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Myeloma (MM) is a malignant plasma cell disorder, which is incurable owing to its drug resistance. Autophagy performs an
integral function in homeostasis, survival, and drug resistance in multiple myeloma (MM). Therefore, the purpose of the
present research was to identify potential autophagy-related genes (ARGs) in patients with MM. We downloaded the
transcriptomic data (GSE136400) of patients with MM, as well as the corresponding clinical data from the Gene Expression
Omnibus (GEO); the patients were classified at random into two groups in a ratio of 6: 4, with 212 samples in the training
dataset and 142 samples in the test dataset. Both multivariate and univariate Cox regression analyses were performed to
identify autophagy-related genes. The univariate Cox regression analysis demonstrated that 26 ARGs had a significant
correlation with overall survival (OS). We constructed an autophagy-related risk prognostic model based on six ARGs:
EIF2AK2 (ENSG00000055332), KIF5B (ENSG00000170759), MYC (ENSG00000136997), NRG2 (ENSG00000158458), PINK1
(ENSG00000158828), and VEGFA (ENSG00000112715) using LASSO-Cox regression analysis to predict risk outcomes, which
revealed substantially shortened OS duration in the high-risk cohort in contrast with that in the low-risk cohort. Therefore, the
ARG-based model significantly predicted the MM patients’ prognoses and was verified in an internal test set. Differentially
expressed genes were found to be predominantly enriched in pathways associated with inflammation and immune regulation.
Immune infiltration of tumor cells resulted in the formation of a strong immunosuppressive microenvironment in high-risk
patients. The potential therapeutic targets of ARGs were subsequently analyzed via protein–drug network analysis. Therefore, a
prognostic model for MM was established via a comprehensive analysis of ARGs, through using the clinical models; we have
further revealed the molecular landscape features of multiple myeloma.

1. Introduction

Multiple myeloma (MM) is a clonal proliferative disease of
plasma cells whose characteristics include abnormal immuno-
globulin production proliferation of malignant plasma cells
into the bone marrow, and bone destruction [1]. Its annual
incidence is 4/100,000 people, accounting for approximately
10% of all patients with hematological diseases [2]. Although

various treatments including protease inhibitors and immune
targeted therapy have been used in clinical practice, however,
high recurrence rates and drug resistance rates still affect the
prognosis of patients, and the pathogenesis has not been eluci-
dated. Therefore, it is essential to identify new biomarkers for
prognosis and understand the pathogenesis of MM.

Autophagy is type II programmed cell death, which is a
process of self-digestion and catabolism in cells [3]. Recent
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evidence indicates that autophagy is a key mechanism for
leukemia development and chemotherapy resistance [4]. In
addition, autophagy is an essential pro-survival mechanism
for medication resistance in MM. The combination therapy
of autophagy blockers and traditional anti-MM therapy has
enhanced their effects on drug-resistant MM plasma cells,
thus making autophagy a novel treatment target [5]. Studies
on the function of autophagy in MM are mainly focused on
the regulatory mechanisms of several autophagy-related
pathways [6]. As far as we know, no research has probed
into the potential association between the expression of
autophagy-related genes (ARGs) and the MM patients’
prognoses.

In the present research, we examined the relationship
between ARGs and the prognosis of patients with MM and
established a prognostic model for MM. The transcriptome
sequencing data of MM patients were obtained from the
GEO database, and the patients were classified into the train-
ing and test sets. LASSO regression was performed to screen
for the key risk factors of patients with MM, construct an
ARG-based prognostic risk model, and validate the accuracy
of the model in an external verification dataset. The risk
model was found to be an independent and effective predic-
tor of prognosis and helped to characterize the MM-specific
microenvironment landscape for tumor-infiltrating immune
cells and identify potential drug-targeted ARGs. Therefore,
the risk model helped to understand the prognostic charac-
teristics and molecular mechanisms of ARGs in MM.

2. Materials and Methods

2.1. Data Acquisition and Processing. The transcriptome data
of 1424 patients were downloaded from a public database,
including 354 whole bone marrow samples and pretreated
sequencing samples. The raw dataset GSE136400 [7] was
acquired from GEO (https://www.ncbi.nlm.nih.gov/geo/),
and arrays were processed using the robust multi-array aver-
aging (RMA) algorithm that was performed with the aid of
the affy R package [8]. Batch effects were equalized via Com-
Bat analysis using the sva package [9]. The sequencing data-
sets of patients with MM were obtained from the UCSC
Xena database (https://xenabrowser.net/datapages/).

