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Objective. Evidence demonstrates that the immune microenvironment is extensively associated with chemotherapy response of
ovarian cancer (OV). Herein, this study is aimed at establishing a cisplatin response prediction model for OV on the basis of
immune genes. Methods. The expression profiles of cisplatin-sensitive and cisplatin-resistant OV specimens were integrated
from multiple public datasets. The abundance scores of 22 immune cells were estimated with CIBERSORT algorithm.
Differentially expressed immune genes (DEGs) were determined between cisplatin-sensitive and cisplatin-resistant groups.
Thereafter, a cisplatin response model was constructed based on prognostic DEGs with logistic regression analysis. The
prediction performance was validated in independent cohorts. The possible relationships between the model and
immunotherapy were then assessed. Results. Treg scores were significantly decreased in cisplatin-resistant than cisplatin-
sensitive OV specimens, with the opposite results for naïve B cells and activated dendritic cells. Fourteen prognostic DEGs
were identified and used to develop a cisplatin-response model. The response scores, estimated by the model, showed favorable
performance in discriminating cisplatin-response and nonresponse samples. The response scores also presented significantly
negative correlations with three well-known cisplatin-resistant pathways and a positive correlation with the expression of
CD274 (PD-L1). Moreover, the decreased CD27 expression was observed in cisplatin-resistant groups, and OV specimens with
higher CD27 expressions were more sensitive to cisplatin treatment. Conclusion. Altogether, our findings proposed a cisplatin
response prediction model and identified CD27 that might be involved in cisplatin resistance. Further investigations suggested
that CD27 could be a promising immunotherapeutic target for cisplatin-resistant subset of OV.

1. Introduction

Ovarian cancer (OV) is one of the most malignant gyneco-
logic tumors that are difficult to cure [1]. Cisplatin is the
first-line platinum-based chemotherapeutic drug of OV.
Most patients initially show response to chemotherapy, but
more than 70% will develop recurrent disease in three years
[2]. Chemoresistance limits the survival of patients with
advanced cancer who receive chemotherapy [3]. Neverthe-
less, the genome-wide alterations in gene expressions are
not well understood during the transition from chemosensi-
tivity to chemoresistance. Identifying targets with clinical

translation potential is still an unsolved challenge. Recent
evidence suggests that epigenetic variations and multiple
pathways contribute to chemotherapy resistance [4–6]. It
has been reported that changes in cellular drug efflux, ele-
vated cellular glutathione levels, increased DNA repair, and
drug tolerance are associated with the acquisition of plati-
num resistance [7, 8]. Although ATP-binding cassette
(ABC) transporters are key proteins for multiple drug resis-
tance, a resistance phenotype is still observed in the expres-
sion absence of some drug resistance genes [9], suggesting
the complex principles of drug resistance in cancer cells
and the possible involvement of many unknown biological
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pathways. BCL2-associated agonist of cell death (BAD) fam-
ily, a BH3-only member of the Bcl-2 family, exerts a key
function in modulating apoptosis [10]. Phosphorylation of
this pathway is associated with cisplatin resistance in OV
and patients’ outcome [11]. Moreover, extracellular matrix
(ECM) has been reported to correlate with drug resistance,
which is commonly recognized by inhibiting drug penetra-
tion into the cancer tissues and the interaction between
ECM components and cancer cells [12].

