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Background. Interferon-inducible 44 like (IFI44L) is a newly discovered interferon-induced gene and has been reported to
overexpress in systemic lupus erythematosus (SLE). However, little is known about the mechanism and function of IFI44L
overexpression in SLE. In this study, we aimed to investigate the epigenetic mechanism of IFI44L overexpression in SLE
monocyte and its potential functions contributing to the pathogenesis of SLE. Methods. We collected peripheral blood from 20
SLE patients and 20 healthy controls. Expression of IFI44L in monocytes and effects of different signal transducers and
activators of transcription (STAT) pathway inhibitors on IFI44L expression were detected. Recruitment of ten-eleven
translocation protein (TET) by STAT and methylation of IFI44L promoter were evaluated. Effects of IFI44L overexpression on
the expression of surface markers on monocyte-derived dendritic cells (Mo-DCs) were analyzed. T cell differentiation mediated
by Mo-DCs and related cytokines production were also analyzed. Results. Expression level of IFI44L was significantly increased
in SLE monocyte. IFI44L expression was decreased most significantly in STAT3 inhibitor compared with other inhibitors.
STAT3 regulated IFI44L expression and interacted with TET2 which induced DNA demethylation of IFI44L promoter.
Overexpression of IFI44L in monocyte enhanced the maturation and functions of Mo-DC by upregulating costimulatory
receptors and inducing Th1/Th17-related cytokines when cocultured with naïve CD4+ T cells. Conclusion. TET2 recruited by
STAT3 induces DNA demethylation of IFI44L promoter which promotes IFI44L overexpression in monocyte contributing to
the pathogenesis of SLE by enhancing the maturation and functions of Mo-DC. IFI44L is expected to become a new target for
treatment of SLE.

1. Introduction

Systemic lupus erythematosus (SLE) is a classical autoim-
mune disease involving many organs and commonly occurs
in young and middle-aged women [1, 2]. The interferon sys-
tem is the main defense of humans against virus and can
trigger the expression of more than 20 different interferon-
stimulated genes (ISGs) with antiviral and immunostimula-
tory capacity. Many observations have suggested the critical

role of interferon system in SLE and other autoimmune dis-
eases [3–5].

Interferon-inducible 44 like (IFI44L) is a newly discov-
ered ISG and was first identified in the study of the immune
responses to viruses. IFI44L has been found to upregulate in
the gene profile of many autoimmune diseases besides SLE
[6–8]. Our previous studies revealed IFI44L was significantly
increased in SLE peripheral blood caused by hypomethyla-
tion of IFI44L promoter [9]. There are two significantly
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different CpG islands located at IFI44L promoter with mark-
edly lower methylation levels in SLE patients than healthy
controls [9]. However, epigenetic mechanisms underlying
overexpression of IFI44L and potential functions of IFI44L
in SLE were still unknown.

Monocyte and dendritic cell (DC) are the main sources
of interferon and regulated by the interferon system promi-
nently. Previous studies showed most of ISGs including
IFI44L function prominently in mononuclear cell subsets,
especially in monocytes and monocyte-derived DCs (Mo-
DCs). Signal transducer and activator of transcription
(STAT) participated in upstream immunoregulation and
epigenetic modifications of many genes in SLE. Ten-eleven
translocation protein- (TET-) induced DNA demethylation
of specific genes relied on recruitment by upstream tran-
scription factors such as STAT and is involved in differenti-
ation and function of monocytes. Since we have identified
overexpression of IFI44L caused by hypomethylation of
IFI44L promoter, we supposed upregulation of IFI44L may
realize through STAT and TET. Based on our previous stud-
ies, we speculated that STAT-mediated activation of TET
induced DNA demethylation and upregulated expression
of IFI44L in SLE monocyte. In this article, we investigated
the epigenetic regulation of IFI44L expression in SLE mono-
cyte and its downstream functions in Mo-DC. The present
study explained the mechanism of IFI44L abnormal expres-
sion and its critical role in pathogenesis of SLE.