2.2. Screening for ARGs. In the Human Autophagy Database
(HADb, http://autophagy.lu/clustering/index. html), 209
ARGs were annotated, and 10 genes with expression values
of 0 were excluded. The expression profile generated from
GSE136400 contained a sum of 199 ARGs.

2.3. Screening for ARGs Related to Overall Survival. A total of
354 pretreated sequencing samples of whole bone marrow
were randomly divided into two groups in a ratio of 6 : 4,
with the training set comprising of 212 patients and the test
set comprising of 142 patients. Patients in the training set
were screened to elucidate the underlying risk characteristics
of the identified ARGs in MM. Eventually, overall survival–
(OS–) related ARGs with P value < 0:05 were selected utiliz-
ing a univariate Cox hazard regression analysis.

2.4. Enrichment Analyses of OS-Related ARGs. The Gene
Ontology (GO) analysis and the Kyoto Encyclopaedia of
Genes and Genomes (KEGG) enrichment analysis were con-
ducted utilizing the ClusterProfiler package [10], which
revealed the particular roles of ARGs associated with the
OS in MM. The Benjamini–Hochberg with adjusted P
value < 0:05 was set for the purpose of determining statisti-
cal significance.

2.5. Characteristics of Molecular Interactions of OS-Related
ARGs. To explore the relationship among OS-related ARGs,
we employed the STRING database to establish a protein-
protein interaction (PPI) network [11] and visualized it
using Cytoscape (version: 3.8.0) [12] to calculate the topol-
ogy level for each module.

TRRUST, an online tool for exploring the relationship
between human and mouse transcriptional regulatory net-
works [13], was used to screen for transcription factors
(TFs) associated with key OS-related ARGs.

2.6. Establishment and Verification of an ARG-Related
Prognostic Model for MM. To prevent these performances
to be over-fitted, we used LASSO-Cox regression [14] analy-
sis in the training set to determine key OS-related ARGs for
establishing a prognostic model. Multivariable Cox propor-
tional hazard regression analysis was conducted on these
ARGs, and variables were gradually selected according to
the Akaike information criterion (AIC) [15]. The following
is the equation for calculating the final risk score based on
the optimized prognostic features:

Risk score = 〠
n

i

Coef i × Ai: ð1Þ

In this equation, Coef denotes the regression coefficient,
i denotes the ARGs used to construct the signature, A
denotes the relative expression value of each ARG in the sig-
nature, whereas n signifies the sum of genes within the sig-
nature. Based on the median risk score, patients were
classified into 2 cohorts: low- and high-risk cohorts. For
the purpose of comparing the two cohorts, the log-rank test
and the Kaplan–Meier analysis were performed. The predic-
tion accuracy of the signature was determined using the
time-dependent receiver operating characteristic (ROC)
curves [16].

To verify the prediction accuracy of the prognostic
model, 354 whole bone marrow pretreatment sequencing
samples were randomly divided into two groups in a ratio
of 6 : 4. The verification group consisted of a sum of 142
patients. The abovementioned equation was employed to
derive each patient’s risk score, and Kaplan–Meier curves
were drawn to reassess differences in prognosis and survival
across the two cohorts.

2.7. Enrichment Analyses and the Determination of
Differentially Expressed Genes (DEGs). The limma software
package [17] was used to identify DEGs in the high- and
low-risk groups. GO and KEGG enrichment analyses were
conducted with the aid of the ClusterProfiler software
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package [10], which provides information regarding the GO
terms cell component (CC), molecular function (MF), bio-
logical process (BP), and KEGG pathways, thus understand-
ing the potential functions of DEGs in MM. In addition,
ClustVis [18] was used to cluster the DEGs and generate
heat maps.

2.8. Gene Set Variation Analysis. As mentioned above, the
low- and high-risk cohorts were established based on the
median risk score. Gene set variation analysis (GSVA) [19]
was used to further confirm the main enrichment pathways
of the low- and high-risk cohorts. Nominal P value < 0:05
and FDR < 0:25 indicated significant enrichment.

