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Chronic kidney disease (CKD) is an ongoing deterioration of renal function that often progresses to end-stage renal disease. In
this study, we aimed to screen and identify potential key genes for CKD using the weighted gene coexpression network
(WGCNA) analysis tool. Gene expression data related to CKD were screened from GEO database, and expression datasets of
GSE66494 and GSE62792 were obtained. After discrete analysis of samples, WGCNA analysis was performed to construct gene
coexpression module, and the correlation between the module and disease was calculated. The modules with a significant
correlation with the disease were selected for Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis. Then, the interaction network of related molecules was constructed, and the high score
subnetwork was selected, and the candidate key molecules were identified. A total of 882 DEGs were identified in the screening
datasets. A subnetwork containing 6 nodes was found with a high score of 12.08, including CEBPZ, IFI16, LYAR, BRIX1,
BMS1, and DDX18. DEGs could significantly differentiate CKD and healthy individuals in principal component analysis. In
addition, the MEturquiose, MEred, and MEblue in group were significantly correlated with disease in WGCNA. These 6 hub
genes were found to significantly discriminate between CKD and healthy controls in the validation dataset, suggesting that
they could use these molecules as candidate markers to distinguish CKD from healthy people. Overall, our study indicated that
6 hub genes may play key roles in the occurrence and development of CKD.

1. Introduction

Chronic kidney disease (CKD) is a worldwide public health
problem with increasing incidence, poor prognosis, and high
treatment cost. As a global health problem, CKD affects 10-
16% of adults in Asia, Europe, and the United States and can
progress to kidney failure [1]. The development of disease-
related modules and genes is becoming increasingly popular.
These methods are extremely useful in aiding the clinical
search for diagnostic and therapeutic indicators. CKD is a
complex disease related to genetic and environmental risk
elements [2–4]. In response to the growing need to identify
patients with CKD at an early stage and improve risk strati-
fication for progression to end-stage renal disease, numerous

studies have been conducted in large numbers of patients to
investigate new and existing kidney disease biomarkers.

A number of different methodologies have been used,
ranging from candidate single-gene studies to genome-
wide multiomics analyses, to identify potential drug candi-
dates. It is hoped that new methodologies will be developed
to discover new CKD biomarkers, which will help us better
understand the biology of kidney disease by using genetic,
epigenetic, and transcriptome investigations [5]. CKD is an
important issue given the increasing number of such
patients worldwide. CKD is characterized by glomerular fil-
tration rate (GFR) of less than 60mL/min/1.73m2 and signs
of renal injury lasting at least 3 months. Reduced estimated
GFR (eGFR) and severity of proteinuria independently
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predicted end-stage renal disease and mortality in patients
with CKD [6, 7]. There is an urgent need to identify new
biomarkers in patients with CKD to better detect people at
high risk of rapid decline in kidney function, so that effective
therapies can be used to curb disease progression [8, 9].

Weighted gene coexpression network analysis
(WGCNA), as a method to screen disease-related modules,
is the most common and useful method for discovering the
link between genes and clinical characteristics [10]. Complex
disorders including glioblastoma multiforme, cardiovascular
disease in patients with diabetes, and Sjogren’s syndrome
have been studied using WGCNA in prior studies [11–13].
WGCNA analysis provides an alternative approach for
exploring genetic biomarkers that predict prognosis for
CKD. The expressing data can be used to construct signifi-
cantly correlated genes and their coexpression modules. In
addition, these modules can further analyze modular charac-
teristic genes (ME) and intramodular hub genes [14, 15].
Therefore, WGCNA may be a valuable tool for a compre-
hensive understanding of CKD-related genomic changes
[10]. However, there was still little researches on CKD. In
this study, WGCNA was performed to identify and screen
related genes, so as to further explore the possible mecha-
nisms of the critical genes and provide candidate markers
for the diagnosis of CKD.

2. Materials and Methods

2.1. Microarray Data Source. The information was from the
GEO datasets for patients with CKD extract (https://www
.ncbi.nlm.nih.gov/gds/). The keywords “Chronic kidney dis-
ease” and “Homo sapiens” were applied as queries to search
ckD-related datasets from GEO datasets. The GEO dataset
met the following criteria: (1) the dataset contains CKD
specimens and normal specimens; (2) each sample was
assigned a group label; (iii) platform type is limited to
“microarray”; (4) each probe has an available gene symbol
or GeneBank ID; (5) the number of samples in the dataset
was greater than 10. Finally, two datasets including
GSE66494 and GSE62792 were selected as analysis datasets,
including 65 CKD patients and 14 healthy controls.