Immunotherapy enhances the antitumor immune
response in a variety of ways, one of which is through mono-
clonal antibodies that act on immunosuppressive ligands
expressed on tumor cells, also known as immune checkpoint
inhibitors (ICIs) [13–15]. With the assistance of immune
checkpoints, T lymphocytes are able to discriminate their
own cells from heterologous cells [16, 17]. Immune evasion
occurs when cancer cells upregulate the expression of
immune checkpoints to facilitate their escape from the rec-
ognition of T cells [18]. ICIs block the immune escape of
cancer cells by binding to CTLA-4, PD-1 or PD-L1, etc.,
thereby recovering the killing activity of T cells against can-
cer cells [19–21]. Regrettably, a recent clinical trial showed
that combination of PD-L1 antibody atezolizumab and
platinum-based chemotherapy and bevacizumab did not sig-
nificantly improve the overall survival of newly diagnosed
stage III or IV OV [22]. Increasing evidence demonstrates
that both the type and extent of immune infiltration corre-
late with OV patients’ outcome [23]. In a recent clinical trial,
the addition of dendritic cell-based immunotherapy to the
first-line chemotherapy (carboplatin plus paclitaxel) signifi-
cantly improved progression-free survival of epithelial OV
patients [24]. Resolution of immune cells in the exudate of
OV patients revealed that higher proportions of B cells and
NK cells corresponded to worse patient survival, with the
coincidence of higher B cells in FIGO stage IV patients than
in stage III [25]. Cytotoxic CD8+ tumor-infiltrating lym-
phocytes (TILs) are also involved in immune regulation
of OV [26]. In a cohort study with over 5000 cases,
increased CD8+ TILs were accompanied by improved sur-
vival in OV patients, and this log-linear relationship was
independent of postoperative residual and germline BRCA1
mutations [26].

Despite the proposal of a variety of novel cancer treat-
ments represented by cytotoxic anticancer drugs and target
therapies, the control of OV progression remains inade-
quate [27]. The low efficacy of chemotherapy mainly attri-
butes to the developed drug resistance of cancer cells,
revealing that the underling molecular mechanism related
to chemoresistance is a crucial step to improve patients’ sur-
vival. New therapeutic paradigms are urgently needed to
overcome drug resistance in OV. The availability of immu-
notherapy offers a promising pathway for the treatment of
OV. However, patients usually show selective response to
immunotherapy, thereby limiting its application in clinical
practice. Based on these key issues, we attempted to con-
struct a cisplatin response prediction model on the basis of
prognostic immune genes, which will facilitate the better
application of immunotherapy on the cisplatin-resistant
subset of OVs.

2. Materials and Methods

2.1. Study Design and Data Preprocessing. Five datasets
including The Cancer Genome Atlas-OV (TCGA-OV)
cohort and 4 eligible gene expression profiles from the Gene
Expression Omnibus (GEO) database were downloaded to
investigate the alterations of immune microenvironment
related to cisplatin response. The design of this study is
shown in Supplementary figure 1. The four GEO datasets
were selected because they consisted of the gene expression
profiles of both cisplatin-resistant and cisplatin-sensitive
samples after cisplatin treatment. The 547 immune genes
were extracted from the 22 immune cell-related genes
provided by Cell type Identification By Estimating Relative
Subsets Of RNA Transcripts (CIBERSORT) [28]. The
GSE23553 dataset contained gene expression profiles of 6
paired samples of cisplatin-resistant and cisplatin-sensitive
A2780 cell lines [11], which was used to investigate
differentially expressed immune genes (DEGs) between
resistant and sensitive groups. TCGA-OV cohort composed
of 373 samples with expression profiles was used to identify
prognostic DEGs. In addition, a cisplatin response model
was developed based on TCGA-OV dataset that included
209 complete response and 27 progressed disease samples
after chemotherapy, which was validated in the GSE156699
dataset consisting of 38 cisplatin nonresponse patients and
50 response patients [29]. Possible associations of the model
with other cisplatin resistance pathways as well as immune
checkpoint genes were also investigated in TCGA-OV
dataset. The single-cell expression profiles of six OV patients
who received chemotherapy in the GSE158722 dataset [30]
were used to evaluate the variations of response scores with
chemotherapy proceeding. Both the GSE148392 [31] and
GSE23554 [11] datasets included OV tissue samples that
showed resistance or sensitivity to cisplatin, which were used
to verify the expression patterns of CD27 on tumor tissues.
Finally, we investigated the relationship between CD27
expression and cisplatin response in 19 OV cell lines
provided by the Genomics of Drug Sensitivity in Cancer
(GDSC) database [32].

2.2. Estimation the Abundance Scores of 22 Immune Cells.
The CIBERSORT tool was used to estimate the abundance
scores of 22 immune cells for 12 samples in the GSE23553
dataset. The LM22 matrix contained expression profiles of
547 immune genes that represented the expression patterns
of 22 immune cell-associated genes, which was used as the
background input of CIBERSORT. The perturbation was
set as 1000 times with other parameters default.