2.9. Validation of Prognostic Accuracy of OS-Related ARGs in
Clinicopathological Nomograms. The rms software package
[20] was used to establish a quantitative prediction tech-
nique for the prognosis of patients with MM, and the prog-
nostic features were included in the clinicopathological
analyses of the training group. Subsequently, the final model
was selected according to the AIC, and calibration curves
were charted for the purpose of examining the predictive
accuracy regarding the nomogram [21].

2.10. Immune Microenvironment Landscape of MM and
Possible Immunotherapy Targets for Predicting Prognosis.
CIBERSORT was employed to analyze the infiltration levels
of 22 distinct immune cells in the low- and high-risk cohorts
[22], such as NK cells, plasma cells, B cells, and T cells. The
criterion of P value < 0:05 was defined as having statistical
significance and was used for subsequent analyses as well.

Feasible therapeutic methods for people with MM,
immunotherapy, as well as molecular targeted therapy and
immunotherapy, have gained increasing attention over the
years [23]. We used Spearman correlation analysis to ana-
lyze the relationship between the prognostic risk score and
treatment goals in clinical practice, and the treatment-
related targets were as follows: CTLA-
4(ENSG00000163599), VTCN1 (ENSG00000134258),
TNFSF18 (ENSG00000120337), TNFSF15
(ENSG00000181634), TNFRSF25 (ENSG00000215788),
TNFRSF9 (ENSG00000049249), TNFRSF8
(ENSG00000120949), TMIGD2 (ENSG00000167664),
CD276 (ENSG00000103855), PDCD1LG2 (PD-
L2)(ENSG00000197646), PDCD1 (PDL1)(ENSS-
SAG00000045082), LAIR1 (ENSG00000167613), LAG3
(ENSG00000089692), and HAVCR2 (TIM3)
(ENSG00000135077).

To screen for potential drug targets of these OS-related
ARGs, we employed the NetworkAnalyst 3.0 (https://www
.networkanalyst.ca/) to analyze the protein-drug interaction
in OS-related ARGs. Information regarding the target and
drug content was obtained from the DrugBank (version
5.0, https://go.drugbank.com/) [24].

3. Results

3.1. Screening of OS-Related ARGs in MM. ARGs whose P
value was less than 0.05 were chosen for the purpose of con-
ducting further investigations by means of a univariate Cox

proportional hazard regression analysis so as to determine
the relationship between each identified ARG and the MM
patients’ prognoses. We found that 26 ARGs were corre-
lated with OS (Table 1), and GO analysis of these ARGs
revealed that they were mainly enriched in macrophage
polarization and regulation of autophagy (Figure 1(a)). In
addition, these ARGs were involved in autophagy (ani-
mals), apoptosis, PI3K–AKT signaling pathway, and other
pathways (Figure 1(b)).

To examine the interaction among OS-related ARGs, a
PPI network was established, which identified two key mod-
ules, namely, CASP3 and TP53, with the highest topology
levels (Figure 1(c)). The TP53 module comprised 13 nodes
and 26 edges, whereas the CASP3 module consisted of
PINK1 and WIPI2 nodes. The regulatory mechanisms of
these ARGs may be critical in the pathogenesis of MM.

Furthermore, the TRRUST database (Table S1) was used
to identify 42 TFs that regulated these OS-related ARGs and
included nuclear TFs (NF-κB1, E2F1, and SP1), histone
deacetylase family (HDAC2, HDAC3, and SIRT1), TP53,
and NF-κB signal transduction core factors (NF-κB1 and
RELA). In addition, important ARG node factors, such as
CASP3, MYC, and TP53, were significantly regulated by
these TFs.

3.2. Screening and Verification of OS-Related ARGs for
Prognosis. To avoid potential over-fitting, hub OS-related
ARGs were selected for establishing an interaction network
using LASSO-Cox regression analysis (Figures S1A and
S1B). Six ARGs were identified via the stepwise multivariate
Cox proportional hazard regression analysis and were
applied to develop a prognostic model for patients with MM
(Figure 2(a)). The following is the equation for calculating
the risk score of each individual patient:

Risk score = EIF2AK2 expression level ∗ 3:4050ð Þ½ �
+ KIF5B expression level ∗ 9:9753ð Þ½ �
+ MYC expression level ∗ 1:5109ð Þ½ �
+ NRG2 expression level ∗ 5:0394ð Þ½ �
+ PINK1 expression level ∗ −4:4047ð Þ½ �
+ VEGFA expresion level ∗ 4:8887ð Þ½ �:

ð2Þ

According to their median risk score, all patients were
classified into two cohorts, namely, the high-risk cohort and
the low-risk cohort. The death rate of patients increased with
the increasing risk score (Figures 2(b) and 2(c)). In addition,
six OS-related ARGs, namely, EIF2AK2, KIF5B, MYC,
NRG2, PINK1, and VEGFA, were found to have an elevated
expression in the high-risk cohort (Figure 2(d) and
Figure S1C).