2. Methods

2.1. Subjects. SLE patients were recruited from the Second
Xiangya Hospital of Central South University. All patients
fulfilled the 2019 European League Against Rheumatism/
American College of Rheumatology Classification Criteria
(EULAR/ACR) for SLE [10]. Lupus disease activity was
assessed by SLE Disease Activity Index (SLEDAI) at the
time of blood collection. Demographics and medications
of all patients in this study are listed in Table 1. Healthy
controls were recruited from Changsha Blood Center with-
out any autoimmune disease history. This study was
approved by the Human Ethics Committee of the Second
Xiangya Hospital, Central South University, China. Writ-
ten informed consent was obtained from all subjects before
the study.

2.2. Cell Isolation and Culture. Peripheral blood mononu-
clear cell (PBMC) was isolated from the peripheral blood
using density gradient method. CD14+ monocytes and
naïve CD4+ T cells were isolated using human CD14 mag-
netic beads (Miltenyi Biotec, Germany) and human naïve
CD4 T Cell Isolation Kit II (Miltenyi Biotec, Germany)
according to the manufacturer’s protocol. The isolated
cells were cultured in RPMI 1640 medium with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin. In
induced differentiation experiment, Mo-DCs were differen-
tiated from CD14+ monocytes using IL-4 (20 ng/mL;
Thermo Fisher, USA) and GM-CSF (20ng/mL; Thermo
Fisher, USA) for 7 days, followed by treatment with LPS
(20ng/mL; Sigma, USA) for 3 days. The phenotype of

Mo-DC was identified by flow cytometry. In cocultured
experiment, naïve CD4+ T cells were cocultured with
Mo-DCs in a 1 : 5 ratio.

2.3. STAT Pathway Inhibitor Treatment. The isolated CD14+

monocytes were, respectively, treated with STAT1 inhibitor
NSC118218 (10μmol/L; Selleck Chemicals, USA), STAT3
inhibitor S3I-201 (10μmol/L; Selleck Chemicals, USA),
STAT5 inhibitor MDK6314 (10μmol/L; Selleck Chemicals,
USA), and blank solvent for 2 h. IFN-α (1000U/mL; Sigma,
USA) was added, and cells were harvested after 22 hours.

2.4. Plasmid and siRNA Transfection. The isolated CD14+

monocytes were transfected with overexpression plasmid
or small interfering RNA (siRNA) by lentivirus using Gibco
CTS LV-MAX Transfection Kit (Thermo Fisher, USA).
Briefly, CD14+ monocytes were harvested and resuspended
in a 500μL fresh medium. IFI44L-overexpression plasmid
pEnter-IFI44L, STAT3-overexpression plasmid, or STAT3-
siRNA (Thermo Fisher Scientific, USA) were mixed with
CTS™ LV-MAX Transfection Reagent in CTS Opti-MEM I
and transfection reagent. The complex was incubated for
10 minutes and then added to cells. Enhancer was added
after 16 hours, and cells were harvested after 48 hours.

2.5. RT-qPCR. Total RNA was extracted from cells using
TRIzol reagent (Thermo Fisher, USA). cDNA was synthe-
sized using PrimeScript® RT reagent kit with gDNA Eraser
(TaKaRa, China) according to the manufacturer’s protocol.
qPCR was performed using SYBR Premix Ex Taq™
(TaKaRa, China) and Roche-LightCycler 96 Real-Time
PCR System (Basel, Switzerland). GAPDH was used as an
endogenous control. The gene-specific primer sets used in
this study are listed in Table 2.

2.6. Chromatin Immunoprecipitation (ChIP). ChIP experi-
ment was performed using ChIP Assay kit (MilliporeSigma,
USA). Briefly, DNA and proteins were crosslinked by form-
aldehyde in buffer containing protease inhibitors. The chro-
matin was fractured by ultrasonography to interrupt DNA
into 500–1000 bp fragments, and supernatants were immu-
noprecipitated by antibodies. Rabbit anti-STAT3 antibody
(Abcam, UK) and control rabbit IgG antibody (Abcam,
UK) were used to precipitate the immune complexes. The
amount of immunoprecipitated DNA was analyzed by
PCR. Primer sets used for IFI44L promoter (IFI44L-p) are
listed in Table 2.

2.7. Coimmunoprecipitation (Co-IP). Co-IP were performed
using Protein G Immunoprecipitation Kit (Thermo Fisher,
USA) according to the manufacturer’s protocol. Briefly, rab-
bit anti-pSTAT3 capture antibody (Abcam, UK) and control
rabbit polyclonal IgG antibody (Abcam, UK) were used to
isolate protein complexes from cell lysate. After being
washed and elutioned, the immunoprecipitates were
detected by western blot using rabbit anti-pSTAT3 antibody
(Abcam, UK) and rabbit anti-TET2 antibody (Abcam, UK).