2.3. Differential Expression Analysis. Nonparametric rank
sum test was performed to assess the variations of 22 immune
cell scores as well as the expression profiles of 547 immune
genes between cisplatin-resistant and cisplatin-sensitive
groups. The significantly different immune cells and immune
genes were determined with a p value less than 0.05.

2.4. Prognostic Analysis. TCGA-OV dataset which included
the patients’ prognostic information, was selected for survival
analysis. After excluding the samples without prognostic

2 Journal of Immunology Research



information and the survival time less than 30 days, a total of
373 samples were retained to identify prognostic DEGs. The
“coxph” method in “survival” package was used to evaluate
the relationship of gene expression with survival time and
events. DEGs with a log-rank test p value less than 0.05 were
defined as prognostic genes. In addition, the hazard ratio
and its 95% confidence interval were also estimated.

2.5. Developing the Cisplatin Response Model. Fourteen prog-
nostic DEGs were identified and used to develop a cisplatin
response model for OV. TCGA-OV and GSE156699 datasets
were chosen as the training and test sets, as they both con-
tained sufficient cisplatin response and nonresponse samples
(236 and 88 samples, respectively). Logistic regression was
adopted to fit the model, and the cisplatin response scores
of all samples were subsequently calculated. Receiver opera-
tor characteristic curve (ROC) analysis was conducted to
assess the performance of this model, and the area under
the curve (AUC) was also calculated. The optimal sensitivity
and specificity were estimated when Youden index reached
the maximum.

2.6. Cisplatin Response Analysis. The drug response data of
OV cell lines were retrieved from the GDSC database
(https://cancerrxgene.org/). The half-maximal inhibitory
concentration (IC50) value of cisplatin and gene expression
profiles of 19 OV cell lines were used to explore the relation-
ship of cisplatin response with CD27 expression. The Spear-
man rho statistic and the corresponding p value were
calculated to estimate the correlation.

2.7. Statistical Analysis. Data analysis and figure preparation
were conducted by R software (version 4.1). The compari-
sons of continuous variables between two groups were per-
formed using Wilcoxon test, while multiple comparisons
were conducted using Kruskal test. For the comparisons of
categorical variables, chi-squared contingency table tests (if
the counts of all categories were not less than 5) or Fisher’s
exact tests (if the count of one category was less than 5) were
performed. The symbols “ns,” “∗,” “∗∗,” “∗∗∗,” and “∗∗∗∗”
indicated p value > 0.05, ≤0.05, ≤0.01, ≤0.001, and ≤0.0001,
respectively.

3. Results

3.1. Characterization of Immune Microenvironment
Differences between Cisplatin-Sensitive and Cisplatin-
Resistant OVs. The abundance scores of three immune cells
showed significant differences in cisplatin-resistant and
cisplatin-sensitive cell lines, including T cells regulatory
(Tregs), B cells naïve, and dendritic cells activated (Supple-
mentary table 1, p value < 0.01). Tregs of the resistant group
presented lower scores than those of the sensitive group,
with the opposite results for B cells naïve and dendritic cells
activated (Figure 1(a)). We identified 86 DEGs between
cisplatin-resistant and cisplatin-sensitive groups, of which 37
were upregulated and 49 were downregulated in the resistant
group (Supplementary table 2, Figure 1(b)). Nine DEGs were
related to Tregs according to the LM22 matrix, including
two upregulated genes, CD27 and RCAN3, and seven

downregulated genes, BCL7A, CD247, CD5, EFNA5, MBL2,
NTN3, and SPOCK2 in the resistant group (Figure 1(c)).