3.3. Evaluation of the Prognostic Features of OS-Related
ARGs in Patients with MM. An analysis of Kaplan–Meier
survival data was performed for the purpose of verifying
the prediction accuracy of the risk signature. The results
indicated that the patients’ overall survival (OS) in the
high-risk cohort was remarkably shorter in contrast with
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that in the low-risk cohort (P < 0:05, Figure 3(a)). Further-
more, the AUC values for anticipating OS over one, three,
and five years were shown to be 0.610, 0.704, and 0.752, indi-
cating that the signature had a high predictive power
(Figure 3(b)).

A univariate Cox regression analysis was performed for
the purpose of examining if the risk signature independently
served as a prognostic marker. It was demonstrated that age,
β2-microglobulin level, ISS stage, chromosomal karyotype
abnormality, and risk scores were substantially associated
with OS (Figure 3(c)). In addition, multivariable Cox
regression analysis revealed that after adjusting these clin-
icopathological factors, the risk signature remained to be a
prognostic indicator of MM in an independent manner
(Figure 3(d)). Moreover, age and ISS stage were also identi-
fied as independently serving as prognostic predictors. Fur-
thermore, the predictive ability of the risk signature was
compared among patients with MM according to the risk
scores and clinical characteristics. The AUC values for pre-
dicting the OS over three, five, and ten years were higher
for the risk score than for clinical variables (Figures S2B,
S2C, and S2D). However, the AUC value for predicting 1-
year OS was lower for the risk score than for some clinical
variables (Figure S2A). This finding indicated that the

established risk signature is very important for long-term
survival prognosis.

To evaluate the signature in a highly accurate manner, a
nomogram that combined the risk score, age, and ISS stage
was plotted (Figure 3(e)), which demonstrated excellent con-
cordance in predicting OS over one, three, and five years as
revealed by calibration plots (Figure 3(f)). The results sug-
gested that the risk score, combined with clinical variables,
could anticipate the MM patients’ OS in a highly accurate
manner.

3.4. Enrichment Analysis of ARGs. After observing differ-
ences in OS between the low- and high-risk cohorts, we per-
formed GSVA to detect biological functions and related
signaling pathways. Humoral immune response and cell
cycle pathways exhibited a remarkable enrichment in the
low-risk cohort (Figures S3C and S3D), whereas the
ubiquitin-mediated proteolysis and endoplasmic reticulum-
related degradation (ERAD) pathways were shown to
exhibit remarkable enrichment in the high-risk cohort
(Figures S3A and S3B). Previous studies have shown that
ERAD interacts with the ubiquitin-proteasome pathway
and autophagy to reduce protein misfolding or its
consequences in a coordinated manner [25]. Therefore, the

Table 1: Overall survival-related ARGs in the MM patients (P < 0:05).