2.8. Bisulfite Pyrosequencing (BSP). Total DNA was isolated
using QIAamp DNA Mini Kit (Qiagen, USA), and bisulfite
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treatment of DNA was performed using EZ DNA Methyla-
tion Kit (Zymo Research, USA) according to the manufac-
turer’s protocol. The 121 bp DNA fragment in IFI44L
promoter was amplified by PCR. PCR primers (IFI44L-p)
are listed in Table 2. The PCR product was sequenced by
pyrosequencing with the specific probe using PyroMark
Q24 (Qiagen, USA).

2.9. Western Blot (WB). Total proteins were extracted from
cell lysates, and protein concentration was analyzed by
Bradford Protein Assay Kit (Thermo Fisher, USA). Protein
was separated in 8% polyacrylamide gels using sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and then transferred onto polyvinylidene difluoride
membranes. The membrane was incubated by rabbit anti-
IFI44L (Abcam, UK) and anti-GAPDH (Abcam, UK),
followed by anti-rabbit IgG antibody (Abcam, UK). Quan-
tification of immunoreactive bands was normalized to
GAPDH by densitometry.

2.10. Flow Cytometry. Surface markers was detected by
FACSCanto II (BD Biosciences, USA) and analyzed by
FlowJo software. Antibodies including anti-human CD40-
FITC, CD80-PE, CD83-PE, and CD86-FITC (BD Biosci-
ences, USA) were used for flow cytometry analysis.

2.11. Enzyme-Linked Immunosorbent Assays (ELISA). IFN-
α, IL-4, IL-17A, and IFN-γ in serum or coculture superna-

tants were detected using Quantikine ELISA Kits (R&D Sys-
tems, USA) according to the manufacturer’s protocol.

2.12. Statistical Analysis. Quantitative data were presented as
means ± SEM. Statistical significance was assessed by t-test
(two-tailed). Correlation analysis was assessed by Spear-
man’s correlation coefficient. All data were calculated in
SPSS software.

3. Results

3.1. IFI44L Expression Is Increased in SLE Monocyte. To
explore the expression of IFI44L in SLE monocyte, we first
detected the expression of IFN-α in serum of SLE patients
and healthy controls using ELISA. The expression levels of
IFI44L mRNA in monocytes of SLE patients and healthy
controls were also detected using RT-qPCR. The results
revealed both IFN-α in serum and IFI44L mRNA in
monocytes were significantly increased in SLE patients
than healthy controls (Figures 1(a) and 1(b)). The expres-
sion levels of IFI44L protein in monocyte were also signif-
icantly increased in SLE patients than healthy controls
(Figure 1(c)). In addition, we observed the expression
levels of IFI44L mRNA in SLE monocytes were positively
correlated with the SLEDAI scores (Figure 1(d)).

3.2. IFI44L Is Downstream of STAT3 in SLE Monocyte. To
investigate which STAT pathway regulates IFI44L expres-
sion, we treated SLE monocytes with STAT1, STAT3, and

Table 1: Demographics and medications of all patients in this study.