3.2. Identification of Prognostic DEGs. Survival analysis iden-
tified that 14 DEGs were associated with OV prognosis (log
rank p value < 0.05, Figure 2(a)), of which 6 were favorable
prognostic genes (hazard ratio < 1) and 8 were poor prog-
nostic genes (hazard ratio > 1). The GSE173201 dataset,
which consisted of 3 cisplatin-resistant and cisplatin-
sensitive samples, was used to verify the 14 DEGs. We
observed significant differences for more than half of the
13 DEGs (n = 7, no expression values were available for
CD27; Figure 2(b)). Based on the expression profiles of the
14 genes, samples in TCGA-OV cohort were clustered into
3 groups, C1 (n = 150), C2 (n = 184), and C3 (n = 39)
(Figure 2(c)). Five genes, CXCL10, CD27, CD79A, MZB1,
and CXCL11, exhibited the highest expression values in
the C3 group, which were mainly associated with T cells,
B cells, and dendritic cells (Supplementary figure 2).
Survival analysis revealed that samples of the C3 group
harbored the best prognosis. The overall survival rate of
the C2 group samples showed a little better than C1 but no
significant variation was observed (Figure 2(d)). Interestingly,
Treg scores showed a decreasing trend across the three
groups with C3 presenting the highest, followed by C2, and
the lowest on C1 (Figure 2(e), p value < 0.001). However,
no significant variations were found for B cells naïve and
dendritic cells activated (Supplementary figure 3). In
addition, the C3 group was dominated by the chemotherapy-
response samples (96.55%), while the disease-progressive
samples were almost absent (Figure 2(f), 3.45%).

3.3. Developing a Cisplatin Response Model for OV. Accord-
ing to the patients’ chemotherapy outcomes provided by
TCGA-OV dataset, samples of complete response (CR)
and disease progressed (PD) groups were retained and
defined as cisplatin-sensitive and cisplatin-resistant pheno-
types, respectively. Fourteen prognostic DEGs were used to
construct the logistic regression model for cisplatin
response. The response scores were subsequently estimated
for all samples, which represented the probability of one
sample being classified as PD. The response scores of CR
samples were significantly higher than those of PD samples
(Figure 3(a)). The scores of C1, C2, and C3 also presented
an increased trend (Figure 3(b)). The response group sam-
ples in the test set also showed higher scores than nonre-
sponse group samples (Figure 3(c)). ROC curve analysis
was conducted to evaluate the performance of the model to
distinguish CR from PD samples. The AUC was 0.74 (95%
CI: 0.63-0.81). The optimal specificity and sensitivity were
81.5% and 59.8%, respectively, when the score threshold
equaled 0.89 at the maximized Youden index (Figure 3(d)).
The AUC value was 0.80 with the optimal sensitivity and
specificity of 68.0% and 81.6% at the threshold of 0.65 in
the test set (Figure 3(e)). Samples in the two datasets were
divided into a high-score group (H-score) and low-score
group (L-score) according to their respective thresholds,
and the majority of nonresponse samples were distributed
in the H-score group (Figure 4(a)). H-score samples also
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showed worse overall survival and progression-free sur-
vival than L-score samples (log rank p values < 0.001,
Figures 4(b) and 4(c)).

3.4. Association of Cisplatin Response Model with
Chemotherapy-Resistant Pathways. Previous studies have
revealed that the emergence of cisplatin resistance in OV is
associated with the alterations of multiple pathways, includ-

ing the BAD apoptotic pathway, ECM, and epithelial to mes-
enchymal transition (EMT). We obtained 30 genes related to
these pathways, of which 28 gene expressions can be
detected, including 1 BAD pathway gene, 15 ECM pathway
genes, and 12 EMT-related genes according to the references
[11, 33]. Correlation analysis revealed that cisplatin response
scores showed significantly negative correlations with six
genes (Figure 5(a)). Although not all genes exhibited strong
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Figure 1: The immune microenvironment of cisplatin-resistant and cisplatin-sensitive OV groups. (a) The immune cell scores of cisplatin-
resistant and cisplatin-sensitive groups. The dendrogram showed the hierarchical clustering results of cisplatin-resistant and cisplatin-
sensitive groups. (b) Differentially expressed immune genes between cisplatin-resistant and cisplatin-sensitive groups. The red and blue
points represented upregulated and downregulated genes, respectively. The texts indicated the symbols of nine Treg-related genes. (c)
The expression profiles of nine Treg-related genes in cisplatin-resistant and cisplatin-sensitive groups.
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correlations with cisplatin response scores, three key genes
of these pathways, BAD (BAD apoptotic pathway), TGFB
(ECM pathway), and TWIST1 (EMT pathway), negatively
correlated with the response scores (Figure 5(b)). We
attempted to evaluate the alterations of cisplatin response