Gene HR HR.95 L HR.95H P value

ATG12(ENSG00000145782) 612.39850 9.32780 40205.98970 0.00260

ATG2A(ENSG00000110046) 0.00540 0.00010 0.46110 0.02140

ATG4B(ENSG00000168397) 0.00130 0.00000 0.19580 0.00940

BIRC6(ENSG00000115760) 2.54180 4.41450 26758.17720 0.01980

CANX(ENSG00000127022) 200.47830 8.68320 4628.64190 0.00090

CASP3(ENSG00000164305) 20.79620 1.34550 321.43170 0.02980

CD46(ENSG00000117335) 23.82250 3.03330 187.09140 0.00260

DAPK2(ENSG00000035664) 0.01220 0.00040 0.37550 0.01170

EEF2(ENSG00000167658) 7.90060 1.07900 8.50690 0.04610

EIF2AK2(ENSG00000055332) 27.53830 12.32600 87.67210 0.00050

HSP90B(ENSG00000096384) 44.34080 3.16210 621.76850 0.00490

ITGA6(ENSG00000091409) 6.59830 1.14420 38.05000 0.03480

ITPR1(ENSG00000150995) 34.00590 3.48940 331.40550 0.00240

KIF5B(ENSG00000170759) 878.23420 5.24960 146924.13170 0.00950

KLHL24(ENSG00000114796) 24.95400 1.99070 312.80390 0.01260

MYC(ENSG00000136997) 25.51130 3.30050 197.18840 0.00190

NAMPT(ENSG00000105835) 9.10870 1.32960 62.40010 0.02440

NRG2(ENSG00000158458) 21.50710 1.36870 337.94100 0.02900

PINK1(ENSG00000158828) 0.00390 0.00000 0.33360 0.01450

RAB5A(ENSG00000144566) 200.71470 3.04860 13214.65620 0.01310

TBK1(ENSG00000183735) 77.82610 1.16250 5210.22020 0.04230

TNFSF10(ENSG00000121858) 8.66860 1.29880 57.85890 0.02580

TP53(ENSG00000141510) 23.00740 1.40580 376.54580 0.02790

VAMP7(ENSG00000124333) 38.13020 1.74430 833.50030 0.02070

VEGFA(ENSG00000112715) 268.95920 8.52410 8486.43260 0.00150

WIPI2(ENSG00000157954) 0.00110 0.00000 0.20250 0.01060
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results indicated that autophagy-related events were
associated with high-risk patients with MM.

3.5. Validation of the Prognostic Characteristics of the Model.
The risk score formula was used to calculate the risk scores
of patients belonging to the low- and high-risk cohorts.
The findings revealed that the OS of patients was shorter
and their prognosis was worse in the high-risk cohort as
opposed to the low-risk cohort (Figure 4(a)). In the valida-
tion set, the AUC values for predicting the OS one, two,
and three years were 0.648, 0.629, and 0.533, correspond-
ingly (Figure 4(b)). The above data indicated that the risk
score independently served as a factor for predicting the
MM patients’ OS profiles.

3.6. Enrichment and Identification of DEGs. DEGs were
screened in the training and test groups, and their potential
functions were assessed. We identified a sum of 56 DEGs in
the training set using the limma software package. These
DEGs had distinct gene expression patterns in the low-

and high-risk cohorts. Of these, 50 genes were upregulated,
whereas 6 genes were downregulated (Figures 5(a) and
5(b)). Further, GO analysis illustrated that the ARGs were
involved in several biological functions such as regulation
of epithelial morphogenesis, endoplasm reticulum lumen,
and receptor-ligand activity (Figure 5(c)). KEGG analysis
illustrated that the DEGs were primarily involved in the
Hippo, Wnt, and TGF-β signaling pathways and intentional
immune network for IgA production (Figure 5(d)). Consid-
ering these crucial biological implications, we inferred that
the DEGs played a role in the progression and immunoreg-
ulation of MM.

3.7. Correlation between Prognostic ARGs and the Immune
Microenvironment of MM. The interaction between tumor-
infiltrating immune cells (TILs) and cancer cells in the
tumor microenvironment (TME) is important for cancer
progression and drug resistance. Therefore, we assessed the
correlation between the OS-related ARG-based risk signa-
ture and infiltration of immune cells in TME in the training
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Figure 1: GO terms and KEGG pathways for enrichment analyses of OS-related ARGs in MM (adjusted P < 0:05). (a) OS-related ARGs
were analyzed for significant enrichment using GO terms. (b) Significant enrichment analysis of OS-related ARGs using the KEGG
pathway. (c) Two key modules (CASP3 and TP53) in OS-related ARGs were recognized by analyzing the protein-protein interaction
network. The color of nodes in each module indicated their topology scores.
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set and found that the infiltration levels of monocytes, rest-
ing mast cells, and neutrophils were remarkably elevated in
the low-risk cohort, whereas those of memory B cells, eosin-
ophils, activated mast cells, activated dendritic cells, and
plasma cells were increased in the high-risk cohort
(Figures 6(a) and 6(b)). These findings illustrated that the
risk signature exhibited a significant correlation with TILs
present in the microenvironment of MM.

