformatics
approaches were employed to perform analyses of available
samples related to these two models (Figure 1). We also
revealed several critical regulatory downstream networks
and investigated the functions of potential genes to deter-
mine whether they can serve as clinical biomarkers for
MPV. These findings may contribute to an understanding
of specific underlying mechanisms related to the pathophys-
iology and provide suggestions regarding modes of trans-
mission, post-infection sequelae, and vaccine development
for monkeypox in the future.

2. Materials and Methods

2.1. Bioinformatics Application for Data Acquisition and
Processing. In this study, we investigated an in vitro system
using gene expression data of two separate subjects, includ-
ing human immortal epithelial (HeLa) cells and monkey
Macaca mulatta kidney epithelial (MK2) cells to character-
ize the effects of physical monkeypox viral infection. Rele-
vant microarray gene expression datasets from the GEO
(http://www.ncbi.nlm.nih.gov/geo)—an international public
functional genomics data repository affiliated with the
National Center for Biotechnology Information (NCBI;
https://www.ncbi.nlm.nih.gov/)—were retrieved for subse-
quent analyses. In particular, MPV-induced alterations in
transcriptomic profiles of 7-hour monkeypox-infected
Macaca mulatta kidney epithelial (MK2) cells were obtained
from the GSE21001 dataset [19], whereas similar informa-
tion of 6-hour monkeypox-infected human immortal
epithelial (HeLa) cells was acquired from the GSE36854
dataset [20]. The following analyses of both studies are based
on comparison of each subject with its corresponding mock-
infected counterpart as control.
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Before being mapped onto Ensembl features using
packages attached to the biomaRt tool (vers. 2.26.1), the
CLC Genomics Workbench vers. 10.1 (CLC bio, Aarhus,
Denmark) was utilized to process and standardize the raw
data [21–23]. Signals were subsequently presented as a
clustered heatmap based on messenger (m)RNA expression
patterns using pheatmap (vers. 1.0.12) in the R environment
[24–26], as well as the online platform available at http://
www.bioinformatics.com.cn/srplot. For subsequent discov-
eries of enriched functionally related gene groups, the
Database for Annotation, Visualization, and Integrated
Discovery (DAVID), which is maintained by the Labora-
tory of Human Retrovirology and Immunoinformatic
(LHRI) [27–29], was chosen as a powerful tool by the
various functions it offers, especially in term of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). As previously described [30–32], the
top 5% of upregulated genes derived from monkeypox-
infected groups were further processed as input data for
the GO analyses [33–35], while a p value of <0.05 was
set as the significance level. After biological networks and
related pathways were constructed, a cut-off value of 0.05

was applied to select significantly enriched pathways or
groups of annotated genes.

2.2. Pathway-Based Analyses and Network Enrichment
Analyses. MetaCore (Enrichment Analysis Workflow and
analysis network; GeneGo, St. Joseph, MN, USA) was
designed to identify biological processes related to gene
microarray data. The top 5% of upregulated genes with sub-
stantial differences in transcriptome levels were processed as
input to the MetaCore program to compare average levels of
gene expressions in the two models. Signal transduction
pathways were examined. A statistically significant differ-
ence was indicated by a p value of <0.05.

2.3. Construction of a Protein-Protein-Interacting (PPI)
Network using the STRING Analysis. The STRING database
(vers. 11.0) (https://string-db.org/) serves as a search engine
and a protein information resource that provides a consider-
able number of proteins and known interaction activities
upon which differentially expressed genes (DEGs) were
examined [36–38]. The Cytoscape stringApp was also
employed in this work to construct a PPI-network, while
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Figure 1: Schematic illustration of the study design. High-throughput data of monkeypox-infected 7-hours of Macaca mulatta kidney
epithelial (MK2) cells and monkeypox-infected 6-hours of human immortal epithelial cancer (HeLa) cells were both acquired from the
GEO database. The top 5% of differentially expressed genes in the two monkeypox-infected models were determined through a Venn
diagram analysis. Results of pathway analyses and functional interpretations were analyzed using DAVID, GO, STRING, and MetaCore.
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protein cluster classification was built using the k-means
clustering algorithm.