scores among OV patients receiving chemotherapy after sur-
gery in the GSE158722 dataset that consisted of single-cell
expression profiles of 17 samples collected from 6 patients
at three time points. The cisplatin response scores presented
a decreasing trend with the treatment time increased for
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Figure 2: Prognostic analysis of differentially expressed immune genes. (a) Hazard ratios of the 14 prognostic DEGs. The rectangle size
represented the -log10 of p value. CI: confidence interval. (b) The expression values of 13 prognostic DEGs validated in the GSE173201
dataset. (c) The expression profiles of 14 prognostic DEGs in TCGA-OV dataset. The up dendrogram showed the hierarchical clustering
results of TCGA-OV samples. The up side bars indicated the three groups C1, C2, and C3. (d) Survival curves showed the overall
survival rate of the samples between three groups. (e) The Treg scores of the samples between three groups. (f) The distributions of CR
and PD samples between the three groups. CR: chemotherapy response; PD: disease progressed.
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patient 04, patient 05, patient 07, and patient 09 (Figure 5
(c)), and the differences between three time points were sig-
nificant (Supplementary figure 4). The decreased response
scores suggested that some tumor cells might obtain
cisplatin resistance with the treatment proceeded.

3.5. Association of Cisplatin Response Model with Immune
Checkpoints. In recent years, the immune checkpoint inhib-
itors have been widely investigated as promising drugs for
immunotherapy. We then explored the potential association

of cisplatin response scores with the immune checkpoint
genes. The expression values of PDCD1 (PD1) and CD274
(PD-L1) were significantly elevated in the high-score group
in TCGA-OV dataset (Figure 6(a)). The response scores also
significantly correlated with CD274 expression, but not with
PDCD1 expression (Figure 6(b)). The relationship between
cisplatin response scores and CD274 was further verified in
the GSE160752 dataset, which provided the expression pro-
files of 16 OV samples receiving anti-PD-1 and anti-PD-L1
treatments. The samples that received anti-PD-L1 treatment
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showed the highest response scores, but no significance
was obtained due to the limited samples (Figure 6(c)).
Moreover, the two genes, PRF1 and GZMA, act syner-
gistically to exert immune cytolytic activity, an essential

component of adaptive immunity, which also exhibited
the highest expression levels in anti-PD-L1-treated sam-
ples (Figure 6(c)), indicating the increased immune
activation.
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3.6. Association of CD27 with Cisplatin Response. Survival
analysis indicated that high Treg scores were associated with
better prognosis of OV, and its marker gene CD27 also
showed a positive correlation with good prognosis of OV.
These findings suggested that CD27 might play a pivotal role
in altering the response of OV cells to cisplatin treatment.
Therefore, we focused on this gene for further analysis.
According to the expression level of CD27, TCGA-OV
samples were divided into high-expression, moderate-
expression, and low-expression groups. Samples of the
high-expression group showed a better overall survival rate
than those of the other two groups (Figure 7(a)), which
was validated in the GSE135820 dataset (Figure 7(b)). The
expression of CD27 also positively correlated with cisplatin
response scores (Figure 7(c)). The gene expression profiles
of the GSE23554 and GSE148392 datasets that consisted of
18 and 12 OV tissue samples after cisplatin treatment were
retrieved from the GEO database to verify the relationship
of CD27 expression with cisplatin treatment. The CD27
expressions were significantly downregulated in cisplatin
nonresponse groups in both datasets (Figure 7(d)). More-
over, we observed a negative correlation of CD27 expression
with the IC50 values in 19 OV cell lines (Figure 7(e)). In
addition, the expression of CD27 with other four genes,

PDCD1, CD274, GZMA ,and PRF1, also presented strong
correlations (Figure 7(f)).