Patient no. Gender Age (years) Disease duration SLEDAI Treatment regimen

1 F 44 1 year 12 None

2 F 36 2 years 6 Prednisone 20mg/d

3 F 34 9 months 10 Prednisone 30mg/d, hydroxychloroquine

4 F 41 8 years 2 Prednisone 12.5mg/d

5 F 26 5 years 10 Prednisone 30mg/d

6 F 33 1 year 41 Prednisone 30mg/d

7 F 53 10 years 8 Prednisone 15mg/d

8 F 32 17 years 13 Prednisone 30mg/d

9 F 32 5 years 18 Prednisone 35mg/d, hydroxychloroquine, cyclophosphamide

10 F 36 3 years 14 Prednisone 10mg/d, hydroxychloroquine

11 F 32 3 months 14 Prednisone 55mg/d

12 F 27 3 years 4 Prednisone 10mg/d

13 F 36 4 years 12 Prednisone 50mg/d, hydroxychloroquine

14 F 50 10 years 15 None

15 F 50 1 year 12 Prednisone 10mg/d

16 F 37 6 years 17 Prednisone 15mg/d

17 F 26 4 months 20 Prednisone 20mg/d, hydroxychloroquine

18 M 23 1 month 11 None

19 M 36 1 year 30 None

20 M 18 4 years 24 Methylprednisolone 28mg/d

SLEDAI: Systemic Lupus Erythematosus Disease Activity Index; F: female; M: male; none: no treatment with drugs.
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STAT5 pathway inhibitors and blank solvent, respectively,
along with stimulation from IFN-α. The results showed the
expression level of IFI44L was decreased most significantly
in STAT3 inhibitor compared with other inhibitors
(Figures 2(a) and 2(b)). To further confirm STAT3 regulated
IFI44L expression in monocytes, we compared the expres-
sion levels of STAT3 protein in monocytes between SLE
patients and healthy controls. As expected, the results
showed the expression levels of STAT3 protein in monocytes
were significantly increased in SLE patients compared with
healthy controls (Figure 2(c)). Additionally, we transfected
STAT3-siRNA and negative control siRNA into SLE mono-
cytes, along with stimulation from IFN-α. The results
revealed the expression levels of IFI44L were significantly
decreased in monocytes transfected with STAT3-siRNA
compared to negative control siRNA (Figures 2(d) and
2(e)). Moreover, we did ChIP-qPCR assay to confirm the
combination of STAT3 and IFI44L in SLE monocytes. As
expected, the results showed DNA expression of IFI44L pro-
moter binding to STAT3 was significantly increased com-
pared to the control group (Figures 2(f) and 2(g)).

3.3. TET2 Recruited by STAT3 Induces DNA Demethylation
of IFI44L in SLE Monocyte. To explore TET-induced

demethylation of IFI44L dependent on STAT3, we first
verified the interaction between phosphorylated STAT3
(pSTAT3) and TET1, TET2, and TET3. As expected, Co-
IP results showed a significant interaction between
pSTAT3 and TET2 in SLE monocyte (Figure 3(a)). How-
ever, there was no significant differences in TET1, TET2,
and TET3 mRNA in monocytes between SLE patients
and healthy controls (Figure 3(b)). In addition, we trans-
fected STAT3-overexpression plasmid and negative control
plasmid into normal monocytes and detected the methyla-
tion levels of two CpG sites using BSP. The results showed
that DNA methylation levels of IFI44L promoter were sig-
nificantly decreased in monocytes transfected with STAT3-
overexpression plasmid than negative control plasmid
(Figures 3(c) and 3(d)).

3.4. Overexpression of IFI44L Upregulates Maturation and
Costimulatory Receptors of Mo-DC. To explore the functions
of IFI44L overexpression in SLE, normal monocytes were
isolated and transfected with IFI44L-overexpression plasmid
and negative control plasmid and then induced differentia-
tion into Mo-DCs. Flow cytometry showed CD40, CD80,
CD83, and CD86 were significantly increased on Mo-DCs
transfected with IFI44L-overexpression plasmid compared

Table 2: Gene-specific primer sets used in this study.

Gene name Primer sequence (5′-3′)