3. Results

3.1. GO Analysis of Monkeypox-Infected Models. For the
monkey cell line model, transcriptomic data of the 7-hour
monkeypox-infected Macaca mulatta kidney epithelial
(MK2) cell retrieved from the GSE21001 dataset were
matched with a mock treatment group for a comparative
analysis of DEGs. GO analytical results associated with mon-
keypox infection are depicted in Figure 2(a). Pathways
assigned to cluster 1 (c1) contained the most significant
highly expressed genes and pathways in the monkeypox-
infected group, whereas cluster 2 (c2) exerted an opposite
trend. The GO analysis suggested that c1 was related to
inflammatory responses, chemokine activities, immune
system processes, responses to peptidoglycans, cellular
responses to lipopolysaccharide, nucleosome assembly,
chromatin assembly or disassembly, responses to ionizing
radiation, and responses to temperature stimuli. Pathways
within c2 were associated with kinase binding, thymus
development, responses to endoplasmic reticular stress,
transfer (t)RNA aminoacylation for protein translation,
and responses to amino acid stimulation.

For the 6-hour monkeypox-infected human cell line
model, transcriptomic data of monkeypox-infected human
HeLa cells were retrieved from the GSE36854 dataset.
Pathways assigned to cluster 1 (c1) were those most highly
correlated with monkeypox infection, whereas cluster 2
(c2) exerted an opposite trend. The GO analysis suggested
that pathways within c1 were related to growth factor
activities, leukocyte activation, responses to organic cyclic
compounds, inflammatory responses, regulation of the
extracellular signal-regulated kinase 1 (ERK1) and the
extracellular signal-regulated kinase 2 (ERK2) cascade,
chemokine activities, and regulation of nitric oxide biosyn-
thetic processes. Pathways in c2 were related to nucleosome
assembly, protein heterodimerization activities, telomere
maintenance, extracellular regions, the actin cytoskeleton,
responses to protozoans, and coagulation.

3.2. Pathway Analysis of the Two Monkeypox-Infected
Models. Venn diagrams were employed to filter upregulated
genes in common between the two models mentioned above.
The top 5% of messenger (m)RNAs within the monkeypox-
infected Macaca mulatta kidney epithelial (MK2) cell model
and the human immortal epithelial cancer (HeLa) counter-
part were highly expressed compared to those within the
mock control (Figure 3(a)). In total, 149 overlapping genes
that were highly expressed in both monkey and human
models were subsequently input to the MetaCore tool for a
map analysis. Several standard maps were found to be
related to monkeypox infection, including the “immune
response_IL-1 signaling pathway,” “NF-κB pathway in
multiple myeloma,” “immune response_CD40 signaling in
B cells,” “TNF-alpha-induced inflammation,” “signaling in
normal and asthmatic airway epithelium,” “immune
response_plasmin signaling,” “glomerular injury in lupus

nephritis,” “immune response_IL-33 signaling pathway,”
“macrophage and dendritic cell phenotype shift in cancer,”
“renal tubulointerstitial injury in lupus nephritis,” “signal
transduction_nonapoptotic FasR (CD95) signaling,” and
“inflammatory mechanisms of pancreatic cancerogenesis”
(Figure 3(b), Supplementary Table A1). Meanwhile,
Endogenous Metabolic Networks corresponding to genes
from the shortlist of upregulated genes shared by the two
models revealed that pathways were associated with
phospholipid biosynthesis, including the “Ceramide
pathway,” “N-acyl-sphingosine phosphate pathway,”
“2-arachidonoyl-glycerol 3-phosphocholine pathway,”
“phosphatidylethanolamine pathway,” “(L)-valine pathways
and transport,” “carbohydrate metabolism_TCA and
tricarboxylic acid transport,” and “vitamin, mediator
and cofactor metabolism_alpha-tocotrienol,” which are
metabolic signalling pathways dominated by these genes
within both aforementioned models (Figures 3(c)–3(e)),
Supplementary Table A2).