2.2. Identification of Differentially Expressed Genes (DEGs).
In order to find differences in gene expression between
CKD samples and healthy controls, GEO2R was used [16].
The log-fold changes in expressions and adjusted P values
(adj:P) were calculated. The adj:P was corrected for false-
positive results using the Benjamini-Hochberg method and
default settings. An adj:P 0:05 and ∣logFC ∣ >2 cut-off was
used to identify the DEGs. A Venn diagram web tool was
used to identify genes that overlapped. In order to see the
DEGs volcano plot visually, a hierarchical cluster analysis
was performed.

2.3. Clustering and Enrichment Analysis. Clustering and
enrichment analyses were carried out using GO (Gene
Ontology) analysis. Pathway analysis is described in the
Kyoto Encyclopedia of Genes and Genomes (KEGG).
Enrichment analysis uses DAVID (https://david. http://

ncifcrf.gov/tools. jsp), including biological process, molecu-
lar function, cells, and KEGG analysis. In addition, only
FDR of GO or KEGG terms less than 0.05 was considered
significant. We carried out visualization of the top 10 GO
terms and the top 10 KEGG pathways.

2.4. Weighted Gene Coexpression Network Analysis. We
compile and organize data files containing gene expression
and phenotypes in standard formats. Firstly, to validate the
accuracy of the study, we performed sample cluster analysis
to verify the association of all data in the training queue. As a
mean of ensuring that gene interaction followed a scale-free
distribution, a study known as soft threshold selection anal-
ysis was employed. Besides, dynamic tree cutting algorithm
was applied to identify modules via hierarchical clustering.
Then, the protein expression abundance was clustered in R
software (https://http://www.r-project.org/) to construct a
weighted gene network. Subsequently, the correlation and
correlation coefficient between the expressing spectrum
and groups were calculated. We further identify important
modules associated with traits. The dissimilarity degrees of
MES in the module tree were calculated, and some modules
(dissimilarity degree of MES < 0:25) were combined to
obtain the final network.

2.5. Construction of an Interactive Network. The molecular
network was based on the interaction of text mining, experi-
ment, database, coexpression, neighborhood, gene fusion,
cooccurrence, and so on. Molecular networks and subnet-
works were optimized for social networks constructed by
STRING (https://http://string-db.org/cgi/input.pl) and Cytos-
cape software (version 3.7.2). Cytoscape software was used to
depict the results from STRING as PPI networks. The PPI net-
work was cleansed of nodes that were not connected to any
other nodes. Degree centrality was used to determine the PPI
network’s hub genes. The subnetwork was analyzed and
scored using Cytoscape’s MCODE plug-in.

2.6. Statistical Analysis. Statistical analysis was performed by
SPSS software (SPSS Inc., Chicago, IL, USA) and R.4.1.1 (R
Core Team, Massachusetts, USA). Data visualization was
performed using PRISM. The differential expression thresh-
old was set to 1.5. T-test was used to calculate the difference,
and P < 0:05 was considered statistically significant.

3. Results

3.1. Differential Expression Analysis in CKD Patients. First,
we screened gene expression profiling datasets from CKD
patients and healthy individuals in the GEO database. A
total of renal biopsy specimens of CKD patients were
selected for microarray analysis data, and datasets
GSE66494 and GSE62792 were selected as analysis datasets,
including data of 65 CKD patients and 14 healthy controls.
Data were obtained from the platform Agilent-014850
Whole Human Genome Microarray 4x44K G4112F (Probe
Name version) and stored in the GPL6480 platform. We cal-
culated DEGs between CKD patients and healthy individuals
(Figures 1(a) and 1(b)). We found that a total of 882 DEGs
were screened out in the above two datasets (Figure 1(c)).
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Figure 1: Continued.
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We found that a total of 882 DEGs were screened in the above
two datasets, and their gene expression profiles were listed in
the heatmap (Figure 1(d)). Additionally, DEGs were observed
to significantly distinguish CKD patients from healthy con-
trols in principal component analysis (Figure 1(e)).