IFI44L
Forward: ATGTGACTGGCCAAGCCGTAGT

Reverse: TGCCCCATCTAGCCCCATAGTGT

IFI44L-p
Forward: TGTGGATAGTGATAATTTGTTATAAAGTAA

Reverse: AACCTCATCCAATCTTAAAACACTTATA

STAT1
Forward: CCGTTTTCATGACCTCCTGT

Reverse: TGAATATTCCCCGACTGAGC

STAT3
Forward: GGAGGAGGCATTCGGAAAG

Reverse: TCGTTGGTGTCACACAGAT

STAT5
Forward: GAACACCCGCAATGATTACAGT

Reverse: ACGGTCTGACCTCTTAATTCGT

TET1
Forward: ACCACTTTTGCTACCGACTTG

Reverse: GGCTGTTCTTTCTGTTCTTGC

TET2
Forward: GCAGTGCTAATGCCTAATGG

Reverse: GAGGTATGCGATGGGTGAGT

TET3
Forward: GGACCAGCATAACCTCTACAAT

Reverse: TCTCCTCGCTACCAAACTCAT

CD40
Forward: AGAAGGCTGGCACTGTACGA

Reverse: CAGTGTTGGAGCCAGGAAGA

CD80
Forward: ATGGATTACACAGCGAAGTGGAGAA

Reverse: AGGCGCAGAGCCATAATCACGAT

CD83
Forward: TCCCGGCCCACTTTTTGT

Reverse: AGGTGGCCCCATGCTACA

CD86
Forward: ATGTATCTCAGATGCACTATGGAAC

Reverse: TTCTCTTTGCCTCTGTATAGCTCGT

GAPDH
Forward: ATGGGGAAGGTGAAGGTCG

Reverse: GGGGTCATTGATGGCAACAATA
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to negative control plasmid (Figures 4(a) and 4(b)). In addi-
tion, RT-qPCR results showed CD40, CD80, CD83, and
CD86 mRNA were also significantly increased in Mo-DCs
transfected with IFI44L-overexpression plasmid compared
to negative control plasmid (Figure 4(c)).

3.5. Overexpression of IFI44L in Mo-DC Maintains
Upregulation of Th1/Th17-Related Cytokines When
Cocultured with Naïve CD4+ T Cells. To further explore
IFI44L-induced upregulation of immune activity and proin-
flammatory functions of Mo-DC, we did the cocultured
experiments. Normal monocytes were isolated and trans-
fected with IFI44L-overexpression plasmid and negative
control plasmid and then induced differentiation into DCs.
Homologous naïve CD4+ T cells were cocultured with trans-
fected Mo-DCs in a 1 : 5 ratio. The results showed IFN-γ, IL-
4, and IL-17A in the supernatant were significantly increased
in both groups at day 7 compared with day 3 (Figures 5(a)–
5(c)). The expression levels of IFN-γ and IL-17A in the
supernatant were significantly increased in the IFI44L-
overexpression group than the control group at day 5 and

day 7 (Figures 5(a) and 5(b)). By contrast, there was no sig-
nificant differences of IL-4 expression between two groups at
day 3, day 5, and day 7 (Figure 5(c)). Together, our results
revealed overexpression of IFI44L maintained upregulation
of Th1/Th17-related cytokines and may induce Th1/Th17
polarization in SLE.

4. Discussion

Interferon not only plays an important role by itself but also
initiates expression of a series of downstream ISGs through
intracellular signal transduction [3]. The overexpression of
interferon-related genes contributes to an inflammatory
environment in vivo. Our previous studies were the first to
find abnormal expression of IFI44L in SLE peripheral blood
and overexpression of IFI44L was most significant in SLE
rather than other autoimmune diseases, which provided a
new idea for disclosing the pathogenesis of SLE [9]. Mono-
cytes are the cell subsets that express most ISGs in the
human body [11], and they are the main inflammation-
initiating cells of IFI44L. To clarify the role of IFI44L in
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Figure 1: IFI44L is increased in SLE monocyte. The (a) expression level of IFN-α in serum and (b) IFI44L mRNA in monocytes from 20 SLE
patients and 20 healthy controls were measured by ELISA and RT-qPCR. (c) The expression levels of IFI44L protein in monocytes of 3
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coefficient was used for the correlation analysis.
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activated pSTAT3 in CD14+ monocytes was detected with Co-IP. Column 1 showed the expression of TET2 recruited by pSTAT3 with IFN-
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Figure 5: IFI44L overexpression in Mo-DCs maintains upregulation of Th1/Th17-related cytokines when cocultured with naïve CD4+ T
cells. Protein levels of (a) IFN-γ, (b) IL-17A, and (c) IL-4 measured by ELISA in coculture supernatants of naïve CD4+ T cells and Mo-
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Data are shown as mean ± SEMs. Student’s t-test was used to compare the results.
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SLE, we focused on the monocyte subsets which was consis-
tent with the published studies [7, 8]. In the present study,
we found that IFI44L expression was significantly increased
in SLE monocytes and positively correlated with the SLEDAI
score. SLEDAI score represents disease activity of SLE [12],
and the positive correlation between IFI44L expression and
SLEDAI score suggests IFI44L may play an important role
in aggravating active immune response in the pathogenesis
of SLE.