To further understand biological processes in the indi-
vidual models, we analyzed pathways related to monkeypox
infection in each case. For the 7-hour monkeypox-infected
Macaca mulatta kidney epithelial (MK2) cell model, the
top 5% of upregulated genes obtained compared to the mock
treatment group were input into the MetaCore platform for
a comprehensive map analysis. The “immune response_IL-1
signaling pathway,” “immune response_IL-33 signaling
pathway,” “signal transduction_nonapoptotic FasR (CD95)
signaling,” “immune response_histamine H1 receptor sig-
naling in immune response,” “IL-1 signaling in melanoma,”
“inflammatory mechanisms of pancreatic cancerogenesis,”
“immune response_HSP60 and HSP70/TLR signaling path-
way,” “G protein-coupled receptors signaling in lung
cancer,” “TNF-alpha-induced inflammatory signaling in
normal and asthmatic airway epithelium,” and “resistance
of pancreatic cancer cells to death receptor signaling” were
among the most significant maps detected (Supplementary
Figure A1, Table A3). Meanwhile, the endogenous
Metabolic Networks corresponding to genes from the
shortlist of upregulated genes within the monkeypox-
infected Macaca mulatta kidney epithelial (MK2) cells
revealed that pathways associated with phospholipid
biosynthesis and amino acid synthesis included the
“phosphatidylethanolamine pathway,” “N-acyl-sphingosine
phosphate pathway,” “lyso-phosphatidylserine pathway,”
“1-alkyl-glycerol_3-phosphoethanolamine pathway,” “1-
oleoyl-glycerol_3-phosphate pathway,” “2-oleoyl-glycerol_
3-phosphate pathway,” and “aminoacid metabolism_
asparagine, and aspartic acid metabolism and transport,”
which are metabolic signaling pathways dominated by
these genes within this model (Supplementary Figure A2,
Table A4).

For the human immortal epithelial cancer (HeLa) cell
model, the top 5% of upregulated genes compared to the
mock treatment groups were input into the MetaCore
platform for a comprehensive map analysis. The “immune
response_IL-1 signaling pathway,” “inflammatory mecha-
nisms of pancreatic cancerogenesis,” “G protein-coupled
receptors signaling in lung cancer,” “immune response_
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Figure 2: Analytical results of Gene Ontology (GO) enrichment accompanied by heatmap visualization in two separate monkeypox-
infected models. (a) Comparison of gene expression patterns between the monkeypox-infected Macaca mulatta kidney epithelial (MK2)
cells and the mock control. Cluster 1 (c1) contained the most significant highly expressed genes and pathways in the monkeypox-
infected group, whereas c2 exerted an opposite trend. The GO analysis suggested that inflammatory and chemokine-related
peptidoglycan pathways were significantly correlated with the monkeypox-infected Macaca mulatta kidney epithelial (MK2) cell model.
(b) Comparison of gene expression patterns between the monkeypox-infected human immortal epithelial cancer (HeLa) cell model and
the mock control. Cluster 1 (c1) contained the most significantly highly expressed genes and pathways in the monkeypox-infected group,
whereas c2 exerted an opposite trend. The GO analysis suggested that nucleosome assembly and cytoskeleton-related pathways were
found to be significantly correlated with the human immortal epithelial cancer (HeLa) cell model.
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Figure 3: Continued.
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plasmin signaling,” “immune response_CD40 signaling in
dendritic cells, monocytes, and macrophages,” “interleukins-
induced inflammatory response in asthmatic airway fibro-
blasts,” “TNF-alpha-induced inflammatory signaling in
normal and asthmatic airway epithelium,” “NF-κB-, AP-1-,
and MAPKs-mediated proinflammatory cytokine production
by eosinophils in asthma,” “immune response_CD40 signal-
ing in B cells,” and “immune response_IL-17 signaling
pathways” were among the most significant maps detected
(Supplementary Figure A3, Table A5). Through the
Metabolic Networks (Endogenous) corresponding to genes
from the shortlist of upregulated genes shared by the
monkeypox-infected human immortal epithelial cancer
(HeLa) cells, data revealed that pathways associated with
phospholipid biosynthesis included the “phosphatidylcholine

pathway,” “1-docosahexaenoyl-glycerol_3-phosphocholine
pathway,” “lysophosphatidic acid pathway,” “1-icosatrienoyl-
sn-glycero-3-phosphocholine pathway,” “2-arachidonoyl-
glycerol_3-phosphocholine pathway,” and “GalNAcbeta1-
3Gal pathway,” which are metabolic signaling pathways
dominated by these genes within this model (Supplementary
Figure A4, Table A6).

In addition to the pathways and network analysis for
leading-edge genes generated by MetaCore as mentioned
before, we also used the KEGG database to validate these
data. The top enriched KEGG pathways were analyzed for
common genes shared by the monkeypox-infected Macaca
mulatta kidney epithelial (MK2) cell model and the human
immortal epithelial cancer (HeLa) cell model, and pathways
were ranked by p values (Supplementary Figure A5).