3.2. Clustering and Enrichment Analysis. In order to further
learn the function of CKD-related genes, we conducted GO
function and KEGG pathway enrichment analysis of related
genes. GO enrichment results showed that, for BP, these
related molecules mainly play physiological functions
including cell-cell adhesion, in utero embryonic develop-
ment, VEGF receptor signaling pathway, negative regulation
of transcription, nuclear-transcribed mRNA poly (A),
mitotic cytokinesis, intracellular signal transduction, positive
regulation of transcription, mitotic metaphase plate congres-
sion, and multicellular organism growth (Figure 2(a)). The
results showed that for CC, these related molecules were
mainly located in the intracellular, organelle, intracellular
part, intracellular organelle, membrane-bounded organelle,
cytoplasm, cytoplasmic part, intracellular membrane, organ-
elle part, intracellular organelle part (Figure 2(a)). The
results showed that, for MF, the main physiological func-
tions of these related molecules included protein binding,
binding, poly (A) RNA binding, nucleotide binding, nucleo-
side phosphate binding, small molecule binding, heterocyclic
compound binding, organic cyclic compound binding, RNA
binding, and carbohydrate derivative binding (Figure 2(a)).

In order to understand the enrichment of the pathway,
KEGG analysis was used to analyze the pathway, and it
was found that these molecules were mainly involved in 14
pathways including protein processing in endoplasmic retic-
ulum, pathways in cancer, proteoglycans in cancer, TNF sig-
naling pathway, platelet activation, aldosterone synthesis
and secretion, adrenergic signaling in cardiomyocytes, focal
adhesion, N-glycan biosynthesis, and HTLV-I infection
(Figure 2(b)).

3.3. Construction of Coexpression Networks. WGCNA was
used to identify disease-related modules in which genes
exhibited coordinated expression patterns, which greatly
improved the chances of identifying hub genes. In order to
construct gene coexpression network, GSE66494 and
GSE62792 data were used for cluster analysis. A total of 79
samples, including 10891 gene expression data, were used
to construct hierarchical clustering trees. The analysis results
showed that no obvious outlier samples were found. Thus,
the analysis program retained all samples to construct the
weighted coexpression network (Figure 3(a)). The dynamic
mixed shearing methods were used to merge the modules
with high similarity of feature genes, and 10 gene modules
with different colors were finally obtained, among which
the gray module was the gene without coexpression
(Figure 3(b)). In addition, we also conducted hierarchical
clustering of these gene modules, and these characteristic
gene modules could be grouped into two categories. Disease
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Figure 1: Differential analysis of gene expression profiles. (a) The volcano map of GSE62792. (b) The volcano map of GSE66494. (c) The
Venn diagram of GSE62792 and GSE66494. (d) The heatmap of differential expression. (e) Principal component analysis.
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was considered as the main clinical feature for correlation
analysis of different gene modules. MEblack and MEpink
were negatively correlated with the disease, while MEyellow,
MEturquiose, MEblue, MEred, MEpurple, MEmagenta,
MEbrown, and MEgreen were positively correlated with
the disease. However, the results showed that MEturquiose,
MEred, and MEblue in group were significantly correlated
with disease (Figure 3(c)). Then, the MEturquiose, MEblue,
and MEred were significantly positively correlated modules
in the CKD and healthy groups, and it turned out that there
was a complex network of connections between these mole-
cules (Figures 3(d)–3(f)).

3.4. Interaction Network Analysis. To understand the inter-
action network status of CKD-related molecules, the interac-
tion network was constructed through STRING. It turned
out that there was a complex network of connections
between these molecules in DEGs (Figure 4(a)). We ana-
lyzed and extracted key subnetworks through the Cytoscape
plugin MCODE. The results showed that there were 3 sub-
networks with high scores, including 14 key genes in total
(Figures 4(b)–4(d)). Most importantly, a subnetwork con-
taining 6 nodes was found with a score of 12.08, including
CCAAT enhancer binding protein zeta (CEBPZ), interferon
gamma inducible protein 16 (IFI16), Ly1 antibody reactive
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Figure 3: WGCNA analysis of gene expression profiles in CKD patients and healthy individuals. (a) Sample hierarchical clustering
dendrogram; (b) clustering dendrogram, different color blocks represent gene modules formed by dynamic tree cutting method; (c) gene
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ID Description Degree MCODE_Score Fold change p-Value
CEBPZ CCAAT/enhancer-binding protein zeta 14 9.340659341

9.340659341
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3.02
2.70

IFI16 Gamma-interferon-inducible protein 16 15 8
LYAR Cell growth-regulating nucleolar protein 14
BRIX1 Ribosome biogenesis protein BRX1 homolog

Ribosome biogenesis protein BMS1 homolog
14

BMS1 15
DDXz8 TP-dependent RNA helicase DDX18 14 9.615384615 < 0.0001
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Figure 5: Continued.
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(LYAR), biogenesis of ribosomes BRX1 (BRIX1), BMS1
ribosome biogenesis factor (BMS1), and DEAD-box helicase
18 (DDX18). We used these molecules as candidate markers
to distinguish CKD from healthy people.