Expression of ISGs requires presence of upstream
signaling pathway [13]. STAT pathways are widely linked
to immune activation and sustained inflammation in the
autoimmune microenvironment [14]. STATs could translo-
cate into the nucleus and bind to IFN regulatory elements
which trigger expression of downstream ISGs. In our previ-
ous study, we have confirmed that the IL-6/STAT3 pathway
participated in upstream immunoregulation and epigenetic
modifications of many genes in SLE [15, 16]. STAT4 and
STAT6 activated by IFNs have been reported in endothelial
and lymphoid cells [17, 18]. In the present study, expres-
sion of IFI44L changed significantly when STAT3 has inter-
fered. The results demonstrated that IFI44L was
downstream of the STAT3 signaling pathway and that
STAT3 was an important regulator of IFI44L overexpres-
sion in SLE monocytes.

Abnormal expression of many genes regulated by TET
family has been found in many diseases [19–22]. Previous
studies have proved that aberrant epigenetic modifications
mediated by transcription factors played an important role
in the pathogenesis of SLE [15, 23, 24]. TET participated
in DNA demethylation involved in monocyte differentia-
tion, and TET-induced demethylation of specific genes relies
on recruitment by transcription factors [25]. Here, our data
revealed overexpression of IFI44L in SLE was due to the
DNA demethylation induced by TET2 which was recruited
by STAT3. The epigenetic regulation of the IFI44L gene
was confirmed by the significant interaction between STAT3
and TET2 in IP assay and no change of TET protein between
SLE and healthy controls. Although this site-specific epige-
netic modification cannot be induced by IFN-α, this epige-
netic regulation may be mediated by transcription factors.

Antigen presentation is the main way that DCs partici-
pate in the immune response [26]. Immature DCs could dif-
ferentiate into mature antigen-presenting DCs with strong
costimulatory and T cell activation abilities [27]. This pro-
cess is associated with high expression of costimulatory
receptors on DCs. CD83 is usually known as markers for
mature DCs [28, 29], and costimulatory receptors including
CD40, CD80, and CD86 also played important roles in DC-
initiated T cell proliferation [30]. In the present study, we
created an IFI44L-overexpression environment through
plasmid transfection into normal monocytes and induced
them differentiating into Mo-DCs to simulate the changes
in the human body. Our results demonstrated a higher
CD40, CD80, CD83, and CD86 expression on Mo-DCs, sug-
gesting an abnormal upregulation of maturation and
immune activity in SLE induced by overexpression of
IFI44L. The DCs with high levels of costimulatory receptors
which stimulated T cell proliferation were associated with

high immune responses and proinflammatory effects in
SLE patients. These results suggested that IFI44L was a
potential proinflammatory factor and partly explained its
abilities to promote autoimmune responses.

According to the results of previous studies in coculture
of Mo-DCs and autologous naïve CD4+ T cells, our results
showed IFI44L was also an inducer of different T helper
(Th) cell responses [31–34]. We observed that Mo-DCs with
IFI44L overexpression enhanced secretion of Th1-related
IFN-γ and Th17-related IL-17A when cocultured with autol-
ogous naïve CD4+ T cells and may consequently induce
Th1/Th17 polarization. Recent studies have demonstrated
that upregulated expression of Th1/Th17-related cytokines
and Th1/Th17 immune shift were important pathogenic fac-
tors in SLE [35–37]. SLE patients including new-onset cases
display high expression of IFN-γ/IL-17A in serum and
prominent infiltration of Th1/Th17 cells in target organs
[38–40]. Our present study revealed that DC-induced Th1/
Th17-related cytokines and Th1/Th17 polarization were
likely dependent on the IFI44L pathway, which once again
suggested IFI44L as a novel initiator of SLE.

In conclusion, TET2 recruited by STAT3 induces DNA
demethylation of IFI44L promoter which regulates the
expression of IFI44L in SLE monocyte. Overexpression of
IFI44L in monocytes enhance maturation and costimulatory
receptors of Mo-DCs and maintain upregulation of Th1/
Th17-related cytokines when cocultured with naïve CD4+

T cells, which all contribute to the pathogenesis of SLE.
Our study explained the epigenetic mechanism of IFI44L
abnormal expression and revealed overexpression of IFI44L
in monocyte participate in the pathogenesis of SLE by aggra-
vating immune activities of Mo-DCs. In the future, we will
validate the above mechanisms through larger samples and
animal models in vivo and explore new methods of SLE
treatment by intervening in the expression of IFI44L.
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