(e)

Figure 3: Overexpressed pathways shared by the two in vitromonkeypox-infected models. (a) The top 5% of overexpressed genes shared by
the GSE21001 and GSE36854 datasets, filtered by a Venn diagram, represent the monkeypox-infected Macaca mulatta kidney epithelial
(MK2) cell model and the human immortal epithelial cancer (HeLa) cell model. (b) The most enriched biological pathways
corresponding to genes from the shortlist of upregulated genes shared by the two models, in order of decreasing log (p values). (c) The
most enriched metabolic pathways as components of the Endogenous Metabolic Networks corresponding to genes from the shortlist of
upregulated genes shared by the two models, in order of decreasing log (p values). (d) Related pathways and network
analyses by MetaCore confirmed the vital role of the “immune response_IL-1 signaling” pathway in both monkeypox-infected
models. (e) Endogenous Metabolic Networks analyses by MetaCore confirmed the vital role of the “N-acyl-sphingosine phosphate
pathway” in both monkeypox-infected models.
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3.3. Analytical Results of Co-regulated Interactions and
Cellular Component Annotations in the Monkeypox-
Infected Models. To further explore the most significance of
co-upregulated genes from both models, we used a Venn
diagram to filter the 24 genes (among the top 1% of genes)
in common, which were highly expressed in both models
(Figure 4(a)). Upregulated genes in monkeypox-infected
cells included CXCL1, TNFAIP3, BIRC3, IL-6, CCL2,
ZC3H12A, IL-11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A,
DUOX1, and histone clusters family members, such
as HIST1H3D, HIST1H2BJ, HIST1H2AK, HIST1H2AD,
HIST1H2AC, HIST1H1B, HIST2H2AB, HIST1H2BM,
HIST1H2BH, and HIST1H2BB (Figure 4(b)). These 24 genes
were further imported into the STRING platform to con-
struct PPI networks, which may play pivotal roles in manifes-
tations after monkeypox infection (Figure 4(c)).

Upregulated genes shared by these two models were also
imported into the GO platform for cellular component
annotations under monkeypox infection circumstances. In
the case of the monkeypox-infected Macaca mulatta kidney
epithelial (MK2) cell model, these genes mostly functioned
in apical plasma membranes, neuronal cell bodies, the
cytosol, nucleoplasm cytoplasm, extracellular exosomes, an
integral component of presynaptic membranes, postsynaptic
membranes, cytoplasmic exosomes, and the perikaryon
(Figure 5(a)). The same analytical flowchart was applied to
the monkeypox-infected human immortal epithelial cancer
(HeLa) cell model to identify cellular components under
monkeypox infection circumstances. Genes with the greatest
significance functioned in the extracellular space, receptor
complexes, integral component of membranes, caveolae,
external side of plasma membranes, extracellular matrices,
voltage-gated calcium channel complexes, presynaptic
active zones, glutamatergic synapses, and dendritic shafts
(Figure 5(b)). From such observations gained from the two
in vitro monkeypox-infected models, we concluded that
certain cellular mechanisms of monkeypox infection are
almost identical but slightly different when comparing the
two species (Figure 5(c)).

4. Discussion

In most cases, viral infections only occur when a virus that
causes disease successfully invades a host, beginning by pen-
etrating the antiviral defenses, inserting its genetic materials,
taking control of host cells’ machinery to rapidly create a
huge number of viral replications, and ultimately becoming
transmissible between individuals. In the context of the
world having gone through many epidemic zoonotic out-
breaks that originated from animals [39–41], including the
human immunodeficiency virus (HIV; which jumped from
chimpanzees), influenza (from birds and pigs), bovine
spongiform encephalopathy (BSE; from cows), Ebola (from
bats), and at least three zoonotic coronavirus diseases in
chronological order, including the severe acute respiratory
syndrome coronavirus (SARS-CoV), the Middle Eastern
respiratory syndrome coronavirus (MERS-CoV), and the
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2). Therefore, gaining a comprehensive understanding

of the mechanisms of infection in both human and non-
human hosts is urgently needed [42–45].

In attempts to prevent further outbreaks and deaths
from these diseases, worldwide efforts to discover rapid
early-detection methods, effective antiviral drugs, and
preventive vaccines have been increasing over the years
[46, 47]. Other than conventional approaches, novel and
advantageous technologies, such as high-throughput
sequencing, searchable database repositories of gene expres-
sion data, and assistance from web-based or computer-based
bioinformatics tools, have been employed to elucidate
underlying molecular mechanisms during viral infection
and explore how different host cells respond via performing
analyses of alterations in gene expressions [48–54].