3.8. Relationship between the Risk Signature and Immune
Checkpoint Therapy. Immune checkpoint inhibitors are a
new type of targeted immunotherapy, which has recently
been used in the preclinical treatment and clinical trials of
MM [26]. We used Spearman correlation analysis to exam-
ine the relationship between the risk score and various

immune checkpoints, including CD274 (PD-L1), CTLA-4,
LAG3, and HAVCR2 (TIM3). In addition, differential and
correlation analyses were performed for 48 possible check-
points for tumor-targeted therapy. In addition, the expres-
sion of 21 immune factors was found to differ significantly
among the risk subgroups (Figures 7 and S4). These results
illustrated that the risk score was strongly associated with
immune checkpoint genes and tumor immune infiltration.
Therefore, patients are more likely to benefit from treatment
with immune checkpoints including CTLA-4, PD-L1, LAG3,
and HAVCR2.

3.9. Identification of Potential Drug Targets of OS-Related
ARGs. To screen for potential drug targets of survival-
related ARGs, data regarding the protein-drug interactions
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Figure 2: Screening and verification of OS-related ARGs in patients with MM. (a) The risk score was computed using the prognostic model
as a basis. (b) Distribution of risk scores in patients. (c) Survival time of high- and low-risk patients with the increasing risk scores. (d)
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of these ARGs were obtained from DrugBank and analyzed
using NetworkAnalyst. Among these ARGs, the HSP90AB1
gene was identified as a target.

(Table 2 shows drugs with potential targeting of the
HSP90AB1 gene in DrugBank).

4. Discussion

MM has been identified as the second most prevalent hema-
tological cancer in adults whose characteristics include the
buildup of malignant plasma cells within the bone marrow
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Figure 3: Evaluation of the prognostic features of OS-related ARGs in multiple myeloma patients. (a) Survival status of the low- and high-
risk cohorts. (b) ROC curves for anticipating OS over one, three, and five years. (c) Univariate Cox regression analysis of clinical-
pathological variables and risk score. (d) Multivariable Cox regression analysis of clinical characteristics and risk score. (e) Nomograms
to predict the MM patients’ OS over one, three, and five years by combining ISS stage, age, and risk score. (f) The accuracy of the
predicted survival rates over one, three, and five years was validated using calibration curves of nomograms. The dashed line indicates an
ideal nomogram, whereas the green, blue, and red solid lines refer to the actual utility of the nomogram.
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[27]. Emerging therapies have been used in recent years; how-
ever, owing to high recurrence and drug resistance rates, their
curative effects on patients and the prognosis of patients are
poor. In the present research, an accurate prognosis prediction
model was established, which may help clinicians in designing
individualized treatment strategies for patients. We identified
ARGs with a substantial association with the MM patients’
OS.Moreover, based on six prognosis-related ARGs, we devel-
oped a prognostic risk-score model to predict OS. Analysis of

the validation set further suggested that the prognostic model
is an independent, stable indicator of OS. Moreover, immune
invasion analysis revealed the relationship between the risk
score and TILs in the low- and high-risk cohorts, revealing a
unique autophagicmolecular landscape of the immunemicro-
environment in MM. Finally, the potential therapeutic targets
of MM were identified.

Autophagy is a dynamic and continuous metabolic pro-
cess. Dysregulation of autophagy is considered a mechanism
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Figure 6: Correlation analysis of the tumor microenvironment and the immune cell infiltration in the low- and high-risk groups. (a)
Infiltration scores for each immune cell type were plotted on a heat map by means of row scaling. (b) Histogram of immune cells that
have differential infiltration. The red and blue columns indicate the low- and high-risk cohorts.
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Figure 7: Continued.
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of survival and drug resistance in many types of cancers.
Cancer can upregulate autophagy to promote the survival
of cancer cells in TME and increase growth and aggression.
Autophagy augments the stemness by degrading ubiquiti-
nated p53, thus relieving the tumor suppressor activity of
p53 [28]. Several ATG proteins, as well as their correspond-
ing core complexes, such as LC3 ubiquitin-like binding sys-
tem, ATG9A transport system, ATG12, autophagy-specific
class III PI3K complex, and ULK 1/2 kinase core complex,
are the key regulatory factors of tumor occurrence and pro-
gression. These regulatory factors targeting autophagy-
related key proteins may function as effective intervention
approaches for cancer management [6]. In addition, regula-
tors targeting autophagy may represent a promising treat-
ment strategy for myeloma [29]. The use of OS-related
ARGs and stratification of high- and low-risk patients help
to identify potential prognostic markers for the recurrence
and drug resistance of MM.