4. Discussion

OV is one of the most common malignant tumors in
women, and chemotherapy resistance is a key factor leading
to the high mortality of this disease [34]. Therefore, explor-
ing the feasibility of immunotherapy for chemotherapy-
resistant individuals would be an important and valuable
work. The current study investigated the alterations of
immune microenvironment between cisplatin-resistant and
cisplatin-sensitive OV cells and developed a cisplatin
response model using 14 prognostic immune genes. The
model showed a strong correlation with the immune check-
point gene CD274 (PD-L1). Furthermore, we found that
CD27 might be a potential marker for OV patients.

Tregs have been reported to be decreased in OV samples
treated by neoadjuvant chemotherapy [35], which is consis-
tent with the observations of this study that Treg scores were
downregulated in the cisplatin-resistant group. Naïve B cells
and activated dendritic cells showed the opposite trend,
implying that their alterations might be associated with the
response of OV cells to cisplatin. The findings of this study
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Figure 5: The association of cisplatin response scores with resistant pathways. (a) The correlation matrix between cisplatin response scores
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indicated that the scores of Tregs were the highest for the C3
group that had the best prognosis and were the lowest for
the C1 group, suggesting that Tregs might be a good prog-
nostic factor of OV. However, in the past time, studies about
the impact of Tregs on OV clinical outcome have exhibited
apparently conflicting results. The study of Curiel et al. cre-
atively demonstrated that intratumoral Tregs were associ-
ated with low survival rate of OV [36]. An inverse
relationship between the density of intratumoral Tregs and
the overall survival rate of OV was also reported in several
studies [37, 38]. Besides, no relationship between Tregs
and patient outcome was observed in a study [39]. These
contradictory data may be interpreted from several aspects.
Firstly, it may be linked to tumor heterogeneity [40]. Sec-
ondly, the imperfect markers of phenotypical cells directly
lead to some immune cells missed by CIBERSORT. Third,
in terms of drug response, this inconsistency may reflect

remodeling of the tumor microenvironment due to the tran-
sition of tumor cells from cisplatin sensitive to resistant [35].

Primary or acquired chemoresistance is a key determi-
nant for the high mortality rate of OV [34]. Accurate assess-
ment of chemotherapy response is one of the effective
approaches to address this issue. For chemotherapeutic
agents, cisplatin-induced DNA damage is the main thera-
peutic mechanism. Therefore, a cisplatin response model
based on the DNA damage repair genes has been chosen
to provide this predicted prognostic information [41]. In
addition, methylation CpGs and miR-206 have been used
to construct predictive models and both showed good per-
formance [4, 42]. Several chemotherapy response prediction
models have been proposed. For instance, an immune cell
infiltration score was developed that enabled to predict
the sensitivity to cisplatin for OV patients [43]. An inte-
grated analysis of gene expression profiling proposed that
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an 18-gene model predicted the response of platinum/pac-
litaxel-based treatment in epithelial OV [44]. Based on dig-
ital immune-related gene signatures, a platinum response
prediction model was established for OV [45]. However,
none of them have been applied in clinical practice. Grow-
ing evidence has demonstrated the tight linkage between
the immune response and platinum response, involving
the immune microenvironment remodeling during the
transition from cisplatin sensitivity to resistance [46]. Nev-
ertheless, cisplatin response models based on immune
genes are rarely reported. The current study presented a
cisplatin response model based on 14 immune-related
genes, which showed well-performed discrimination
between cisplatin-sensitive and cisplatin-resistant samples
both in the training and test sets. Moreover, OV patients
with high response scores also harbored better overall sur-
vival and progression-free survival rates than those with
low scores. These results indicated that the cisplatin
response model showed the potential to predict the
response of OV patients to cisplatin treatment, which may
help physicians to assess the cisplatin-sensitive or cisplatin-
resistant patients before they received chemotherapy.