In the case of monkeypox infection, according to previ-
ous studies, a considerable number of immunomodulation-
related cytokines, including interleukin-1 (IL-1), tumor
necrosis factors (TNFs), and interferons (IFNs), were
reported to be involved in disease progression. The ILs
superfamily (including IL-1, IL-18, and IL-33) and TNF
signaling-mediated immune responses are important for
antiviral activity [55, 56]; however, the roles of these signal-
ing pathways in monkeypox-infected somatic cells remain
unclear. Interestingly, in case of other zoonotic viral diseases
mentioned before, numerous cellular and molecular immu-
nomodulatory pathways were also proven to play crucial
roles. In particular, the G protein-coupled receptors
(GPCRs) not only helps stimulate internalization during
infection with the influenza A virus [57] but also takes part
in Epstein-Barr virus- (EBV-) mediated immunosuppression
and oncogenesis [58]. Studies on the molecular chaperonin
HSP60 confirmed its interactions with Ebola virus infection
[59] and human hepatitis B virus polymerase [60], while
HSP70 plays a crucial role in mediating the progression of
Zika virus in infected host cells [61]. Histamine, on the other
hand, contributes to severe pneumonia in pigs infected with
the H1N1 influenza virus [62], whereas levels of histamine
and leukotrienes presented in acute dengue patients are
closely related to disease severity [63].

Our research findings were consistent with previous
studies on monkeypox infection as mentioned above; the
GO and pathway analyses revealed similar enriched path-
ways for both monkeypox-infected monkey and human
models, including IL-1, IL-33, IL-17, IL-18, NF-κB, MAPKs,
and TNF-R2 signaling (Figure 3). However, interestingly,
we also discovered relationships between monkeypox
and GPCRs, HSP60/70, histamine, plasmin, and histone
cluster-related signaling (Supplementary Figures A1, A2)
that have rarely been reported before.

Regarding 24 common genes that were highly expressed
in both in vitro models (Figure 4), when compared to the
previous literature, similar expression patterns were also
observed in case of CXCL1, TNFAIP3, BIRC3, IL6, CCL2,
ZC3H12A, IL11, CSF2, LIF, PTX3, IER3, EGR1, ADORA2A,
DUOX1, and several histone cluster family members such as
HIST1H3D and HIST1H2BJ. According to a recent study,
there were dramatic increases in serum concentrations of
IL1-RA, IL-6, and IFN-γ in cynomolgus macaques after
being infected with aerosolized MPV [64]. In myeloid cells,
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Figure 4: Continued.
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(c)

Figure 4: Overview of protein-protein-interacting networks inferred from overexpressed genes in the monkeypox-infected Macaca mulatta
kidney epithelial (MK2) cell model and the human immortal epithelial cancer (HeLa) cell model. (a) Similar transcriptome patterns obtained
from the GSE21001 and GSE36854 datasets were filtered by a Venn diagram. Shortlist of the top 1% of upregulated genes shared by the two
monkeypox-infected models. (b) Distribution of 24 coregulated genes inferred from the above shortlist, presented using box plot
visualizations. (c) STRING analyses revealed the protein-protein-interacting network of the 24 co-regulated genes, separated by clusters in
different colors. Colored nodes represent 24 target genes as input, while gray nodes represent the corresponding proteins.
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TNFAIP3 deficiency helps protect host cells against invasion
by the influenza A virus [65]. Both ZC3H12A/MCPIP1 and
CDKN1A/p21 may contribute to the synergistic effect on
replication control and pharmacological manipulation of
HIV-1 [66]. Infection with SARS-CoV-2 and several influ-
enza viruses can lead to alterations in CSF2 and IL-11
expressions [67–69]. PTX3, the expression of which was
reported to be upregulated by TNF-α during acute lung
injury, was recently found to serve as a reliable prognostic
indicator in predicting short-term mortality from SARS-
CoV-2 [70]. Apoptosis and impacted viral replication were
found to be induced by infection with the Venezuelan

equine encephalitis virus; however, knockdown of early
growth response 1 (EGR1) significantly inhibited these sig-
naling pathways [71]. Two members of the NADPH oxidase
(NOX) family, including the DUOX1 and DUOX2 proteins,
are potential therapeutic targets against infectious diseases
caused by the influenza A virus [72]. Previous research dem-
onstrated that DNA viruses exploit host cellular epigenetic
processes to their advantage during infection [73, 74]. Most
interestingly, several histone cluster family members were
reported to be involved in differential responses of human
fetal brain neural stem cells to Zika virus infection [75].
For example, three members of the histone cluster 1 H2B