3.5. Validation of Candidate Markers. First, we aggregated
the details, including degree, MCODE_score in Cytoscape,
fold changes, and P value, of these candidate genes and
found high scores for these analyses (Figure 5(a)). To vali-
date the key molecules screened by the above bioinformatics,
we collected new sequencing data as a validation dataset in
GEO. GSE142153 and GSE70528 were used to analyze and
validate gene expression. The results showed that these mol-
ecules were significantly upregulated in CKD compared to
healthy controls (Figures 5(b)–5(g)). Therefore, these mole-
cules, including CEBPZ, IFI16, LYAR, BRIX1, BMS1, and
DDX18, can be used as potential candidate markers in CKD.

4. Discussion

CKD has a wide range of underlying causes, including both
hereditary and environmental factors, and is considered to
be a global public health problem, with the adjusted preva-
lence of CKD in the European adult population ranging
from 3.3% to 17.3% [17]. CKD is more common among
the elderly and is associated with a higher risk of cardiovas-
cular disease (CVD). One of the most common causes of
kidney CKD is diabetes mellitus (DM). In addition, few bio-
markers have been found in clinical practice, although other
diagnostic biomarkers for CKD have been studied [18].
Therefore, improved early detection and treatment of CKD
necessitated new molecular biomarkers.

IFI16 has been shown to influence ribosome biogenesis
and has been identified as a promoter associated with stem
cell-like properties in colorectal cancer [19]. LYAR can
enhance the stem cell-like properties of breast cancer and
lead to poor prognosis of breast cancer, which is expected
to be a potential biomarker for breast cancer treatment
[20]. BRIX1 is a new potential target in psoriasis and diffuse
superficial actinic sweat keratosis [21]. BMS1 is an RNA-
and DNA-binding protein involved in nucleolar processing
of 7S to 5.8SrRNA. When exposed to cytotoxic agents, the
nucleolar localization of PUF-A redistributes into the
nuclear cytoplasm. DDX18 is a risk site associated with
DTC susceptibility [22]. CEBPZ was also involved in cell
growth and differentiation, especially hematopoietic differ-
entiation [23]. DDX18 was identified to be associated with
stroke, and serum PDCD11-AB levels may serve as a poten-
tial biomarker for TRANSIENT ischemic attack [24, 25].

The proliferation of omics-related biomarker studies
over the past decade reflects the need for new, effective, non-
invasive tools that can identify people at risk for CKD and
help target kidney disease management [26]. CKD was a
growing public health problem with high morbidity and
mortality. New biomarkers were developed to improve risk
stratification and clinical decision-making and to guide the
enrichment of patients with CKD in clinical trials. Despite
tremendous efforts, only a few biomarkers have so far found
large-scale clinical application. Although our study has iden-
tified multiple putative biomarkers, these were mainly from
small, single-center studies. The utility of such biomarkers
needed to be confirmed in different populations and in
larger cohorts. In addition, no in vivo or in vitro studies were
performed. Both the above deficiencies are also the main
aspects of our further research.
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Figure 5: The hub genes screened out were validated in the validation dataset including GSE142153 and GSE70528. (a) A total of 6
molecules were considered to be highly associated with CKD, including CEBPZ, IFI16, LYAR, BRIX1, BMS1, and DDX18. Details of
these hub genes include degree, MCODE_score in Cytoscape, fold changes, and P value in the interaction network in CKD patients
compared to healthy controls. (b) mRNA expression of CEBPZ. (c) mRNA expression of IFI16. (d) mRNA expression of LYAR. (e)
mRNA expression of BRIX1. (f) mRNA expression of BMS1. (g) mRNA expression of DDX18. CKD: patients with chronic kidney
disease; HC: healthy human control.
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5. Conclusions

We identified 6 hub genes in CKD, which ere demonstrated
in the validation dataset. They could be used these molecules
as candidate markers to distinguish CKD from healthy peo-
ple. Our study indicated that 6 hub genes may play key roles
in the occurrence and development of CKD.
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