In this study, 26 ARGs were identified in patients with
MM via univariate cox regression analysis, and CASP3 and
TP53 were identified as the main modules of these ARGs
via protein interaction analysis. Certain ARGs have been
involved in the occurrence and progression of cancers and
medication resistance to hematologic malignancies. For
instance, CASP3 can control the development of AML1-
ETO-driven leukemia in a ULK1-dependent manner [30];
TP53 is a well-recognized tumor suppressor gene and
mutated TP53 serves as a regulatory factor and target of
tumor autophagy [31]. In MM, autophagy is regulated via
activation of the p53 pathway and inhibition of CK1 [32].
Furthermore, myc is another well-known oncogene and an
autophagy regulator, which can promote the progression
and drug resistance of MM [33]. Some other OS-related
ARGs, such as DAPK2, EEF2, ITPR1, and VEGFA, have
not yet been reported to regulate autophagy in MM; how-
ever, they have been confirmed to regulate the progression
of other tumors through autophagy [34–37]. However, their
specific regulatory mechanisms should be investigated fur-
ther. In this study, we found that the identified ARGs were
significantly enriched in pathways related to the regulation
of autophagy, apoptosis, and PI3K–AKT. In addition,
PI3K–AKT–mTORC is considered a key factor for the neg-

ative regulation of autophagy initiation [38], indicating that
these ARGs rely on the PI3K–AKT pathway to regulate
autophagy and are involved in the progression of MM.

The establishment of tumor-related prognostic models
based on the characteristics of transcriptome expression
profiles shows a strong application prospect for risk assess-
ment [39]. In the present research, key OS-related ARGs
were identified via LASSO-Cox regression analysis for estab-
lishing a risk model. Six ARGs with the best prognostic char-
acteristics were used to construct the model. In both
multivariate and univariate Cox regression analyses, adopted
for adjustment analysis of clinical variables, the risk score
was found to independently serve as a prognostic indicator
for MM patients, and the AUC values for predicting OS over
one, three, and five years were 0.610, 0.704 and 0.752, corre-
spondingly. Moreover, the AUC value for anticipating 1-
year OS was higher for a clinical variable than for the risk
score, which suggested that the risk score was extremely sig-
nificant for long-term survival prognosis. A nomogram inte-
grating ISS stage, age, and risk scores and the calibration
curves demonstrated that the model has the potential for
accurately anticipating the patients’ prognoses. The predic-
tion accuracy of the six OS-related ARGs was similar to
those of the five prognostic characteristic genes identified
based on RNA sequencing in a study [40]. In addition, the
characteristics of the immune microenvironment were
explored, and the potential targets of immunotherapy for
MM were identified, which may promote the development
of drug-based immunotherapy.

Furthermore, DEGs were significantly enriched in the
Hippo, Wnt, and TGF-β pathways, which are critical signal-
ing pathways that regulate the infiltration of immune cells in
TME. For example, the Hippo pathway effector Yap inhibits
T cell function and invasion in TME [41], and the Wnt/β-
catenin pathway is the best-characterized pathway that
enhanced the progression of cancer by modulating the
tumor immune cycle in the majority of the nodes, such as
tumor cells, dendritic cells, and T cells [42]. In addition,
blocking the TGF-β signal in CD4+T cells can reshape
TME and inhibit cancer progression [43]. TILs are one of
the primary constituents of TME, and the density and types
of TILs have marked prognostic associations in multiple
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cancers [44]. Long-lived plasma cells as well as memory B
cells need autophagy in order to survive in MM and perform
an integral function in maintaining the survival and medica-
tion resistance of tumor cells [45]. In this study, immune
infiltration analysis revealed that high-risk patients had high
levels of infiltrating eosinophils, activated mast cells, acti-
vated dendritic cells, plasma cells, and memory B cells. This
finding suggests that a persistently high level of autophagy
may be responsible for the intense immunosuppressive
microenvironment in MM.

There has been the successful use of immune checkpoint
inhibitors in the treatment of hematological cancers and a
variety of solid tumors. However, achieving durable
response rates in some cancer patients remains challenging
because of immune evasion and acquired resistance [46].
In a study, the expression levels of immunosuppressive mol-
ecules in eight common tumors exhibited a negative associ-
ation with the signature-defined risk score, including the
classical checkpoints such as PD-L1 and LAG3; however,
inhibitors targeting these checkpoints may be less effective
in treating patients. Blocking of LAG3 has been shown to
significantly enhance T cell activity, kill MM cells, and
improve the prognosis of patients with MM [47]. Therefore,
continuous activation or inhibition of autophagy may dem-
onstrate the immunosuppressive status of MM patients and
their sensitivity to immune-targeted therapy; however, the
potential relationship between these two regulatory mecha-
nisms should be investigated further.