Our cisplatin response model consisted of CD27,
RCAN3, BCL7A, CD247, CD5, EFNA5, MBL2, NTN3,
and SPOCK2. Limited evidence demonstrates the roles of
the above genes in OV progression. For instance, a
prime/boost vaccine platform identified CD27 agonist
and loss of myeloid-derived suppressor cells as treatment
that combined with ICIs in OV [47]. Low BCL7A expres-
sion predicted undesirable survival outcome of OV
patients [48]. CD247 expression was linked to differentia-
tion and classification in OV [49]. EFNA5 was upregulated
in aggressive and recurrent OV [50]. Binding to DNA is
the basis for the cytotoxicity of cisplatin on tumor cells.
The three well-known mechanisms of intracellular chemo-
resistance comprise reduction of drug cell accumulation,
drug intracellular detoxification, and DNA damage repair
[51]. Although they have been recognized as the key path-
ways for cisplatin resistance, several novel pathways have
been found, including the BAD apoptotic pathway, ECM,
and EMT. Cisplatin resistance is a complex biological phe-
nomenon associated not only with adaptive mechanisms
within tumor cells but also with the microenvironment
outside the tumor cells. We found that the cisplatin
response scores showed significantly negative correlations
with the three pathways, suggesting the close connections
between them.

Previous knowledge suggests that chemotherapeutic
agents induce immunosuppression; however, recent studies
have highlighted the critical impact of tumor microenvi-
ronment on cisplatin resistance [52]. In OV murine
models, cisplatin delivery increased the expression of
immune checkpoint receptor PD-L1, indicating a positive
impact of cisplatin treatment on immune response [53].
In this study, PD-L1 expression was upregulated in the
high-score group and negatively correlated with cisplatin
response scores, indicating that the immune response
was perturbed after cisplatin treatment. Indeed, the tumor
cytotoxicity could be regulated by cisplatin through modu-

lating cytotoxic effectors and suppressing immune cells
within tumor microenvironment, thereby exerting positive
anticancer effects [54]. Our findings also implied that cis-
platin resistance may be associated with low PD-L1
(CD274) expression.

CD27, a member of tumor necrosis factor receptor
superfamily (TNFRSF), is expressed on a wide range of
human lymphocytes such as memory T cells and Tregs.
It acts as a costimulatory receptor through collaboration
with its natural ligand CD70 to activate T cells [55]. Evi-
dence demonstrates that CD27 plays a pivotal role in
enhancing the generation and maintenance of antigen-
specific CD4+ and CD8+ T cells [56]. In this study, we
found that CD27 expression was significantly downregu-
lated in the cisplatin-resistant group and negatively corre-
lated with sensitivity of OV cell lines to cisplatin. These
findings revealed that CD27 expression was suppressed
on cisplatin-resistant samples, suggesting a failed T cell
(CD4+ or CD8+) activation.

Recent years have witnessed the emergence of immu-
notherapy based on immune checkpoint genes, but not
all patients show a positive response due to insufficient T
cell initiation. Accumulating evidence suggests that CD27
agonist antibodies exhibit specific synergistic effects with
CTLA-4 and PD-1 inhibitors, especially when combined
with PD-1 inhibitors; the strategy successfully eliminated
tumors in preclinical models [57]. The synergistic antitu-
mor activity of PD-1 inhibitors with CD27 agonist anti-
bodies, varlilumab, was also observed on progressed OV
patients. The patients who received combination therapy
had better outcomes and did not obtain additional toxicity
[58]. Our findings indicated that suppressed expression of
CD27 may be associated with the cisplatin-resistant phe-
notype of OV, providing an alternative therapeutic target
for the subset of cisplatin-resistant patients. The combina-
tion with ICIs might be an effective strategy to improve
the prognosis of cisplatin-resistant patients. However, acti-
vation of the CD27/CD70 axis may also lead to tumor
immunosuppressive effects by enhancing the survival of
natural Tregs and inducing the apoptosis of effector T cells
[59, 60]. Therefore, more evidence is required for CD27 as
a therapeutic target for the chemoresistant patients.

However, several limitations should be pointed out.
Our study was based on the data from public datasets.
The fundamental research was essential to explain the
internal mechanisms of our cisplatin response model.
Moreover, clinical studies are still required for validating
the predictive value of this cisplatin response model.

5. Conclusion

Altogether, our findings proposed a reliable cisplatin
response model on the basis of 14 immune genes for
OV patients. Additionally, CD27, a costimulator of acti-
vated T cells, was recognized as a favorable prognostic fac-
tor, and its expression showed significant downregulation
in cisplatin-resistant groups, which might be a promising
candidate immunotherapeutic target for the subset of
cisplatin-resistant patients.
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