Differentially
cellular location of

monkeypox
-infected models

Monkey model

(a) (b)

(c)

Human model

Go (cellular component)

Apical plasma membrane

Neuronal cell body

Cytosol

Nucleoplasm

Cytoplasm

Extracellular exosome
Integral component of presynaptic
Membrane
Postsynaptic membrane

Perikaryon

Cytoplasmic exosome (RNase complex)

P Value

6.16E–07

1.07E–07

1.49E–04

1.90E–04

2.07E–04

1.59E–03

1.83E–03

1.96E–03

2.30E–03

2.89E–03

Go (cellular component)
Extracellular space
Receptor complex
Integral component of membrane
Caveola

External side of plasma membrane
Extracellular matrix
Voltage-gated calcium channel
complex
Presynaptic active zone
Glutamatergic synapse

Dendritic shaft

P Value
1.03E–11
2.64E–07
2.59E–04
3.50E–04

3.64E–04
3.73E–04

2.47E–03

4.01E–03
4.66E–03

5.23E–03

IFN/Neutrophil/
macrophage

signaling

Histamine
/Plasmin/CD40

signaling 

G protein/
HSP/NF-kB/ILs
TLR signaling 

Figure 5: Major characteristics of Gene Ontology (GO) and cellular component annotations are inferred from highly expressed genes
shared by the monkeypox-infected Macaca mulatta kidney epithelial (MK2) cell model and the human immortal epithelial cancer
(HeLa) cell model. (a) Top highly enriched GO cellular components in the MK2 model. (b) Top highly enriched GO cellular
components in the HeLa model. (c) Conclusion of enriched maps discovered by bioinformatic analysis of upregulated genes from the
MK2 and HeLa models. The data revealed that interleukins (ILs), G protein-coupled receptors (GPCRs), heat shock proteins (HSPs),
Toll-like receptors (TLRs), and metabolic-related pathways were the elevated expression of both monkeypox-infected monkey and
human cell lines. Besides, cluster of differentiation 40 (CD40), plasmin, and histamine serve as major regulators in the monkeypox-
infected monkey cell line model, while interferons (IFNs), macrophages, and neutrophil-related signaling dominate the monkeypox-
infected human cell line model.
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(HIST1H2B) family, namely HIST1H2BB, HIST1H2BK, and
HIST1H2BO, were among those hub genes and pathways
that contributed to Zika virus infection [76]. However, only
a limited number of studies have described such relation-
ships in terms of monkeypox. Interestingly, results of our
bioinformatics analysis revealed that expression level of
certain histone cluster family members, such as HIST1H3D,
HIST1H2BJ, HIST1H2AK, HIST1H2AD, HIST1H2AC,
HIST1H1B, HIST2H2AB, HIST1H2BM, HIST1H2BH, and
HIST1H2BB, were elevated in both monkeypox-infected cell
models of monkey and human. These data suggested that
some of these epigenetic regulators may also play important
roles in monkeypox infection (Figure 4). Cross-validation
performed in the 6-hour monkeypox-infected human
immortal epithelial cancer (HeLa) cell model (GSE24125)
[77] revealed similar patterns of elevated expressions of the
aforementioned genes (Supplementary Figure A6). As the
most challenging aspect of diagnosing monkeypox infection
is distinguishing monkeypox vesicular rash eruption from
those of other diseases [78], our study provides a prospect of
the histone cluster family as potential regulators correlated
with monkeypox infection. Since the current study only
focused on signaling pathways regulated by DEGs caused
by monkeypox infection, further investigation into the
underlying pathogenesis is required for consolidated
guidelines for monkeypox treatment in the future.

5. Conclusion

In the current study, we focused on investigating genetic
signatures and their related pathways in two different
monkeypox-infected models. Our research findings revealed
the critical roles of multiple genes and their regulatory path-
ways in both monkeypox-infected models, which not only
directly in line with previous literature but also provided
novel functions as well as highly expressed genes related to
MPV infection that had been less well revealed in the past.
In the context of widespread epidemics of viral infectious
diseases that are prevalent today, this work may contribute
to bridging the traditional gap between bench research and
clinical applications. However, with attempts to validate
and examine the potentials of these genes as novel antiviral
therapies, further expanding research on disease basics
may provide more-concrete perspectives.
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