Potential strategies to address new drug development
challenges and enhance the therapeutic capabilities of exist-
ing drugs aim to improve drug target selection and repur-
pose the existing approved drugs. In this study, the
protein-drug interaction analysis of prognosis-related ARGs
using the DrugBank database identified only the HSP90AB1
gene as a drug target. There are 14 types of drugs that can
target HSP90AB1, and HSP90AB1 has been positively corre-

lated with long non-coding RNA MALAT1 in MM; how-
ever, high MALAT1 levels have been correlated with
shorter overall progression-free survival [48]. Preclinical
studies have shown that HSP90 inhibitors combined with
bortezomib enhance anti-MM activity [49]. Therefore,
HSP90AB1 is a promising therapeutic target for MM, and
further studies should be conducted to develop the next gen-
eration of HSP90 inhibitors with higher efficacy and lower
toxicity.

The study constructed a characteristic risk prognostic
model based on the analysis of autophagy and multiple mye-
loma patients. We have demonstrated that our models can
accurately predict prognosis, but they do have some limita-
tions. We conducted our study entirely using bioinformatics,
without an independent external validation cohort. For our
study, wet laboratory validation was also necessary to provide
additional explanation details. Furthermore, retrospective,
published datasets have confirmed that ARGs contribute to
disease progression and prospective data are necessary to val-
idate their clinical value and assess their potential clinical
relevance.

5. Conclusions

In the present research, we established a prognostic model
for MM consisting of six ARGs, which was found to inde-
pendently function as a predictor of OS in both training
and verification sets. In addition, we revealed the molecular
landscape characteristics of MM, including the cross-
correlation among regulatory pathways, TME, and potential
drug targets, which were verified based on several aspects.
The prognostic model was verified in publicly available ret-
rospective datasets; however, the verification of its potential
clinical value requires further investigation using more pro-
spective data, and the specific molecular processes warrant
thorough experimental research.

Table 2: Drugs with potential targeting of HSP90AB1 gene in DrugBank.

Id Label

DB02424 Geldanamycin

DB02754 9-Butyl-8-(3,4,5-Trimethoxybenzyl)-9 h-Purin-6-amine

DB03758 Radicicol

DB05134 CNF1010

DB06070 SNX-5422

DB07594 4-[4-(2,3-DIHYDRO-1,4-BENZODIOXIN-6-YL)-3-METHYL-1H-PYRAZOL-5-YL]-6-ETHYLBENZENE-1,3-DIOL

DB07877 8-(6-BROMO-BENZO[1,3]DIOXOL-5-YLSULFANYL)-9-(3-ISOPROPYLAMINO-PROPYL)-ADENINE

DB08045 4-{4-[4-(3-AMINOPROPOXY)PHENYL]-1H-PYRAZOL-5-YL}-6-CHLOROBENZENE-1,3-DIOL

DB08153
(5E)-14-CHLORO-15,17-DIHYDROXY-4,7,8,9,10,11-HEXAHYDRO-2-BENZOXACYCLOPENTADECINE-1,

12(3H,13H)-DIONE

DB08292 (5Z)-12-CHLORO-13,15-DIHYDROXY-4,7,8,9-TETRAHYDRO-2-BENZOXACYCLOTRIDECINE-1,10(3H,11H)-DIONE

DB08293 (5E)-12-CHLORO-13,15-DIHYDROXY-4,7,8,9-TETRAHYDRO-2-BENZOXACYCLOTRIDECINE-1,10(3H,11H)-DIONE

DB08346
(5Z)-13-CHLORO-14,16-DIHYDROXY-3,4,7,8,9,10-HEXAHYDRO-1H-2-BENZOXACYCLOTETRADECINE-1,

11(12H)-DIONE

DB08464
METHYL 3-CHLORO-2-{3-[(2,5-DIHYDROXY-4-METHOXYPHENYL)AMINO]-3-OXOPROPYL}-4,6-

DIHYDROXYBENZOATE

DB08465 2-(3-AMINO-2,5,6-TRIMETHOXYPHENYL)ETHYL 5-CHLORO-2,4-DIHYDROXYBENZOATE
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